1
|
Zhang H, Hao J, Hong H, Gu W, Li Z, Sun J, Zhan H, Wei X, Zhou L. Redox signaling regulates the skeletal tissue development and regeneration. Biotechnol Genet Eng Rev 2024; 40:2308-2331. [PMID: 37043672 DOI: 10.1080/02648725.2023.2199244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Skeletal tissue development and regeneration in mammals are intricate, multistep, and highly regulated processes. Various signaling pathways have been implicated in the regulation of these processes, including redox. Redox signaling is the signal transduction by electron transfer reactions involving free radicals or related species. Redox homeostasis is essential to cell metabolic states, as the ROS not only regulates cell biological processes but also mediates physiological processes. Following a bone fracture, redox signaling is also triggered to regulate bone healing and regeneration by targeting resident stromal cells, osteoblasts, osteoclasts and endothelial cells. This review will focus on how the redox signaling impact the bone development and bone regeneration.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Jin Hao
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - HaiPing Hong
- FangTa Hospital of Traditional Chinese Medicine, Songjiang Branch, Shanghai, East China, China
| | - Wei Gu
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | | | - Jun Sun
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Hongsheng Zhan
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Xiaoen Wei
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Lin Zhou
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| |
Collapse
|
2
|
Mao J, Sun Z, Wang S, Bi J, Xue L, Wang L, Wang H, Jiao G, Chen Y. Multifunctional Bionic Periosteum with Ion Sustained-Release for Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403976. [PMID: 39225563 PMCID: PMC11497021 DOI: 10.1002/advs.202403976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/28/2024] [Indexed: 09/04/2024]
Abstract
In this study, a novel bionic periosteum (BP)-bioactive glass fiber membrane (BGFM) is designed. The introduction of magnesium ion (Mg2+) and zinc ion (Zn2+) change the phase separation during the electrospinning (ES) jet stretching process. The fiber's pore structure transitions from connected to closed pores, resulting in a decrease in the rapid release of metal ions while also improving degradation via reducing filling quality. Additionally, the introduction of magnesium (Mg) and zinc (Zn) lead to the formation of negative charged tetrahedral units (MgO4 2- and ZnO4 2-) in the glass network. These units effectively trap positive charged metal ions, further inhibiting ion release. In vitro experiments reveal that the deigned bionic periosteum regulates the polarization of macrophages toward M2 type, thereby establishing a conducive immune environment for osteogenic differentiation. Bioinformatics analysis indicate that BP enhanced bone repair via the JAK-STAT signaling pathway. The slow release of metal ions from the bionic periosteum can directly enhance osteogenic differentiation and vascularization, thereby accelerating bone regeneration. Finally, the bionic periosteum exhibits remarkable capabilities in angiogenesis and osteogenesis, demonstrating its potential for bone repair in a rat calvarial defect model.
Collapse
Affiliation(s)
- Junjie Mao
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Zhenqian Sun
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
- The First Clinical Medical SchoolShandong UniversityJinanShandong250012P. R. China
| | - Shidong Wang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijing100044P. R. China
| | - Jianqiang Bi
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Lu Xue
- Shandong Second Medical UniversityWeifangShandong261000P. R. China
- Shanxian Central HospitalHezeShandong274300P. R. China
| | - Lu Wang
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Hongliang Wang
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Guangjun Jiao
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Yunzhen Chen
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| |
Collapse
|
3
|
Wang R, Li S, Wang B, Wang G, Zheng H. Impact of opioids and mu-opioid receptors on oncologic metastasis. Am J Cancer Res 2024; 14:4236-4247. [PMID: 39417177 PMCID: PMC11477826 DOI: 10.62347/scls3277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
Opioids are the most effective and widely used treatments for acute and chronic pain in patients with cancer. This review focuses on the impact of opioids and mu-opioid receptors (MORs) on the stages of oncologic metastasis. Studies have shown that opioids can facilitate tumor progression and are related to a poor prognosis in patients with cancer. As the primary receptor for opioids, MORs play a significant role in regulating malignant tumor transformation and are involved in processes, such as proliferation, angiogenesis, epithelial-mesenchymal transition (EMT), circulating tumor cells (CTCs) and the tumor microenvironment (TME). While clinical trials have investigated the relationship between opioids and patient prognosis, further research is needed to clarify the relationship between opioids, MORs and metastasis.
Collapse
Affiliation(s)
- Runjia Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan, Shandong, China
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Bomin Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan, Shandong, China
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan, Shandong, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
4
|
Song JH, Hwang B, Lyea Park S, Kim H, Jung S, Choi C, Myung Lee H, Yun SJ, Hyun Choi Y, Cha EJ, Patterson C, Kim WJ, Moon SK. IL-28A/IL-10Rβ axis promotes angiogenesis via eNOS/AKT signaling and AP-1/NF-κB/MMP-2 network by regulating HSP70-1 expression. J Adv Res 2024:S2090-1232(24)00356-4. [PMID: 39127098 DOI: 10.1016/j.jare.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
INTRODUCTION Angiogenesis plays a significant role in the development of tumor progression and inflammatory diseases. The role of IL-28A in angiogenesis and its precise regulatory mechanisms remain rarely elucidated. OBJECTIVES We report the novel regulatory role of IL-28A in physiological angiogenesis. The study aimed to elucidate the regulatory mechanisms involved in IL-28A-mediated angiogenesis and identify key genes associated with IL-28A-induced angiogenic responses. METHODS To know the effect of IL-28A on angiogenesis, HUVECs were applied to perform proliferation, migration, invasion, tube formation, immunoblot, and EMSA. Gene expression changes in HUVECs following IL-28A treatment were analyzed by NGS. The functional role of HSP70-1 and IL-10Rβ in IL-28A-induced angiogenic responses was evaluated using PCR and siRNA knockdown. Animal studies were conducted by aortic ring ex vivo assays, Matrigel plug in vivo assays, and immunochemistry using HSP70-1 knockout and transgenic mice models. The efficacy of IL-28A in angiogenesis was confirmed in a hind-limb ischemia model. RESULTS Autocrine/paracrine actions in HUVECs regulated IL-28A protein expression. Exogenous IL-28A increased the proliferation of HUVECs via eNOS/AKT and ERK1/2 signaling. IL-28A treatment promoted migration, invasion, and capillary tube formation of HUVECs through induction of the AP-1/NF-κB/MMP-2 network, which was associated with eNOS/AKT and ERK1/2 signaling. The efficacy of IL-28A-induced angiogenic potential was confirmed by aortic ring and Matrigel plug assay. HSP70-1 was identified as an IL-28A-mediated angiogenic effector gene using bioinformatics. Knockdown of HSP70-1 abolished angiogenic responses and eNOS/AKT signaling in IL-28A-treated HUVECs. IL-28A-induced microvessel sprouting formation was testified in HSP70-1-deficient and HSP70-1 transgenic mice. Flow recovery in hind-limb ischemia mice was accelerated by IL-28A injection. Finally, ablation of the IL-10Rβ gene impeded the angiogenic responses and eNOS/AKT signaling stimulated by IL-28A in HUVECs. CONCLUSION HSP70-1 drives the progression of angiogenesis by the IL-28A/IL-10Rβ axis via eNOS/AKT signaling and the AP-1/NF-κB/MMP-2 network.
Collapse
Affiliation(s)
- Jun-Hui Song
- Department of Food and Nutrition, Chung-Ang University, Anseong 456-756, Korea
| | - Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong 456-756, Korea
| | - Sung Lyea Park
- Department of Food and Nutrition, Chung-Ang University, Anseong 456-756, Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 456-756, Korea
| | - Soontag Jung
- Department of Food and Nutrition, Chung-Ang University, Anseong 456-756, Korea
| | - Changsun Choi
- Department of Food and Nutrition, Chung-Ang University, Anseong 456-756, Korea
| | - Hwan Myung Lee
- Department of Cosmetic Science, Hoseo University, Asan-si 31499, Republic of Korea
| | - Seok-Joong Yun
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614-052, South Korea
| | - Eun-Jong Cha
- Department of Biomedical Engineering, Chungbuk National University, Cheongju 361-763, Korea
| | - Cam Patterson
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Wun-Jae Kim
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea; Institute of Urotech, Cheongju, Chungcheongbuk-do 361-763, Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 456-756, Korea.
| |
Collapse
|
5
|
Villa-Martínez E, Rios A, Gutiérrez-Vidal R, Escalante B. Potentiation of anti-angiogenic eNOS-siRNA transfection by ultrasound-mediated microbubble destruction in ex vivo rat aortic rings. PLoS One 2024; 19:e0308075. [PMID: 39088581 PMCID: PMC11293687 DOI: 10.1371/journal.pone.0308075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/16/2024] [Indexed: 08/03/2024] Open
Abstract
Nitric oxide (NO) regulates vascular homeostasis and plays a key role in revascularization and angiogenesis. The endothelial nitric oxide synthase (eNOS) enzyme catalyzes NO production in endothelial cells. Overexpression of the eNOS gene has been implicated in pathologies with dysfunctional angiogenic processes, such as cancer. Therefore, modulating eNOS gene expression using small interfering RNAs (siRNAs) represents a viable strategy for antitumor therapy. siRNAs are highly specific to the target gene, thus reducing off-target effects. Given the widespread distribution of endothelium and the crucial physiological role of eNOS, localized delivery of nucleic acid to the affected area is essential. Therefore, the development of an efficient eNOS-siRNA delivery carrier capable of controlled release is imperative for targeting specific vascular regions, particularly those associated with tumor vascular growth. Thus, this study aims to utilize ultrasound-mediated microbubble destruction (UMMD) technology with cationic microbubbles loaded with eNOS-siRNA to enhance transfection efficiency and improve siRNA delivery, thereby preventing sprouting angiogenesis. The efficiency of eNOS-siRNA transfection facilitated by UMMD was assessed using bEnd.3 cells. Synthesis of nitric oxide and eNOS protein expression were also evaluated. The silencing of eNOS gene in a model of angiogenesis was assayed using the rat aortic ring assay. The results showed that from 6 to 24 h, the transfection of fluorescent siRNA with UMMD was twice as high as that of lipofection. Moreover, transfection of eNOS-siRNA with UMMD enhanced the knockdown level (65.40 ± 4.50%) compared to lipofectamine (40 ± 1.70%). Silencing of eNOS gene with UMMD required less amount of eNOS-siRNA (42 ng) to decrease the level of eNOS protein expression (52.30 ± 0.08%) to the same extent as 79 ng of eNOS-siRNA using lipofectamine (56.30 ± 0.10%). NO production assisted by UMMD was reduced by 81% compared to 67% reduction transfecting with lipofectamine. This diminished NO production led to higher attenuation of aortic ring outgrowth. Three-fold reduction compared to lipofectamine transfection. In conclusion, we propose the combination of eNOS-siRNA and UMMD as an efficient, safe, non-viral nucleic acid transfection strategy for inhibition of tumor progression.
Collapse
Affiliation(s)
- Elisa Villa-Martínez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Amelia Rios
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Roxana Gutiérrez-Vidal
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
- Programa de Investigadoras e Investigadores por México, CONAHCyT/Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Bruno Escalante
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, México
| |
Collapse
|
6
|
Portes E Silva KR, Nogueira EM, Jesus Mendes ALD, Pena ALB, Simões E Silva AC. The potential role of renin angiotensin system in acute leukemia: a narrative review. Mol Biol Rep 2024; 51:775. [PMID: 38904729 DOI: 10.1007/s11033-024-09659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
Acute leukemias (ALs) are the most common cancers in pediatric population. There are two types of ALs: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Some studies suggest that the Renin Angiotensin System (RAS) has a role in ALs. RAS signaling modulates, directly and indirectly, cellular activity in different cancers, affecting tumor cells and angiogenesis. Our review aimed to summarize the role of RAS in ALs and to explore future perspectives for the treatment of these hematological malignancies by modulating RAS molecules. The database including Pubmed, Scopus, Cochrane Library, and Scielo were searched to find articles about RAS molecules in ALL and in pediatric patients. The search terms were "RAS", "Acute Leukemia", "ALL", "Angiotensin-(1-7)", "Pediatric", "Cancer", "Angiotensin II", "AML". In the bone marrow, RAS has been found to play a key role in blood cell formation, affecting several processes including apoptosis, cell proliferation, mobilization, intracellular signaling, angiogenesis, fibrosis, and inflammation. Local tissue RAS modulates tumor growth and metastasis through autocrine and paracrine actions. RAS mainly acts via two molecules, Angiotensin II (Ang II) and Angiotensin (1-7) [Ang-(1-7)]. While Ang II promotes tumor cell growth and stimulates angiogenesis, Ang-(1-7) inhibits the proliferation of neoplastic cells and the angiogenesis, suggesting a potential therapeutic role of this molecule in ALL. The interaction between ALs and RAS reveals a complex network of molecules that can affect the hematopoiesis and the development of hematological cancers. Understanding these interactions could pave the way for innovative therapeutic approaches targeting RAS components.
Collapse
Affiliation(s)
- Kacio Roger Portes E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, room #281, Belo Horizonte, MG, 30130-100, Brazil
| | - Eugênia Maia Nogueira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, room #281, Belo Horizonte, MG, 30130-100, Brazil
| | - André Luiz de Jesus Mendes
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, room #281, Belo Horizonte, MG, 30130-100, Brazil
| | - Ana Luisa Batista Pena
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, room #281, Belo Horizonte, MG, 30130-100, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, room #281, Belo Horizonte, MG, 30130-100, Brazil.
| |
Collapse
|
7
|
Oliveira VQ, Santos LC, Teixeira SC, Correia TML, Andrade LOSB, Gimenes SNC, Colombini M, Marques LM, Jiménez-Charris E, Freitas-de-Sousa LA, Silva MJB, Magalhães Gusmão ACMD, Ferro EAV, Clissa PB, Melo Rodrigues VD, Lopes DS. Antiangiogenic properties of BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom by VEGF pathway in endothelial cells. Biochem Biophys Res Commun 2024; 706:149748. [PMID: 38460450 DOI: 10.1016/j.bbrc.2024.149748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Angiogenesis is a process that is controlled by a delicate combination of proangiogenic and antiangiogenic molecules and can be disrupted in various illnesses, including cancer. Non-cancerous diseases can also have an abnormal or insufficient vascular growth, inflammation and hypoxia, which exacerbate angiogenesis. These conditions include atherosclerosis, psoriasis, endometriosis, asthma, obesity and AIDS. Based on that, the present work assessed the in vitro and ex vivo antiangiogenic properties stemming from BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom, via the VEGF pathway. BthMP at a concentration of 5 and 40 μg/mL showed no toxicity to endothelial cells (HUVEC) in the MTT assay and was not able to induce necrosis and colony proliferation. Interestingly, BthMP inhibited adhesion, migration and invasion of HUVECs in Matrigel and arrested in vitro angiogenesis by reducing the average number of nodules in toxin-treated cells by 9.6 and 17.32 at 5 and 40 μg/mL, respectively, and the number of tubules by 15.9 at 5 μg/mL and 21.6 at 40 μg/mL in a VEGF-dependent way, an essential proangiogenic property. Furthermore, BthMP inhibited the occurrence of the angiogenic process in an ex vivo aortic ring test by decreasing new vessel formation by 52% at 5 μg/mL and by 66% at 40 μg/mL and by increasing the expression of an antiangiogenic gene, SFLT-1, and decreasing the expression of the proangiogenic genes VEGFA and ANGPT-1. Finally, this toxin reduces the production of nitric oxide, a marker that promotes angiogenesis and VEGF modulation, and decreases the protein expression of VEGFA in the supernatant of the HUVEC culture by about 30 %. These results suggest that BthMP has a promising antiangiogenic property and proves to be a biotechnological mechanism for understanding the antiangiogenic responses induced by snake venom metalloproteinases, which could be applied to a variety of diseases that exhibit an imbalance of angiogenesis mechanisms.
Collapse
Affiliation(s)
- Vinícius Queiroz Oliveira
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Luísa Carregosa Santos
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| | | | | | | | - Mônica Colombini
- Laboratory of Immunopathology, Institute of Butantan, São Paulo, SP, Brazil
| | - Lucas Miranda Marques
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | | | | | - Marcelo José Barbosa Silva
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia (UFU), Uberlândia-MG, Brazil
| | - Daiana Silva Lopes
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil.
| |
Collapse
|
8
|
Shen W, Li Y, Yang Z, Li W, Cao Y, Liu Y, Wang Z, Pei R, Xing C. Tumor microenvironment reprogramming combined with immunogenic enhancement by nanoemulsions potentiates immunotherapy. J Nanobiotechnology 2024; 22:154. [PMID: 38581017 PMCID: PMC10996274 DOI: 10.1186/s12951-024-02401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
The combination of immune checkpoint inhibitors and immunogenic cell death (ICD) inducers has become a promising strategy for the treatment of various cancers. However, its efficacy remains unmet because of the dense stroma and defective vasculatures in the tumor microenvironment (TME) that restricts the intratumoral infiltration of cytotoxic T lymphocytes (CTLs). Herein, cancer-associated fibroblasts (CAFs)-targeted nanoemulsions are tailored to combine the ICD induction and the TME reprogramming to sensitize checkpoint blockade immunotherapy. Melittin, as an ICD inducer and an antifibrotic agent, is efficiently encapsulated into the nanoemulsion accompanied by a nitric oxide donor to improve its bioavailability and tumor targeting. The nanoemulsions exhibited dual functionality by directly inducing direct cancer cell death and enhancing the tumoral immunogenicity, while also synergistically reprogramming the TME through reversing the activated CAFs, decreasing collagen deposition and restoring tumor vessels. Consequently, these nanemulsions successfully facilitated the CTLs infiltration and suppressing the recruitment of immunosuppressive cells. A combination of AE-MGNPs and anti-CTLA-4 antibody greatly elicited a striking level of antitumor T-cell response to suppress tumor growth in CAFs-rich colorectal tumor models. Our work emphasized the integration of the ICD induction with simultaneous modulation of the TME to enhance the sensitivity of patients to checkpoint blockade immunotherapy.
Collapse
Affiliation(s)
- Wenqi Shen
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, 215004, P. R. China
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yecheng Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, 215004, P. R. China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Ziyi Yang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Wenjing Li
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yilin Liu
- School of Intelligent Finance and Business, Entrepreneur College, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China
| | - Zheng Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
| | - Chungen Xing
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, 215004, P. R. China.
| |
Collapse
|
9
|
Luo M, Mo D, Liu L, Li J, Lin J, Liang J, Ye F, Wu X, Li X, Li J, Sheng W. Loss of Gucy1a3 causes poor post-stroke recovery by reducing angiogenesis via the HIF-1α/VEGFA signaling pathway in mice. J Stroke Cerebrovasc Dis 2024; 33:107484. [PMID: 38064974 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVES Ischemic stroke is a common and debilitating disease that can cause permanent neurological damage. Gucy1a3, which encodes the α1 subunit of soluble guanylyl cyclase, has been reported to be associated with functional recovery after ischemic stroke. However, the mechanism is still not well understood. In the present study, we investigated the effects of Gucy1a3 on (i) post-stroke recovery; (ii) vascular endothelial growth factor A (VEGFA) and hypoxia inducible factor 1 alpha (HIF-1α) expression; and (iii) angiogenesis after ischemic stroke. MATERIALS AND METHODS Wild-type and Gucy1a3 knockout C57BL/6J male mice were respectively used to establish the models of permanent middle cerebral artery occlusion (pMCAO). Neurological deficit scores were evaluated at 24 h and 96 h after pMCAO. Cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. For determining microvessel density, immunohistochemical analysis was performed with CD31. The expression of VEGFA and HIF-1α was detected by western blotting. RESULTS Our results suggest that loss of Gucy1a3 increased the infarct volume and aggravated neurological deficits after pMCAO. In addition, the Gucy1a3 knockout brains exhibited significantly lower microvessel densities and VEGFA and HIF-1α expression levels than the wild-type brains at 96 h post-pMCAO. CONCLUSIONS Our study indicates that GUCY1A3 might be involved in angiogenesis after ischemic stroke. Further investigation of GUCY1A3 will provide a new therapeutic target for stroke.
Collapse
Affiliation(s)
- Man Luo
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongcan Mo
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - LiuYu Liu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianli Li
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Lin
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei Ye
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoju Wu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoling Li
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiaoxing Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenli Sheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Minaychev VV, Smirnova PV, Kobyakova MI, Teterina AY, Smirnov IV, Skirda VD, Alexandrov AS, Gafurov MR, Shlykov MA, Pyatina KV, Senotov AS, Salynkin PS, Fadeev RS, Komlev VS, Fadeeva IS. Low-Temperature Calcium Phosphate Ceramics Can Modulate Monocytes and Macrophages Inflammatory Response In Vitro. Biomedicines 2024; 12:263. [PMID: 38397865 PMCID: PMC10887285 DOI: 10.3390/biomedicines12020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Creating bioactive materials for bone tissue regeneration and augmentation remains a pertinent challenge. One of the most promising and rapidly advancing approaches involves the use of low-temperature ceramics that closely mimic the natural composition of the extracellular matrix of native bone tissue, such as Hydroxyapatite (HAp) and its phase precursors (Dicalcium Phosphate Dihydrate-DCPD, Octacalcium Phosphate-OCP, etc.). However, despite significant scientific interest, the current knowledge and understanding remain limited regarding the impact of these ceramics not only on reparative histogenesis processes but also on the immunostimulation and initiation of local aseptic inflammation leading to material rejection. Using the stable cell models of monocyte-like (THP-1ATRA) and macrophage-like (THP-1PMA) cells under the conditions of LPS-induced model inflammation in vitro, the influence of DCPD, OCP, and HAp on cell viability, ROS and intracellular NO production, phagocytosis, and the secretion of pro-inflammatory cytokines was assessed. The results demonstrate that all investigated ceramic particles exhibit biological activity toward human macrophage and monocyte cells in vitro, potentially providing conditions necessary for bone tissue restoration/regeneration in the peri-implant environment in vivo. Among the studied ceramics, DCPD appears to be the most preferable for implantation in patients with latent inflammation or unpredictable immune status, as this ceramic had the most favorable overall impact on the investigated cellular models.
Collapse
Affiliation(s)
- Vladislav V. Minaychev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
| | - Polina V. Smirnova
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Margarita I. Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
| | - Anastasia Yu. Teterina
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Igor V. Smirnov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Vladimir D. Skirda
- Institute of Physics, Kazan Federal University, Kremlyovskaya St. 18, 420008 Kazan, Russia; (V.D.S.); (M.R.G.)
| | - Artem S. Alexandrov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St. 18, 420008 Kazan, Russia; (V.D.S.); (M.R.G.)
| | - Marat R. Gafurov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St. 18, 420008 Kazan, Russia; (V.D.S.); (M.R.G.)
| | - Mikhail A. Shlykov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Kira V. Pyatina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
| | - Anatoliy S. Senotov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
| | - Pavel S. Salynkin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
| | - Roman S. Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Vladimir S. Komlev
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Irina S. Fadeeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| |
Collapse
|
11
|
Dellaquila A, Dujardin C, Le Bao C, Chaumeton C, Carré A, Le Guilcher C, Lam F, Simon-Yarza T. Fibroblasts mediate endothelium response to angiogenic cues in a newly developed 3D stroma engineered model. BIOMATERIALS ADVANCES 2023; 154:213636. [PMID: 37778292 DOI: 10.1016/j.bioadv.2023.213636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Three-dimensional stroma engineered models would enable fundamental and applicative studies of human tissues interaction and remodeling in both physiological and pathological conditions. In this work, we propose a 3D vascularized stroma model to be used as in vitro platform for drug testing. A pullulan/dextran-based porous scaffold containing pre-patterned microchannels of 100 μm diameter is used for co-culturing of fibroblasts within the matrix pores and endothelial cells to form the lumen. Optical clearing of the constructs by hyperhydration allows for in-depth imaging of the model up to 1 mm by lightsheet and confocal microscopy. Our 3D vascularized stroma model allows for higher viability, metabolism and cytokines expression compared to a monocultured vascular model. Stroma-endothelium cross-talk is then investigated by exposing the system to pro and anti-angiogenic molecules. The results highlight the protective role played by fibroblasts on the vasculature, as demonstrated by decreased cytotoxicity, restoration of nitric oxide levels upon challenge, and sustained expression of endothelial markers CD31, vWF and VEGF. Our tissue model provides a 3D engineered platform for in vitro studies of stroma remodeling in angiogenesis-driven events, known to be a leading mechanism in diseased conditions, such as metastatic cancers, retinopathies and ischemia, and to investigate related potential therapies.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France.
| | - Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Chau Le Bao
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Chloé Chaumeton
- Sorbonne Université, Institute of Biology Paris-Seine, Paris 75005, France
| | - Albane Carré
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Camille Le Guilcher
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - France Lam
- Sorbonne Université, Institute of Biology Paris-Seine, Paris 75005, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France.
| |
Collapse
|
12
|
Majeed R, Elnawawy HM, Kutty MG, Yahya NA, Azami NH, Abu Kasim NH, Nabhan MS, Cooper PR, Camilleri J, Ahmed HMA. Physicochemical, mechanical and biological properties of nano-calcium silicate-based cements: a systematic review. Odontology 2023; 111:759-776. [PMID: 36864211 DOI: 10.1007/s10266-023-00786-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/17/2023] [Indexed: 03/04/2023]
Abstract
This systematic review evaluated the effects of nano-sized cement particles on the properties of calcium silicate-based cements (CSCs). Using defined keywords, a literature search was conducted to identify studies that investigated properties of nano-calcium silicate-based cements (NCSCs). A total of 17 studies fulfilled the inclusion criteria. Results indicated that NCSC formulations have favourable physical (setting time, pH and solubility), mechanical (push out bond strength, compressive strength and indentation hardness) and biological (bone regeneration and foreign body reaction) properties compared with commonly used CSCs. However, the characterization and verification for the nano-particle size of NCSCs were deficient in some studies. Furthermore, the nanosizing was not limited to the cement particles and a number of additives were present. In conclusion, the evidence available for the properties of CSC particles in the nano-range is deficient-such properties could be a result of additives which may have enhanced the properties of the material.
Collapse
Affiliation(s)
- Rabia Majeed
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hoda Mohamed Elnawawy
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Muralithran Govindan Kutty
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Noor Azlin Yahya
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Noor Hayati Azami
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Mohamed Shady Nabhan
- Department of Removable Prosthodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Paul Roy Cooper
- Department of Oral Sciences, University of Otago, Otago, New Zealand
| | - Josette Camilleri
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hany Mohamed Aly Ahmed
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Guo N, Ma H, Li D, Fan H, Sun C, Sun Y. CS-NO suppresses inhibits glycolysis and gastric cancer progression through regulating YAP/TAZ signaling pathway. Cell Biochem Biophys 2023; 81:561-567. [PMID: 37558859 DOI: 10.1007/s12013-023-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023]
Abstract
CONTEXT Gastric cancer (GC) is a significant contributor to global mortality and is recognized for its elevated prevalence and fatality rates. Nitric Oxide (NO) plays a role in multiple aspects of cancer metastasis and progression. CS-NO is a polysaccharide-based biomaterial with NO-releasing properties that shows promising therapeutic potential. Nonetheless, the action mechanism of CS-NO in GC is still largely unclear. METHODS The present study employed various experimental techniques, including CCK-8 assay, colony formation assay, EdU staining, and transwell assays, to evaluate the proliferation, migration, and invasion of GC cells. Additionally, ELISA was utilized to measure glucose uptake, lactate production, and cellular ATP levels in GC cells. In vivo investigations on nude mice were conducted to validate the in vitro results. OBJECTIVE The present study aimed to examine the potential anti-tumor properties of CS-NO on GC through in vitro and in vivo investigations, while also exploring the underlying mechanisms involved. RESULTS Our data suggested that CS-NO might prevent GC cell invasion and migration. Decreased expressions of GLUT1, HK2, and LDHA further demonstrated that CS-NO significantly suppressed aerobic glycolysis in GC cells. The administration of CS-NO resulted in a significant reduction of YAP and TAZ levels in GC cells. Our data further show that CS-NO treatment could inhibit GC cancer growth in mice, consistent with the significant decrease in Ki67, GLUT1 and YAP expression levels. DISCUSSION AND CONCLUSION These findings could reveal the good effects of CS-NO therapy on inhibiting GC.
Collapse
Affiliation(s)
- Na Guo
- The Second Oncology Department, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Hongxuan Ma
- Faculty of Medicine, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Dehui Li
- The Second Oncology Department, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Huanfang Fan
- The Second Oncology Department, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Chunxia Sun
- The Second Oncology Department, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Yunchao Sun
- The Second Surgical Department, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
14
|
Lu C, Wu L, Tang MY, Liu YF, Liu L, Liu XY, Zhang C, Huang L. Indoxyl sulfate in atherosclerosis. Toxicol Lett 2023:S0378-4274(23)00215-1. [PMID: 37414304 DOI: 10.1016/j.toxlet.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Atherosclerosis (AS), a chronic vascular inflammatory disease, has become a main focus of attention worldwide for its chronic progressing disease course and serious complications in the later period. Nevertheless, explanations for the exact molecular mechanisms of AS initiation and development remain to be an unsolved problem. The classic pathogenesis theories, such as lipid percolation and deposition, endothelium injury, inflammation and immune damage, provide the foundation for discovering the new key molecules or signaling mechanisms. Recently, indoxyl sulfate (IS), one of non-free uremia toxins, has been noticeable for its multiple atherogenic effects. IS exists at high concentration in plasma for its great albumin binding rate. Patients with uremia have markedly elevated serum levels of IS due both to the deterioration of renal function and to the high binding affinity of IS to albumin. Nowadays, elevated incidence of circulatory disease among patients with renal dysfunction indicates correlation of uremic toxins with cardiovascular damage. In this review, the atherogenic effects of IS and the underlying mechanisms are summarized with emphasis on several key pathological events associated with AS developments, such as vascular endothelium dysfunction, arterial medial lesions, vascular oxidative stress, excessive inflammatory responses, calcification, thrombosis and foam cell formation. Although recent studies have proved the great correlation between IS and AS, deciphering cellular and pathophysiological signaling by confirming key factors involved in IS-mediated atherosclerosis development may enable identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Cong Lu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Li Wu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Mu-Yao Tang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Fan Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lei Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xi-Ya Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chun Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
15
|
López-Rodulfo IM, Villa-Martínez E, Rios A, Escalante B. Caveolin Delivered by Ultrasound-Mediated Microbubble Destruction Prevents Endothelial Cell Proliferation. Cell Mol Bioeng 2023; 16:219-229. [PMID: 37456788 PMCID: PMC10338419 DOI: 10.1007/s12195-023-00763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/29/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The nitric oxide synthase (eNOS) is an important regulator of vascular homeostasis. eNOS is modulated by intracellular mechanisms that include protein-protein interaction with Caveolin-1 (Cav). Cav binds to and impairs eNOS activation reducing vascular permeability and angiogenesis. Blocking of eNOS by Cav has been proposed as therapeutic antiangiogenic approach. However, the efficient and controlled delivery of the peptide requires to be solved. Methods The effect of antennapedia (AP)-Cav loaded into microbubbles (MBs) and delivered by ultrasound-mediated microbubble destruction (UMMD) into brain endothelial cells (bEnd.3 cells) was evaluated on NO production using DAF2-DA, cell migration assessed by the wound healing assay, cell proliferation with BrdU, and ex-vivo angiogenesis in rat aortic rings. Results An enhanced inhibitory effect of AP-Cav was observed on cells treated with UMMD. MBs and ultrasound disruption delivery of AP-Cav increased acetylcholine-induced NO release, wound healing, cell proliferation, and angiogenesis inhibition on bEnd.3 cells, compared to free AP-Cav administration. Conclusion We demonstrated that the delivery of Cav via AP-Cav-loaded MBs and UMMD may be an administration method for Cav that would increase its therapeutic potential by enhancing efficacy and cellular specificity.
Collapse
Affiliation(s)
- Iván M. López-Rodulfo
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Cinvestav Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, N. L. 66600 México
- Present Address: Aarhus Universitet, Nordre Ringgade 1, 8000 Aarhus C, Denmark
| | - Elisa Villa-Martínez
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Cinvestav Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, N. L. 66600 México
| | - Amelia Rios
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Cinvestav Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, N. L. 66600 México
| | - Bruno Escalante
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Cinvestav Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, N. L. 66600 México
| |
Collapse
|
16
|
Shereef HA, Moemen YS, Elshami FI, El-Nahas AM, Shaban SY, van Eldik R. DNA Binding and Cleavage, Stopped-Flow Kinetic, Mechanistic, and Molecular Docking Studies of Cationic Ruthenium(II) Nitrosyl Complexes Containing “NS4” Core. Molecules 2023; 28:molecules28073028. [PMID: 37049792 PMCID: PMC10095794 DOI: 10.3390/molecules28073028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
This work aimed to evaluate in vitro DNA binding mechanistically of cationic nitrosyl ruthenium complex [RuNOTSP]+ and its ligand (TSPH2) in detail, correlate the findings with cleavage activity, and draw conclusions about the impact of the metal center. Theoretical studies were performed for [RuNOTSP]+, TSPH2, and its anion TSP−2 using DFT/B3LYP theory to calculate optimized energy, binding energy, and chemical reactivity. Since nearly all medications function by attaching to a particular protein or DNA, the in vitro calf thymus DNA (ctDNA) binding studies of [RuNOTSP]+ and TSPH2 with ctDNA were examined mechanistically using a variety of biophysical techniques. Fluorescence experiments showed that both compounds effectively bind to ctDNA through intercalative/electrostatic interactions via the DNA helix’s phosphate backbone. The intrinsic binding constants (Kb), (2.4 ± 0.2) × 105 M−1 ([RuNOTSP]+) and (1.9 ± 0.3) × 105 M−1 (TSPH2), as well as the enhancement dynamic constants (KD), (3.3 ± 0.3) × 104 M−1 ([RuNOTSP]+) and (2.6 ± 0.2) × 104 M−1 (TSPH2), reveal that [RuNOTSP]+ has a greater binding propensity for DNA compared to TSPH2. Stopped-flow investigations showed that both [RuNOTSP]+ and TSPH2 bind through two reversible steps: a fast second-order binding, followed by a slow first-order isomerization reaction via a static quenching mechanism. For the first and second steps of [RuNOTSP]+ and TSPH2, the detailed binding parameters were established. The total binding constants for [RuNOTSP]+ (Ka = 43.7 M−1, Kd = 2.3 × 10−2 M−1, ΔG0 = −36.6 kJ mol−1) and TSPH2 (Ka = 15.1 M−1, Kd = 66 × 10−2 M, ΔG0 = −19 kJ mol−1) revealed that the relative reactivity is approximately ([RuNOTSP]+)/(TSPH2) = 3/1. The significantly negative ΔG0 values are consistent with a spontaneous binding reaction to both [RuNOTSP]+ and TSPH2, with the former being very favorable. The findings showed that the Ru(II) center had an effect on the reaction rate but not on the mechanism and that the cationic [RuNOTSP]+ was a more highly effective DNA binder than the ligand TSPH2 via strong electrostatic interaction with the phosphate end of DNA. Because of its higher DNA binding affinity, cationic [RuNOTSP]+ demonstrated higher cleavage efficiency towards the minor groove of pBR322 DNA via the hydrolytic pathway than TSPH2, revealing the synergy effect of TSPH2 in the form of the complex. Furthermore, the mode of interaction of both compounds with ctDNA has also been supported by molecular docking.
Collapse
Affiliation(s)
- Hadeer A. Shereef
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
- Clinical Pathology Department, University Hospital, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Yasmine S. Moemen
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Fawzia I. Elshami
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ahmed M. El-Nahas
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Shaban Y. Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: (S.Y.S.); (R.v.E.)
| | - Rudi van Eldik
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Correspondence: (S.Y.S.); (R.v.E.)
| |
Collapse
|
17
|
Xu H, Zhu Y, Hsiao AWT, Xu J, Tong W, Chang L, Zhang X, Chen YF, Li J, Chen W, Zhang Y, Chan HF, Lee CW. Bioactive glass-elicited stem cell-derived extracellular vesicles regulate M2 macrophage polarization and angiogenesis to improve tendon regeneration and functional recovery. Biomaterials 2023; 294:121998. [PMID: 36641814 DOI: 10.1016/j.biomaterials.2023.121998] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Effective countermeasures for tendon injury remains unsatisfactory. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs)-based therapy via regulation of Mφ-mediated angiogenesis has emerged as a promising strategy for tissue regeneration. Still, approaches to tailor the functions of EVs to treat tendon injuries have been limited. We reported a novel strategy by applying MSC-EVs boosted with bioactive glasses (BG). BG-elicited EVs (EVB) showed up-regulation of medicinal miRNAs, including miR-199b-3p and miR-125a-5p, which play a pivotal role in M2 Mφ-mediated angiogenesis. EVB accelerated angiogenesis via the reprogrammed anti-inflammatory M2 Mφs compared with naïve MSC-EVs (EVN). In rodent Achilles tendon rupture model, EVB local administration activated anti-inflammatory responses via M2 polarization and led to a spatial correlation between M2 Mφs and newly formed blood vessels. Our results showed that EVB outperformed EVN in promoting tenogenesis and in reducing detrimental morphological changes without causing heterotopic ossification. Biomechanical test revealed that EVB significantly improved ultimate load, stiffness, and tensile modulus of the repaired tendon, along with a positive correlation between M2/M1 ratio and biomechanical properties. On the basis of the boosted nature to reprogram regenerative microenvironment, EVB holds considerable potential to be developed as a next-generation therapeutic modality for enhancing functional regeneration to achieve satisfying tendon regeneration.
Collapse
Affiliation(s)
- Hongtao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Allen Wei-Ting Hsiao
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Xuerao Zhang
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yi-Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Jie Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Wei Chen
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yingze Zhang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, China.
| | - Chien-Wei Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
18
|
An Overview on Wound Dressings and Sutures Fabricated by Electrospinning. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-021-0364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
19
|
Elaboration of novel gel-core oleosomes encapsulating phytoconstituent for targeted topical delivery in a vitiligo-induced mouse model: Focus on antioxidant and anti-inflammatory pathways. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
The Inhibition of the Inducible Nitric Oxide Synthase Enhances the DPSC Mineralization under LPS-Induced Inflammation. Int J Mol Sci 2022; 23:ijms232314560. [PMID: 36498888 PMCID: PMC9736592 DOI: 10.3390/ijms232314560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO) is a key messenger in physiological and pathological processes in mammals. An excessive NO production is associated with pathological conditions underlying the inflammation response as a trigger. Among others, dental pulp inflammation results from the invasion of dentin by pathogenic bacteria. Vital functions of pulp mesenchymal stem cells (DPSCs, dental pulp stem cells), such as mineralization, might be affected by the inducible NOS (iNOS) upregulation. In this context, the iNOS selective inhibition can be considered an innovative therapeutic strategy to counteract inflammation and to promote the regeneration of the dentin-pulp complex. The present work aims at evaluating two acetamidines structurally related to the selective iNOS inhibitor 1400W, namely CM544 and FAB1020, in a model of LPS-stimulated primary DPSCs. Our data reveal that CM544 and even more FAB1020 are promising anti-inflammatory compounds, decreasing IL-6 secretion by enhancing CD73 expression-levels, a protein involved in innate immunity processes and thus confirming an immunomodulatory role of DPSCs. In parallel, cell mineralization potential is retained in the presence of compounds as well as VEGF secretion, and thus their angiogenetic potential. Data presented lay the ground for further investigation on the anti-inflammatory potential of acetamidines selectively targeting iNOS in a clinical context.
Collapse
|
21
|
Cytoskeleton Elements Contribute to Prion Peptide-Induced Endothelial Barrier Breakdown in a Blood–Brain Barrier In Vitro System. Int J Mol Sci 2022; 23:ijms232012126. [PMID: 36293002 PMCID: PMC9603506 DOI: 10.3390/ijms232012126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
The mechanisms involved in the interaction of PrP 106-126, a peptide corresponding to the prion protein amyloidogenic region, with the blood–brain barrier (BBB) were studied. PrP 106-126 treatment that was previously shown to impair BBB function, reduced cAMP levels in cultured brain endothelial cells, increased nitric oxide (NO) levels, and changed the activation mode of the small GTPases Rac1 (inactivation) and RhoA (activation). The latter are well established regulators of endothelial barrier properties that act via cytoskeletal elements. Indeed, liquid chromatography-mass spectrometry (LC-MS)-based proteomic profiling study revealed extensive changes in expression of cytoskeleton-related proteins. These results shed light on the nature of the interaction between the prion peptide PrP 106-126 and the BBB and emphasize the importance of the cytoskeleton in endothelium response to prion- induced stress.
Collapse
|
22
|
Qi C, Song X, Wang H, Yan Y, Liu B. The role of exercise-induced myokines in promoting angiogenesis. Front Physiol 2022; 13:981577. [PMID: 36091401 PMCID: PMC9459110 DOI: 10.3389/fphys.2022.981577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022] Open
Abstract
Ischemic diseases are a major cause of mortality or disability in the clinic. Surgical or medical treatment often has poor effect on patients with tissue and organ ischemia caused by diffuse stenoses. Promoting angiogenesis is undoubtedly an effective method to improve perfusion in ischemic tissues and organs. Although many animal or clinical studies tried to use stem cell transplantation, gene therapy, or cytokines to promote angiogenesis, these methods could not be widely applied in the clinic due to their inconsistent experimental results. However, exercise rehabilitation has been written into many authoritative guidelines in the treatment of ischemic diseases. The function of exercise in promoting angiogenesis relies on the regulation of blood glucose and lipids, as well as cytokines that secreted by skeletal muscle, which are termed as myokines, during exercise. Myokines, such as interleukin-6 (IL-6), chemokine ligand (CXCL) family proteins, irisin, follistatin-like protein 1 (FSTL1), and insulin-like growth factor-1 (IGF-1), have been found to be closely related to the expression and function of angiogenesis-related factors and angiogenesis in both animal and clinical experiments, suggesting that myokines may become a new molecular target to promote angiogenesis and treat ischemic diseases. The aim of this review is to show current research progress regarding the mechanism how exercise and exercise-induced myokines promote angiogenesis. In addition, the limitation and prospect of researches on the roles of exercise-induced myokines in angiogenesis are also discussed. We hope this review could provide theoretical basis for the future mechanism studies and the development of new strategies for treating ischemic diseases.
Collapse
|
23
|
Zhang Q, Bai X, Shi J, Wang X, Zhang B, Dai L, Lin T, Gao Y, Zhang Y, Zhao X. DIA proteomics identified the potential targets associated with angiogenesis in the mammary glands of dairy cows with hemorrhagic mastitis. Front Vet Sci 2022; 9:980963. [PMID: 36003411 PMCID: PMC9393364 DOI: 10.3389/fvets.2022.980963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Hemorrhagic mastitis (HM) in dairy cows caused great economic losses in the dairy industry due to decreased milk production and increased costs associated with cattle management and treatment. However, the pathological and molecular mechanisms of HM are not well-understood. The present study aimed to investigate differentially expressed proteins (DEPs) associated with HM according to data-independent acquisition (DIA) proteomics. Compared to the mammary glands of healthylactating Holstein cows (Control, C group), the pathology of the HM group displayed massive alveolar infiltration of hemocytes and neutrophils, and the blood vessels, including arteriole, venules and capillaries were incomplete and damaged, with a loss of endothelial cells. DIA proteomics results showed that a total of 3,739 DEPs and 819 biological process terms were screened in the HM group. We focused on the blood, permeability of blood vessel, vascular and angiogenesis of mammary glands, and a total of 99 candidate DEPs, including 60 up- and 39 down-regulated DEPs, were obtained from the Gene Ontology (GO) and Pathway enrichment analyses. Phenotype prediction and function analysis of the DEPs revealed that three DEPs, particularly Caveolin-1(CAV1), were participated in the regulation of angiogenesis. Immunohistochemical and immunofluorescence staining showed that the CAV1 protein was present mainly in the mammary epithelial cells, vascular endothelial cells and vascular smooth muscle cells. The expression level of CAV1 mRNA and protein in the HM group was significantly down-regulated. The results will be helpful to the further understanding of the pathological and molecular mechanisms of HM in dairy cows.
Collapse
Affiliation(s)
- Quanwei Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
- *Correspondence: Quanwei Zhang
| | - Xu Bai
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Jun Shi
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Xueying Wang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Bohao Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Lijun Dai
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Ting Lin
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Yuan Gao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
- Xingxu Zhao
| |
Collapse
|
24
|
Zhao Y, Sun Y, Hang R, Yao R, Zhang Y, Huang D, Yao X, Bai L, Hang R. Biocompatible silane adhesion layer on titanium implants improves angiogenesis and osteogenesis. BIOMATERIALS ADVANCES 2022; 139:213033. [PMID: 35882124 DOI: 10.1016/j.bioadv.2022.213033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Silane adhesion layer strategy has been widely used to covalently graft biomolecules to the titanium implant surface, thereby conferring the implant bioactivity to ameliorate osseointegration. However, few researchers pay attention to the effects of silanization parameters on biocompatibility and biofunctionality of the silane adhesion layers. Accordingly, the present study successfully fabricated the silane adhesion layers with different thickness, intactness, and surface morphologies by introducing 3-aminopropyltriethoxysilane on the alkali-treated titanium surface in time-varied processing of silanization. The regulatory effects of the silane adhesion layers on angiogenesis and osteogenesis were assessed in vitro. Results showed that the prolonged silanization processing time increased the thickness and intactness of the silane adhesion layer and significantly improved its biocompatibility. Notably, the silane adhesion layer prepared after 12 h of silanization exhibited a brain-like surface morphology and benefited the adhesion and proliferation of endothelial cells (ECs) and osteoblasts (OBs). Moreover, the layer promoted angiogenesis via stimulating vascular endothelial growth factor (VEGF) secretion and nitric oxide (NO) production of ECs. Simultaneously, it improved osteogenesis by enhancing alkaline phosphatase (ALP) activity, collagen secretion, and extracellular matrix mineralization of OBs. This work systematically investigated the biocompatibility and biofunctionality of the modified silane adhesion layers, thus providing valuable references for their application in covalently grafting biomolecules on the titanium implant surface.
Collapse
Affiliation(s)
- Yuyu Zhao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yonghua Sun
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruiyue Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Runhua Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yi Zhang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444 China; Engineering Research Center for Biomedical Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
25
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales M. The RAGE/multiligand axis: a new actor in tumor biology. Biosci Rep 2022; 42:BSR20220395. [PMID: 35727208 PMCID: PMC9251583 DOI: 10.1042/bsr20220395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein which actively participates in several chronic inflammation-related diseases. RAGE, in addition to AGEs, has a wide repertoire of ligands, including several damage-associated molecular pattern molecules or alarmins such as HMGB1 and members of the S100 family proteins. Over the last years, a large and compelling body of evidence has revealed the active participation of the RAGE axis in tumor biology based on its active involvement in several crucial mechanisms involved in tumor growth, immune evasion, dissemination, as well as by sculpturing of the tumor microenvironment as a tumor-supportive niche. In the present review, we will detail the consequences of the RAGE axis activation to fuel essential mechanisms to guarantee tumor growth and spreading.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ivan Schneider
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Cristian Lindner
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ileana Gonzalez
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Miguel A. Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago 8320000, Chile, Santiago, Chile
| |
Collapse
|
26
|
Zhu WY, Guo J, Yang WF, Tao ZY, Lan X, Wang L, Xu J, Qin L, Su YX. Biodegradable magnesium implant enhances angiogenesis and alleviates medication-related osteonecrosis of the jaw in rats. J Orthop Translat 2022; 33:153-161. [PMID: 35415073 PMCID: PMC8965768 DOI: 10.1016/j.jot.2022.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/26/2022] [Accepted: 03/12/2022] [Indexed: 01/01/2023] Open
Abstract
Background Medication-related osteonecrosis of the jaw (MRONJ) is a serious complication associated with antiresorptive and antiangiogenic medications, of which impaired angiogenesis is a key pathological alteration. Since Magnesium (Mg)-based implants possess proangiogenic effects, we hypothesized that the biodegradable Mg implant could alleviate the development of MRONJ via enhancing angiogenesis. Methods MRONJ model was established and divided into the Veh + Ti group (Vehicle-treated rat, with Titanium (Ti) implant), BP + Ti group (Bisphosphonate (BP)-treated rat, with Ti implant), BP + Mg group (BP-treated rat, with Mg implant), BP + Mg + SU5416 group (BP-treated rat, with Mg implant and vascular endothelial growth factor (VEGF) receptor-2 inhibitor), BP + Mg + BIBN group (BP-treated rat, with Mg implant and calcitonin gene-related peptide (CGRP) receptor antagonist), and BP + Mg + SU5416+BIBN group (BP-treated rat, with Mg implant and VEGF receptor-2 inhibitor and CGRP receptor antagonist). The occurrence of MRONJ, alveolar bone necrosis, new bone formation and vessel formation were assessed by histomorphometry, immunohistochemistry, and micro-CT analysis. Results Eight weeks after surgery, the BP + Mg group had significantly reduced occurrence of MRONJ-like lesion and histological osteonecrosis, increased bone microstructural parameters, and increased expressions of VEGFA and CGRP, than the BP + Ti group. By simultaneously blocking VEGF receptor-2 and CGRP receptor, the vessel volume and new bone formation in the BP + Mg group were significantly decreased, meanwhile the occurrence of MRONJ-like lesion and histological bone necrosis were significantly increased. Conclusion Biodegradable Mg implant could alleviate the development of MRONJ-like lesion, possibly via upregulating VEGF- and CGRP-mediated angiogenesis. Mg-based implants have the translational potential to be developed as a novel internal fixation device for patients with the risk of MRONJ. The Translational potential of this article This work reports a biodegradable Mg implant which ameliorates the development of MRONJ-like lesions possibly due to its angiogenic property. Mg-based implants have the potential to be developed as a novel internal fixation device for patients at the risk of MRONJ.
Collapse
Affiliation(s)
- Wang-yong Zhu
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wei-fa Yang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Zhuo-ying Tao
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Xinmiao Lan
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Leilei Wang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yu-xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
- Corresponding author.
| |
Collapse
|
27
|
Banks NF, Rogers EM, Church DD, Ferrando AA, Jenkins NDM. The contributory role of vascular health in age-related anabolic resistance. J Cachexia Sarcopenia Muscle 2022; 13:114-127. [PMID: 34951146 PMCID: PMC8818606 DOI: 10.1002/jcsm.12898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia, or the age-related loss of skeletal muscle mass and function, is an increasingly prevalent condition that contributes to reduced quality of life, morbidity, and mortality in older adults. Older adults display blunted anabolic responses to otherwise anabolic stimuli-a phenomenon that has been termed anabolic resistance (AR)-which is likely a casual factor in sarcopenia development. AR is multifaceted, but historically much of the mechanistic focus has been on signalling impairments, and less focus has been placed on the role of the vasculature in postprandial protein kinetics. The vascular endothelium plays an indispensable role in regulating vascular tone and blood flow, and age-related impairments in vascular health may impede nutrient-stimulated vasodilation and subsequently the ability to deliver nutrients (e.g. amino acids) to skeletal muscle. Although the majority of data has been obtained studying younger adults, the relatively limited data on the effect of blood flow on protein kinetics in older adults suggest that vasodilatory function, especially of the microvasculature, strongly influences the muscle protein synthetic response to amino acid feedings. In this narrative review, we examine evidence of AR in older adults following amino acid and mixed meal consumption, examine the evidence linking vascular dysfunction and insulin resistance to age-related AR, review the influence of nitric oxide and endothelin-1 on age-related vascular dysfunction as it relates to AR, briefly review the potential causal role of arterial stiffness in promoting skeletal muscle microvascular dysfunction and AR, and provide a brief overview and future considerations for research examining age-related AR.
Collapse
Affiliation(s)
- Nile F Banks
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, IA, USA
| | - Emily M Rogers
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, IA, USA
| | - David D Church
- Center for Translational Research in Aging and Longevity, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Arny A Ferrando
- Center for Translational Research in Aging and Longevity, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nathaniel D M Jenkins
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, IA, USA.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
28
|
Jacobsen NL, Norton CE, Shaw RL, Cornelison DDW, Segal SS. Myofibre injury induces capillary disruption and regeneration of disorganized microvascular networks. J Physiol 2022; 600:41-60. [PMID: 34761825 PMCID: PMC8965732 DOI: 10.1113/jp282292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023] Open
Abstract
Injury to skeletal muscle disrupts myofibres and their microvascular supply. While the regeneration of myofibres is well described, little is known of how the microcirculation is affected by skeletal muscle injury or its recovery during regeneration. Nevertheless, the microvasculature must also recover to restore skeletal muscle function. We aimed to define the nature of microvascular damage and time course of repair during muscle injury and regeneration induced by the myotoxin BaCl2 . To test the hypothesis that microvascular disruption occurred secondary to myofibre injury, isolated microvessels were exposed to BaCl2 or the myotoxin was injected into the gluteus maximus (GM) muscle of mice. In isolated microvessels, BaCl2 depolarized smooth muscle cells (SMCs) and endothelial cells while increasing intracellular calcium in SMCs but did not elicit death of either cell type. At 1 day post-injury (dpi) of the GM, capillary fragmentation coincided with myofibre degeneration while arteriolar and venular networks remained intact; neutrophil depletion before injury did not prevent capillary damage. Perfused capillary networks reformed by 5 dpi in association with more terminal arterioles and were dilated through 10 dpi. With no change in microvascular area or branch point number in regenerating capillary networks, fewer capillaries aligned with myofibres and were no longer organized into microvascular units. By 21 dpi, capillary orientation and microvascular unit organization were no longer different from uninjured GM. We conclude that following their disruption secondary to myofibre damage, capillaries regenerate as disorganized networks that remodel into microvascular units as regenerated myofibres mature. KEY POINTS: Skeletal muscle regenerates after injury; however, the nature of microvascular damage and repair is poorly understood. Here, the myotoxin BaCl2 , a standard experimental method of acute skeletal muscle injury, was used to investigate the response of the microcirculation to local injury of intact muscle. Intramuscular injection of BaCl2 induced capillary fragmentation with myofibre degeneration; arteriolar and venular networks remained intact. Direct exposure to BaCl2 did not kill microvascular endothelial cells or smooth muscle cells. Dilated capillary networks reformed by 5 days post-injury (dpi) in association with more terminal arterioles. Capillary orientation remained disorganized through 10 dpi. Capillaries realigned with myofibres and reorganized into microvascular units by 21 dpi, which coincides with the recovery of vasomotor control and maturation of nascent myofibres. Skeletal muscle injury disrupts its capillary supply secondary to myofibre degeneration. Reorganization of regenerating microvascular networks accompanies the recovery of blood flow regulation.
Collapse
Affiliation(s)
- Nicole L. Jacobsen
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Charles E. Norton
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Rebecca L. Shaw
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - D. D. W. Cornelison
- Biological Sciences, University of Missouri, Columbia, MO, USA,Christopher S. Bond Life Sciences Center, University of MO, Columbia, MO, USA
| | - Steven S. Segal
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
29
|
Pillars and Gaps of S-Nitrosylation-Dependent Epigenetic Regulation in Physiology and Cancer. Life (Basel) 2021; 11:life11121424. [PMID: 34947954 PMCID: PMC8704633 DOI: 10.3390/life11121424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Nitric oxide (NO) is a diffusible signaling molecule produced by three isoforms of nitric oxide synthase, which release NO during the metabolism of the amino acid arginine. NO participates in pathophysiological responses of many different tissues, inducing concentration-dependent effect. Indeed, while low NO levels generally have protective effects, higher NO concentrations induce cytotoxic/cytostatic actions. In recent years, evidences have been accumulated unveiling S-nitrosylation as a major NO-dependent post-translational mechanism ruling gene expression. S-nitrosylation is a reversible, highly regulated phenomenon in which NO reacts with one or few specific cysteine residues of target proteins generating S-nitrosothiols. By inducing this chemical modification, NO might exert epigenetic regulation through direct effects on both DNA and histones as well as through indirect actions affecting the functions of transcription factors and transcriptional co-regulators. In this light, S-nitrosylation may also impact on cancer cell gene expression programs. Indeed, it affects different cell pathways and functions ranging from the impairment of DNA damage repair to the modulation of the activity of signal transduction molecules, oncogenes, tumor suppressors, and chromatin remodelers. Nitrosylation is therefore a versatile tool by which NO might control gene expression programs in health and disease.
Collapse
|
30
|
Qi X, Ricart K, Ahmed KA, Patel RP, Boulton ME. Supplemental nitrite increases choroidal neovascularization in mice. Nitric Oxide 2021; 117:7-15. [PMID: 34537345 DOI: 10.1016/j.niox.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Low doses of nitrite, close to physiological levels, increase blood flow in normal and ischemic tissues through a nitric oxide (NO) dependent mechanism. Given that nitrite therapy and dietary supplementation with vegetables high in nitrate (e.g. beets) are gaining popularity we decided to determine if low doses of nitrite impact the development of choroidal neovascularization (CNV), a key feature of wet age related macular degeneration (AMD). Sodium nitrite (at 50 mg/L, 150 mg/L, and 300 mg/L), nitrate (1 g/L) or water alone were provided in the drinking water of C57BL/6 J mice aged 2 or 12 months. Mice were allowed to drink ad libitum for 1 week at which time laser-induced choroidal neovascularization (L-CNV) was induced. The mice continued to drink the supplemented water ad libitum for a further 14 days at which point optical coherence tomography (OCT) was performed to determine the volume of the CNV lesion. Blood was drawn to determine nitrite and nitrate levels and eyes taken for histology. CNV volume was 2.86 × 107 μm3 (±0.4 × 107) in young mice on water alone but CNV volume more than doubled to >6.9 × 107 μm3 (±0.8 × 107) in mice receiving 300 mg/L nitrite or 7.34 × 107 μm3 (±1.4 × 107) in 1 g/L nitrate (p < 0.01). A similar trend was observed in older mice. CNV volume was 5.3 × 107 μm3 (±0.5 × 107) in older mice on water alone but CNV volume almost doubled to approximately 9.3 × 107 μm3 (±1.1 × 107) in mice receiving 300 mg/L nitrite or 8.7 × 107 μm3 (±0.9 × 107) 1 g/L nitrate (p < 0.01). Plasma nitrite levels were highest in young mice receiving 150 mg/L in the drinking water with no changes in plasma nitrate observed. In older mice, drinking water nitrite did not significantly change plasma nitrite, but plasma nitrate was increased. Plasma nitrate was elevated in both young and old mice provided with nitrate supplemented drinking water. Our data demonstrate that the CNV lesion is larger in older mice compared to young and that therapeutic levels of oral nitrite increase the volume of CNV lesions in both young and older mice. Therapeutic nitrite or nitrate supplementation should be used with caution in the elderly population prone to CNV.
Collapse
Affiliation(s)
- Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL, 35294, USA
| | - Karina Ricart
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, AL, 35294, USA
| | - Khandaker A Ahmed
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, AL, 35294, USA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, AL, 35294, USA.
| | - Michael E Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL, 35294, USA.
| |
Collapse
|
31
|
Effect of Hyperbaric Oxygenation on Blood Cytokines and Arginine Derivatives; No Evidence for Induction of Inflammation or Endothelial Injury. J Clin Med 2021; 10:jcm10235488. [PMID: 34884189 PMCID: PMC8658660 DOI: 10.3390/jcm10235488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Hyperbaric oxygen therapy (HBOT) uses 100% oxygen delivered at 1.5-3 times the atmospheric pressure in a specialised chamber to achieve supraphysiological oxygen tension in blood and tissues. Besides its target, HBOT may affect inflammation, endothelial function or angiogenesis. This study analysed the effect of HBOT on blood concentrations of factors that may affect these processes in patients with necrotizing soft-tissue infections (NSTI), aseptic bone necrosis (ABN) and idiopathic sudden sensory neural hearing loss (ISSNHL). (2) Methods: Concentrations asymmetric dimethylarginine (ADMA) and other arginine derivatives were measured with liquid chromatography/mass spectrometry, whereas ELISA was used to quantitate vascular endothelial growth factor (VEGF) and cytokines (IL-1, IL-4, IL-6, IL-10, TGF-β) before and after HBOT in 80 patients (NSTI n = 21, ISSNHL n = 53, ABN n = 6). (3) Results: While some differences were noted between patient groups in ADMA and other arginine derivatives as well as in cytokine concentrations, HBOT did not affect any of these parameters. (4) Conclusions: While cytokines and arginine derivatives concentrations were modified by underlying pathology, hyperbaric oxygenation did not immediately modify it suggesting that it is neutral for inflammation and is not inducing endothelial injury.
Collapse
|
32
|
Reaction mechanisms relevant to the formation and utilization of [Ru(edta)(NO)] complexes in aqueous media. J Inorg Biochem 2021; 225:111595. [PMID: 34555599 DOI: 10.1016/j.jinorgbio.2021.111595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
The advancement of Ru(edta) complexes (edta4- = ethylenediamineteraacetate) mediated reactions, including NO generation and its utilization, has not been systematically reviewed to date. This review aims to report the research progress that has been made in exploring the application of Ru(edta) complexes in trapping and generation of NO. Furthermore, utilization of the potential of Ru(edta) complexes to mimic NO synthase and nitrite reductase activity, including thermodynamics and kinetics of NO binding to Ru(edta) complexes, their NO scavenging (in vitro), and antitumor activity will be discussed. Also, the role of [Ru(edta)(NO)] in mediating electrochemical reduction of nitrite, S-nitrosylation of biological thiols, and cross-talk between NO and H2S, will be covered. Reports on the NO-related chemistry of Fe(edta) complexes showing similar behavior are contextualized in this review for comparison purposes. The research contributions compiled herein will provide in-depth mechanistic knowledge for understanding the diverse routes pertaining to the formation of the [Ru(edta)(NO)] species, and its role in effecting the aforementioned reactions of biochemical significance.
Collapse
|
33
|
Zhang H, Zhou D, Gu J, Qu M, Guo K, Chen W, Miao C. Targeting the mu-Opioid Receptor for Cancer Treatment. Curr Oncol Rep 2021; 23:111. [PMID: 34342720 DOI: 10.1007/s11912-021-01107-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Opioids are still the most effective and widely used treatments for acute and chronic pain in cancer patients. This review focuses on the impact of opioids and mu-opioid receptors (MOR) on tumor progression and providing new ideas for targeting the MOR in cancer treatment. RECENT FINDINGS Studies estimated that opioids facilitate tumor progression and are related to the worse prognosis in cancer patients. As the primary receptor of opioids, MOR is involved in the regulation of malignant transformation of tumors and participating in proliferation, invasion, metastasis, and angiogenesis. MOR may be a new molecular marker of malignant tumors and thus become a new target for cancer therapy, which may be beneficial to the outcomes of cancer patients.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
| | - Di Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
| | - Jiahui Gu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China. .,Fudan Zhangjiang Institute, Shanghai, 201203, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
| |
Collapse
|
34
|
Sahebnasagh A, Saghafi F, Negintaji S, Hu T, Shabani-Boroujeni M, Safdari M, Ghaleno HR, Miao L, Qi Y, Wang M, Liao P, Sureda A, Simal-Gándara J, Nabavi SM, Xiao J. Nitric Oxide and Immune Responses in Cancer: Searching for New Therapeutic Strategies. Curr Med Chem 2021; 29:1561-1595. [PMID: 34238142 DOI: 10.2174/0929867328666210707194543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
In recent years, there has been an increasing interest in understanding the mysterious functions of nitric oxide (NO) and how this pleiotropic signaling molecule contributes to tumorigenesis. This review attempts to expose and discuss the information available on the immunomodulatory role of NO in cancer and recent approaches to the role of NO donors in the area of immunotherapy. To address the goal, the following databases were searched to identify relevant literature concerning empirical evidence: The Cochrane Library, Pubmed, Medline, EMBASE from 1980 through March 2020. Valuable attempts have been made to develop distinctive NO-based cancer therapy. Although the data do not allow generalization, the evidence seems to indicate that low / moderate levels may favor tumorigenesis while higher levels would exert anti-tumor effects. In this sense, the use of NO donors could have an important therapeutic potential within immunotherapy, although there are still no clinical trials. The emerging understanding of NO-regulated immune responses in cancer may help unravel the recent features of this "double-edged sword" in cancer physiological and pathologic processes and its potential use as a therapeutic agent for cancer treatment. In short, in this review, we discuss the complex cellular mechanism in which NO, as a pleiotropic signaling molecule, participates in cancer pathophysiology. We also debate the dual role of NO in cancer and tumor progression, and clinical approaches for inducible nitric oxide synthase (iNOS) based therapy against cancer.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sina Negintaji
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tingyan Hu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mojtaba Shabani-Boroujeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Lingchao Miao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, United States
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road. Hong Kong, China
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Jesus Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| |
Collapse
|
35
|
Jin J, Seddiqi H, Bakker AD, Wu G, Verstappen JFM, Haroon M, Korfage JAM, Zandieh‐Doulabi B, Werner A, Klein‐Nulend J, Jaspers RT. Pulsating fluid flow affects pre-osteoblast behavior and osteogenic differentiation through production of soluble factors. Physiol Rep 2021; 9:e14917. [PMID: 34174021 PMCID: PMC8234477 DOI: 10.14814/phy2.14917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022] Open
Abstract
Bone mass increases after error-loading, even in the absence of osteocytes. Loaded osteoblasts may produce a combination of growth factors affecting adjacent osteoblast differentiation. We hypothesized that osteoblasts respond to a single load in the short-term (minutes) by changing F-actin stress fiber distribution, in the intermediate-term (hours) by signaling molecule production, and in the long-term (days) by differentiation. Furthermore, growth factors produced during and after mechanical loading by pulsating fluid flow (PFF) will affect osteogenic differentiation. MC3T3-E1 pre-osteoblasts were either/not stimulated by 60 min PFF (amplitude, 1.0 Pa; frequency, 1 Hz; peak shear stress rate, 6.5 Pa/s) followed by 0-6 h, or 21/28 days of post-incubation without PFF. Computational analysis revealed that PFF immediately changed distribution and magnitude of fluid dynamics over an adherent pre-osteoblast inside a parallel-plate flow chamber (immediate impact). Within 60 min, PFF increased nitric oxide production (5.3-fold), altered actin distribution, but did not affect cell pseudopodia length and cell orientation (initial downstream impact). PFF transiently stimulated Fgf2, Runx2, Ocn, Dmp1, and Col1⍺1 gene expression between 0 and 6 h after PFF cessation. PFF did not affect alkaline phosphatase nor collagen production after 21 days, but altered mineralization after 28 days. In conclusion, a single bout of PFF with indirect associated release of biochemical factors, stimulates osteoblast differentiation in the long-term, which may explain enhanced bone formation resulting from mechanical stimuli.
Collapse
Affiliation(s)
- Jianfeng Jin
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Hadi Seddiqi
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Astrid D. Bakker
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Gang Wu
- Department of Oral Implantology and Prosthetic DentistryAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Johanna F. M. Verstappen
- Division of Molecular Intensive Care MedicineDepartment of Anesthesiology and Intensive Care MedicineUniversity Hospital TuebingenTübingenGermany
| | - Mohammad Haroon
- Laboratory for MyologyFaculty of Behavioral and Movement SciencesVrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Joannes A. M. Korfage
- Department of Functional AnatomyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Behrouz Zandieh‐Doulabi
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Arie Werner
- Department of Dental Materials ScienceAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Jenneke Klein‐Nulend
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Richard T. Jaspers
- Laboratory for MyologyFaculty of Behavioral and Movement SciencesVrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| |
Collapse
|
36
|
Siebert L, Luna-Cerón E, García-Rivera LE, Oh J, Jang J, Rosas-Gómez DA, Pérez-Gómez MD, Maschkowitz G, Fickenscher H, Oceguera-Cuevas D, Holguín-León CG, Byambaa B, Hussain MA, Enciso-Martinez E, Cho M, Lee Y, Sobahi N, Hasan A, Orgill DP, Mishra YK, Adelung R, Lee E, Shin SR. Light-controlled growth factors release on tetrapodal ZnO-incorporated 3D-printed hydrogels for developing smart wound scaffold. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007555. [PMID: 36213489 PMCID: PMC9536771 DOI: 10.1002/adfm.202007555] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 05/27/2023]
Abstract
Advanced wound scaffolds that integrate active substances to treat chronic wounds have gained significant recent attention. While wound scaffolds and advanced functionalities have previously been incorporated into one medical device, the wirelessly triggered release of active substances has remained the focus of many research endeavors. To combine multiple functions including light-triggered activation, anti-septic, angiogenic, and moisturizing properties, we have developed a 3D printed hydrogel patch encapsulating vascular endothelial growth factor (VEGF) decorated with photoactive and antibacterial tetrapodal zinc oxide (t-ZnO) microparticles. To achieve the smart release of VEGF, t-ZnO was modified by chemical treatment and activated through UV/visible light exposure. This process would also make the surface rough and improve protein adhesion. The elastic modulus and degradation behavior of the composite hydrogels, which must match the wound healing process, were adjusted by changing t-ZnO concentrations. The t-ZnO-laden composite hydrogels can be printed with any desired micropattern to potentially create a modular elution of various growth factors. The VEGF decorated t-ZnO-laden hydrogel patches showed low cytotoxicity and improved angiogenic properties while maintaining antibacterial functions in vitro. In vivo tests showed promising results for the printed wound patches, with less immunogenicity and enhanced wound healing.
Collapse
Affiliation(s)
- Leonard Siebert
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Eder Luna-Cerón
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Luis Enrique García-Rivera
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Junsung Oh
- Department of Nano-biomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - JunHwee Jang
- Department of Nano-biomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Diego A Rosas-Gómez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Mitzi D Pérez-Gómez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Gregor Maschkowitz
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Brunswiker Str. 4, D-24105 Kiel, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Brunswiker Str. 4, D-24105 Kiel, Germany
| | - Daniela Oceguera-Cuevas
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Carmen G Holguín-León
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Mohammad A Hussain
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Eduardo Enciso-Martinez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Yuhan Lee
- Department of Anesthesiology, preoperative and pain medicine, Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nebras Sobahi
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Centre (BRC), Qatar University, Doha, Qatar
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yogendra K Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Eunjung Lee
- Department of Nano-biomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
37
|
BMI1 regulates multiple myeloma-associated macrophage's pro-myeloma functions. Cell Death Dis 2021; 12:495. [PMID: 33993198 PMCID: PMC8124065 DOI: 10.1038/s41419-021-03748-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Multiple myeloma (MM) is an aggressive malignancy characterized by terminally differentiated plasma cells accumulation in the bone marrow (BM). MM BM exhibits elevated MΦs (macrophages) numbers relative to healthy BM. Current evidence indicates that MM-MΦs (MM-associated macrophages) have pro-myeloma functions, and BM MM-MΦs numbers negatively correlate with patient survival. Here, we found that BMI1, a polycomb-group protein, modulates the pro-myeloma functions of MM-MΦs, which expressed higher BMI1 levels relative to normal MΦs. In the MM tumor microenvironment, hedgehog signaling in MΦs was activated by MM-derived sonic hedgehog, and BMI1 transcription subsequently activated by c-Myc. Relative to wild-type MM-MΦs, BMI1-KO (BMI1 knockout) MM-MΦs from BM cells of BMI1-KO mice exhibited reduced proliferation and suppressed expression of angiogenic factors. Additionally, BMI1-KO MM-MΦs lost their ability to protect MM cells from chemotherapy-induced cell death. In vivo analysis showed that relative to wild-type MM-MΦs, BMI1-KO MM-MΦs lost their pro-myeloma effects. Together, our data show that BMI1 mediates the pro-myeloma functions of MM-MΦs.
Collapse
|
38
|
Exosomes derived from macrophages upon cobalt ion stimulation promote angiogenesis. Colloids Surf B Biointerfaces 2021; 203:111742. [PMID: 33838581 DOI: 10.1016/j.colsurfb.2021.111742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/21/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Angiogenesis is critical for tissue repair and regeneration, including implant osseointegration. It is well known that macrophages exert immunomodulatory functions in angiogenesis. However, whether macrophage-derived exosomes participate in the process is still unclear. Cobalt (Co) ions are frequently used as implant additives to mimic hypoxic microenvironment, which can induce angiogenesis through stabilizing hypoxia inducible factor-1α (HIF-1α) of macrophages and endothelial cells (ECs). The present work attempts to investigate whether exosomes derived from macrophages upon Co ion stimulation can mediate angiogenesis and the possible mechanism. The results show that the exosomes promote endothelial migration and angiogenesis in vitro and in vivo, particularly when Co ion concentration is 200 μM. Further studies reveal that the exosomes upregulating nitric oxide (NO), vascular endothelial growth factor (VEGF), and integrin β1 expression may be the underlying mechanism of the observations. Our findings provide new insights for Co ion mediated macrophage-EC communication and surface design of biomaterials from the perspective of pro-angiogenesis.
Collapse
|
39
|
Wang P, Yuan Y, Xu K, Zhong H, Yang Y, Jin S, Yang K, Qi X. Biological applications of copper-containing materials. Bioact Mater 2021; 6:916-927. [PMID: 33210018 PMCID: PMC7647998 DOI: 10.1016/j.bioactmat.2020.09.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Copper is an indispensable trace metal element in the human body, which is mainly absorbed in the stomach and small intestine and excreted into the bile. Copper is an important component and catalytic agent of many enzymes and proteins in the body, so it can influence human health through multiple mechanisms. Based on the biological functions and benefits of copper, an increasing number of researchers in the field of biomaterials have focused on developing novel copper-containing biomaterials, which exhibit unique properties in protecting the cardiovascular system, promoting bone fracture healing, and exerting antibacterial effects. Copper can also be used in promoting incisional wounds healing, killing cancer cells, Positron Emission Tomography (PET) imaging, radioimmunological tracing and radiotherapy of cancer. In the present review, the biological functions of copper in the human body are presented, along with an overview of recent progress in our understanding of the biological applications and development of copper-containing materials. Furthermore, this review also provides the prospective on the challenges of those novel biomaterials for future clinical applications.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yonghui Yuan
- Clinical Research Center for Malignant Tumor of Liaoning Province, Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
| | - Ke Xu
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Hongshan Zhong
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yinghui Yang
- Suzhou Silvan Medical Co., Ltd, Suzhou 215006, China
| | - Shiyu Jin
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China
| | - Xun Qi
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| |
Collapse
|
40
|
Chatterjee S, Sinha S, Molla S, Hembram KC, Kundu CN. PARP inhibitor Veliparib (ABT-888) enhances the anti-angiogenic potentiality of Curcumin through deregulation of NECTIN-4 in oral cancer: Role of nitric oxide (NO). Cell Signal 2021; 80:109902. [PMID: 33373686 DOI: 10.1016/j.cellsig.2020.109902] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
Concurrent use of DNA damaging agents with PARP inhibitors contribute to the effectiveness of the anticancer therapy. But there is a dearth of reports on the antiangiogenic effects of PARP inhibitors and the suppression of angiogenesis by this drug combination is not yet reported. For the successful development of cancer therapeutics, anti-cancer drugs ought to have anti-angiogenic potentiality along with their DNA damaging abilities. In this current piece of work, we investigated the in vitro and in ovo anti-angiogenic effect of Curcumin and Veliparib (a PARP inhibitor) in oral cancer. Recent evidences suggest an involvement of the NECTIN-4 in cancer angiogenesis and the exact molecular pathway of this involvement remains to be delineated. We observed that the soluble NECTIN-4 secreted from H357 oral cancer cells enhanced the angiogenesis of endothelial cells (HUVECs) and this was inhibited by Curcumin-Veliparib combination. NECTIN-4 enhanced vascularization, induced vasodilation and triggered the angiogenic sprouting via endothelial tip cell filopodia. Data indicated that NECTIN-4 mediated angiogenesis is associated with PI3K-AKT-mediated nitric oxide (NO) formation. A noticeable increase in the NO enhanced epithelial NO level through HIF-1α mediated iNOS activation. We observed that increased NO enhanced the NECTIN-4 mediated eNOS expression and thereby elicited further angiogenesis. Curcumin antagonised the NECTIN-4-induced angiogenesis through inhibition of PI3K-AKT mediated eNOS pathway and Veliparib synergized the effect of Curcumin. Our observations indicate that NO is cardinal in inducing NECTIN-4 mediated angiogenesis in H357 cells. Thus, Curcumin-Veliparib combination suppresses angiogenesis through deregulation of the PI3K-AKT-eNOS pathway downstream to the NECTIN-4.
Collapse
Affiliation(s)
- Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Sefinew Molla
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Krushna Chandra Hembram
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
41
|
Afzali H, Khaksari M, Jeddi S, Kashfi K, Abdollahifar MA, Ghasemi A. Acidified Nitrite Accelerates Wound Healing in Type 2 Diabetic Male Rats: A Histological and Stereological Evaluation. Molecules 2021; 26:1872. [PMID: 33810327 PMCID: PMC8037216 DOI: 10.3390/molecules26071872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 01/13/2023] Open
Abstract
Impaired skin nitric oxide production contributes to delayed wound healing in type 2 diabetes (T2D). This study aims to determine improved wound healing mechanisms by acidified nitrite (AN) in rats with T2D. Wistar rats were assigned to four subgroups: Untreated control, AN-treated control, untreated diabetes, and AN-treated diabetes. AN was applied daily from day 3 to day 28 after wounding. On days 3, 7, 14, 21, and 28, the wound levels of vascular endothelial growth factor (VEGF) were measured, and histological and stereological evaluations were performed. AN in diabetic rats increased the numerical density of basal cells (1070 ± 15.2 vs. 936.6 ± 37.5/mm3) and epidermal thickness (58.5 ± 3.5 vs. 44.3 ± 3.4 μm) (all p < 0.05); The dermis total volume and numerical density of fibroblasts at days 14, 21, and 28 were also higher (all p < 0.05). The VEGF levels were increased in the treated diabetic wounds at days 7 and 14, as was the total volume of fibrous tissue and hydroxyproline content at days 14 and 21 (all p < 0.05). AN improved diabetic wound healing by accelerating the dermis reconstruction, neovascularization, and collagen deposition.
Collapse
Affiliation(s)
- Hamideh Afzali
- Endocrinology and Metabolism Research, and Physiology Research Centers, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (H.A.); (M.K.)
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran;
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research, and Physiology Research Centers, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (H.A.); (M.K.)
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran;
| |
Collapse
|
42
|
Souza RAC, Martinelli-Kläy CP, d'Acampora AJ, Bernardes GJS, Sgrott SM, Souza LAC, Lombardi T, Sudbrack TR. Effects of sildenafil and tadalafil on skin flap viability. Arch Dermatol Res 2021; 314:151-157. [PMID: 33715076 PMCID: PMC8850220 DOI: 10.1007/s00403-021-02196-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/28/2020] [Accepted: 02/06/2021] [Indexed: 01/04/2023]
Abstract
Vascular complication is one of the causes of skin flap healing failure. Sildenafil and tadalafil, a type-5 phosphodiesterase inhibitor, can improve flap viability, however, the action mechanisms involved in this process are still unclear. To assess the effects of orally administered sildenafil and tadalafil on the healing kinetics and skin flap viability, sixty-two Wistar rats were divided into three groups: control (n = 22), sildenafil (n = 20), and tadalafil (n = 20). The solutions were administered orally (dose: 10 mg/kg) immediately after the surgical procedure and then every 24 h. At postoperative days 7 and 14, the skin flap samples were collected, submitted to histological processing and evaluated under optical microscopy. In experimental groups (sildenafil and tadalafil), we found an increased vascularization (p < 0.05) on the 7th and 14th day associated with the ulcer size decrease on the 14th day, although it was not significant. There was a higher influx of neutrophils and a decrease of mononuclear population on the 7th day (p < 0.05). On the 14th day, these differences were observed only in the tadalafil group (p < 0.05). This study suggested positive results with the use of sildenafil and tadalafil as adjuvant drugs in skin flap viability.
Collapse
Affiliation(s)
| | - Carla Patrícia Martinelli-Kläy
- Laboratory of Oral and Maxillofacial Pathology, Oral Medicine and Oral and Maxillofacial Pathology Unit, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland.
| | | | | | - Sandro M Sgrott
- University of Southern Santa Catarina, Florianópolis, Brazil
| | | | - Tommaso Lombardi
- Laboratory of Oral and Maxillofacial Pathology, Oral Medicine and Oral and Maxillofacial Pathology Unit, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | | |
Collapse
|
43
|
Pereira ES, Rodrigues GLS, Rocha WR. Electronic structure and mechanism for the uptake of nitric oxide by the Ru(iii) antitumor complex NAMI-A. RSC Adv 2021; 11:7381-7390. [PMID: 35423255 PMCID: PMC8695036 DOI: 10.1039/d0ra10622d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO) has well known vasodilation effects in living organisms and its participation in the metastasis of cancer cells through the angiogenesis process has been demonstrated experimentally. Therefore, the uptake of NO has become one focus of investigation to produce anti-metastatic drugs. In this article we have investigated the uptake of NO by the ruthenium based metallodrug trans-tetrachloride(dimethylsulfoxide)imidazole ruthenate(iii) [Im]trans-[RuCl4(Im)(DMSO)], known as New Anti-tumor Metastasis Inhibitor-A (NAMI-A). Electronic structure calculations using Density Functional Theory, DFT, and State-Averaged Complete Active Space Self Consistent Field, SA-CASSCF, with second order perturbation theory corrections, NEVPT2 were carried out to investigate the mechanism involved in the uptake of NO by the Ru-based anticancer metallodrug NAMI-A. The calculations revealed that the reaction takes place at the triplet potential energy surface, with the singlet surface being ∼15 kcal mol-1 shifted to higher energies, and there is a surface crossing to form the most stable singlet product after the reaction takes place at the triplet surface. The spin pairing and electron transfer from the nitric oxide to the metallic fragment takes place at the region of the minimum energy crossing point between the two surfaces. The Ru-NO bond in the {Ru-NO}6 product has ∼10% of the RuIII-NO0 character. The SA-CASSCF/NEVPT2 calculations revealed that the uptake of NO by NAMI-A has a small energy barrier of ∼8 kcal mol-1 and, therefore a rate constant of 11.3 × 106 s-1 at 300 K. In addition, the reaction is thermodynamically favorable, with a Gibbs free energy of ∼30 kcal mol-1. These results show that the uptake of nitric oxide by the NAMI-A complex is kinetically and thermodynamically feasible in biological medium and, therefore, gives support to the anti-angiogenesis theory associated to the mode of action of NAMI-A and other related compounds.
Collapse
Affiliation(s)
- Eufrásia S Pereira
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais 31270-901 Pampulha Belo Horizonte MG Brazil
| | - Gabriel L S Rodrigues
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais 31270-901 Pampulha Belo Horizonte MG Brazil
| | - Willian R Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais 31270-901 Pampulha Belo Horizonte MG Brazil
| |
Collapse
|
44
|
Li J, Du R, Bian Q, Zhang D, Gao S, Yuan A, Ying X, Shen Y, Gao J. Topical application of HA-g-TEMPO accelerates the acute wound healing via reducing reactive oxygen species (ROS) and promoting angiogenesis. Int J Pharm 2021; 597:120328. [PMID: 33540013 DOI: 10.1016/j.ijpharm.2021.120328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/16/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
During the occurring of cutaneous trauma, increasing oxidative stress response in wound site retards the progress of proliferation phase, impeding sequent efficient wound repair. At the same time, high-quality healing also requires adequate new blood vessels in order to furnish the wound site with a nutrient and oxygen-sufficient environment. Here we synthesized a novel hyaluronic acid (HA) material modified with a peroxidation inhibitor 2,2,6,6-tetramethylpiperidinyloxy (ATEMPO) for prevention of excessive reactive oxygen species (ROS) and promotion of angiogenesis after full-thickness skin excision in rats. Amines in ATEMPO attaching with carbonyls in HA chains was fabricated through N-acylation. The HA-g-TEMPO exerted a ROS-scavenging and angiogenesis-promoting function in vitro. In acute wound rat model, the wound closure efficacy was significantly improved to almost 55% at day 6 in comparison to 49% of HA, and wound sites in initial wound phase was also narrowed down sharply. Moreover, initially formed blood vessels were found in wound sites, further proved the angiogenesis-promoting function of HA-g-TEMPO. More interestingly, wound sites demonstrated an exciting regenerative healing effect which was characterized by marked skin appendages as well as reduced scarring. Therefore, this strategy showed a promising future that could be considered as a reliable and effective method to cutaneous wound healing.
Collapse
Affiliation(s)
- Junjun Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Rong Du
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou 310027, PR China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Danping Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Siqian Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Anran Yuan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaoying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou 310027, PR China.
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Jiangsu Engineering Research Center for New-Type External and Transdermal Preparations, PR China.
| |
Collapse
|
45
|
Ghalei S, Li J, Douglass M, Garren M, Handa H. Synergistic Approach to Develop Antibacterial Electrospun Scaffolds Using Honey and S-Nitroso-N-acetyl Penicillamine. ACS Biomater Sci Eng 2021; 7:517-526. [DOI: 10.1021/acsbiomaterials.0c01411] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Jianwen Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| |
Collapse
|
46
|
Multifunctional TaCu-nanotubes coated titanium for enhanced bacteriostatic, angiogenic and osteogenic properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111777. [DOI: 10.1016/j.msec.2020.111777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/16/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
|
47
|
Human Nitric Oxide Synthase-Its Functions, Polymorphisms, and Inhibitors in the Context of Inflammation, Diabetes and Cardiovascular Diseases. Int J Mol Sci 2020; 22:ijms22010056. [PMID: 33374571 PMCID: PMC7793075 DOI: 10.3390/ijms22010056] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
In various diseases, there is an increased production of the free radicals needed to carry out certain physiological processes but their excessive amounts can cause oxidative stress and cell damage. Enzymes play a major role in the transformations associated with free radicals. One of them is nitric oxide synthase (NOS), which catalyzes the formation of nitric oxide (NO). This enzyme exists in three forms (NOS1, NOS2, NOS3), each encoded by a different gene. The following work presents the most important information on the NOS isoforms and their role in the human body, including NO synthesis in various tissues and cells, intercellular signaling and activities supporting the immune system and regulating blood vessel functions. The role of NOS in pathological conditions such as obesity, diabetes and heart disease is considered. Attention is also paid to the influence of the polymorphisms of these genes, encoding particular isoforms, on the development of these pathologies and the role of NOS inhibitors in the treatment of patients.
Collapse
|
48
|
Wuu YR, Hu B, Okunola H, Paul AM, Blaber EA, Cheng-Campbell M, Beheshti A, Grabham P. LET-Dependent Low Dose and Synergistic Inhibition of Human Angiogenesis by Charged Particles: Validation of miRNAs that Drive Inhibition. iScience 2020; 23:101771. [PMID: 33376971 PMCID: PMC7756138 DOI: 10.1016/j.isci.2020.101771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/19/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Space radiation inhibits angiogenesis by two mechanisms depending on the linear energy transfer (LET). Using human 3D micro-vessel models, blockage of the early motile stage of angiogenesis was determined to occur after exposure to low LET ions (<3 KeV/AMU), whereas inhibition of the later stages occurs after exposure to high LET ions (>8 KeV/AMU). Strikingly, the combined effect is synergistic, detectible as low as 0.06 Gy making mixed ion space radiation more potent. Candidates for bystander transmission are microRNAs (miRNAs), and analysis on miRNA-seq data from irradiated mice shows that angiogenesis would in theory be downregulated. Further analysis of three previously identified miRNAs showed downregulation of their targets associated with angiogenesis and confirmed their involvement in angiogenesis pathways and increased health risks associated with cardiovascular disease. Finally, synthetic molecules (antagomirs) designed to inhibit the predicted miRNAs were successfully used to reverse the inhibition of angiogenesis.
Collapse
Affiliation(s)
- Yen-Ruh Wuu
- Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Burong Hu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hazeem Okunola
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, VC 11-243, 630 West 168 Street, New York, NY 10032, USA
| | - Amber M. Paul
- Universities Space Research Association, Columbia, MD 21046, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Elizabeth A. Blaber
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Department of Bioengineering, Center for Biotechnology & InterdisciplinaryStudies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margareth Cheng-Campbell
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Department of Bioengineering, Center for Biotechnology & InterdisciplinaryStudies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Peter Grabham
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, VC 11-243, 630 West 168 Street, New York, NY 10032, USA
| |
Collapse
|
49
|
Liu F, Cheng X, Xiao L, Wang Q, Yan K, Su Z, Wang L, Ma C, Wang Y. Inside-outside Ag nanoparticles-loaded polylactic acid electrospun fiber for long-term antibacterial and bone regeneration. Int J Biol Macromol 2020; 167:1338-1348. [PMID: 33232699 DOI: 10.1016/j.ijbiomac.2020.11.088] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Bone infections caused by bacteria during bone graft implantations can impair the ability of bone tissue repair, which is currently a clinical problem. In this study, the electrospinning technique was used to prepare a polylactic acid (PLLA)/silver (Ag) composite fiber, in which the silver nanoparticles (Ag-NPs) were uniformly distributed on the inner surface of PLLA fibers; dopamine (DA) was self-polymerized on the composite fiber surface to construct the adhesive polydopamine (PDA) film and chitosan (CS) was used to regulate Ag+ in situ through pulse electrochemical deposition for the construction of a stable Ag-NPs coating (CS/Ag), achieving the steady and slow release of Ag-NPs, therefore accomplishing the construction of a "inside-outside" Ag-NPs-loaded PLLA/Ag@PDA@CS/Ag composite fiber with dual functions of long-lasting antibacterial effect as well as bone regeneration promotion ability. The study results showed that the composite fiber has an excellent antibacterial effect against E. coli and S. aureus, and good osteoinductive and angiogenic properties. In summary, under the dual regulations of the strong adhesion of PDA and CS chelation, the "inside-outside" Ag-NPs-loaded composite fiber was endowed with good physiological stability, long-term antibacterial effect and bone infection inhibition ability, making it a promising bone implant material.
Collapse
Affiliation(s)
- Feifei Liu
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Xuewei Cheng
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Lu Xiao
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Qiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, PR China
| | - Kun Yan
- Traumatic Orthopedics, The 6th affiliated hospital of Xinjiang Medical University, 39 Wuxin Road, Urumqi 830001, PR China
| | - Zhi Su
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Lei Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, PR China.
| | - Chuang Ma
- Department of Orthopedics Center, the First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, Urumqi 830054, PR China.
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China.
| |
Collapse
|
50
|
Martínez-Rey D, Carmona-Rodríguez L, Fernández-Aceñero MJ, Mira E, Mañes S. Extracellular Superoxide Dismutase, the Endothelial Basement Membrane, and the WNT Pathway: New Players in Vascular Normalization and Tumor Infiltration by T-Cells. Front Immunol 2020; 11:579552. [PMID: 33250894 PMCID: PMC7673374 DOI: 10.3389/fimmu.2020.579552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are major players in the immune-mediated control of cancer and the response to immunotherapy. In primary cancers, however, TILs are commonly absent, suggesting T-cell entry into the tumor microenvironment (TME) to be selectively restricted. Blood and lymph vessels are the first barriers that circulating T-cells must cross to reach the tumor parenchyma. Certainly, the crossing of the endothelial cell (EC) basement membrane (EC-BM)—an extracellular matrix underlying EC—is a limiting step in T-cell diapedesis. This review highlights new data suggesting the antioxidant enzyme superoxide dismutase-3 (SOD3) to be a regulator of EC-BM composition in the tumor vasculature. In the EC, SOD3 induces vascular normalization and endows the EC-BM with the capacity for the extravasation of effector T-cells into the TME, which it achieves via the WNT signaling pathway. However, when activated in tumor cells, this same pathway is reported to exclude TILs. SOD3 also regulates TIL density in primary human colorectal cancers (CRC), thus affecting the relapse rate and patient survival.
Collapse
Affiliation(s)
- Diego Martínez-Rey
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| | | | - María Jesús Fernández-Aceñero
- Department of Surgical Pathology, Fundación de Investigación Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Emilia Mira
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| |
Collapse
|