1
|
Nemati M, Shayanfar M, Almasi F, Mohammad-Shirazi M, Sharifi G, Aminianfar A, Esmaillzadeh A. Dietary patterns in relation to glioma: a case-control study. Cancer Metab 2024; 12:8. [PMID: 38500219 PMCID: PMC10946126 DOI: 10.1186/s40170-024-00336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Although the association of individual foods and nutrients with glioma have been investigated, studies on the association of major dietary patterns and glioma are scarce. The aim of this study was to examine the association between major dietary patterns and risk of glioma in a group of Iranian adults. In this hospital-based case-control design, we recruited 128 newly diagnosed glioma cases and 256 controls in Tehran from 2009 to 2011. A Willett-format-validated 126-item semi-quantitative Food Frequency Questionnaire (FFQ) was used to assess participants' dietary intake. Factor analysis was used to identify major dietary patterns. We identified 3 major dietary patterns using factor analysis: high protein, vegetarian and western dietary pattern. After several adjustments for potential confounders, adherence to the high protein dietary pattern was inversely associated with risk of glioma (OR: 0.47; 95% CI: 0.23, 0.95). Consumption of vegetarian dietary pattern was also associated with a reduced risk of glioma (OR: 0.16; 95% CI: 0.07, 0.34). Greater adherence to the western dietary pattern was associated with a greater chance of glioma (OR: 3.30; 95% CI: 1.52, 7.17). We found that high protein, vegetarian and western dietary pattern were significantly associated with glioma risk. Further prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Mohammad Nemati
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shayanfar
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Almasi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Science, Kashan University of Medical Sciences, No. 226, Ravand Blv, Kashan, 1416753955, Iran
| | - Minoo Mohammad-Shirazi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Giuve Sharifi
- Department of Neurosurgery, Loghman Hakim Hospital, Tehran, Iran
| | - Azadeh Aminianfar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Science, Kashan University of Medical Sciences, No. 226, Ravand Blv, Kashan, 1416753955, Iran.
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Rehbein S, Possmayer AL, Bozkurt S, Lotsch C, Gerstmeier J, Burger M, Momma S, Maletzki C, Classen CF, Freiman TM, Dubinski D, Lamszus K, Stringer BW, Herold-Mende C, Münch C, Kögel D, Linder B. Molecular Determinants of Calcitriol Signaling and Sensitivity in Glioma Stem-like Cells. Cancers (Basel) 2023; 15:5249. [PMID: 37958423 PMCID: PMC10648216 DOI: 10.3390/cancers15215249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Glioblastoma is the most common primary brain cancer in adults and represents one of the worst cancer diagnoses for patients. Suffering from a poor prognosis and limited treatment options, tumor recurrences are virtually inevitable. Additionally, treatment resistance is very common for this disease and worsens the prognosis. These and other factors are hypothesized to be largely due to the fact that glioblastoma cells are known to be able to obtain stem-like traits, thereby driving these phenotypes. Recently, we have shown that the in vitro and ex vivo treatment of glioblastoma stem-like cells with the hormonally active form of vitamin D3, calcitriol (1α,25(OH)2-vitamin D3) can block stemness in a subset of cell lines and reduce tumor growth. Here, we expanded our cell panel to over 40 different cultures and can show that, while half of the tested cell lines are sensitive, a quarter can be classified as high responders. Using genetic and proteomic analysis, we further determined that treatment success can be partially explained by specific polymorphism of the vitamin D3 receptor and that high responders display a proteome suggestive of blockade of stemness, as well as migratory potential.
Collapse
Affiliation(s)
- Sarah Rehbein
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| | - Anna-Lena Possmayer
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| | - Süleyman Bozkurt
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (S.B.); (C.M.)
| | - Catharina Lotsch
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany (C.H.-M.)
| | - Julia Gerstmeier
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| | - Michael Burger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, 60596 Frankfurt am Main, Germany;
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School, 60596 Frankfurt am Main, Germany;
| | - Claudia Maletzki
- Department of Medicine, Clinic III-Hematology, Oncology, Alliative Care Rostock, 18057 Rostock, Germany;
| | - Carl Friedrich Classen
- Division of Pediatric Oncology, Hematology and Palliative Medicine Section, Department of Pediatrics and Adolescent Medicine, University Medicine Rostock, 18057 Rostock, Germany;
| | - Thomas M. Freiman
- Department of Neurosurgery, University Hospital Rostock, 18057 Rostock, Germany; (T.M.F.); (D.D.)
| | - Daniel Dubinski
- Department of Neurosurgery, University Hospital Rostock, 18057 Rostock, Germany; (T.M.F.); (D.D.)
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg—Eppendorf, 20251 Hamburg, Germany;
| | - Brett W. Stringer
- College of Medicine and Public Health, Flinders University, Sturt Rd., Bedford Park, SA 5042, Australia;
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany (C.H.-M.)
| | - Christian Münch
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (S.B.); (C.M.)
| | - Donat Kögel
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
- German Cancer Consortium DKTK Partner Site Frankfurt/Main, 60590 Frankfurt am Main, Germany
- German Cancer Research Center DKFZ, 69120 Heidelberg, Germany
| | - Benedikt Linder
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| |
Collapse
|
3
|
Gerstmeier J, Possmayer AL, Bozkurt S, Hoffmann ME, Dikic I, Herold-Mende C, Burger MC, Münch C, Kögel D, Linder B. Calcitriol Promotes Differentiation of Glioma Stem-Like Cells and Increases Their Susceptibility to Temozolomide. Cancers (Basel) 2021; 13:cancers13143577. [PMID: 34298790 PMCID: PMC8303292 DOI: 10.3390/cancers13143577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Cancer cells with a stem-like phenotype that are thought to be highly tumorigenic are commonly described in glioblastoma, the most common primary adult brain cancer. This phenotype comprises high self-renewal capacity and resistance against chemotherapy and radiation therapy, thereby promoting tumor progression and disease relapse. Here, we show that calcitriol, the hormonally active form of the “sun hormone” vitamin D3, effectively suppresses stemness properties in glioblastoma stem-like cells (GSCs), supporting the hypothesis that calcitriol sensitizes them to additional chemotherapy. Indeed, a physiological organotypic brain slice model was used to monitor tumor growth of GSCs, and the effectiveness of combined treatment with temozolomide, the current standard-of-care, and calcitriol was proven. These findings indicate that further research on applying calcitriol, a well-known and safe drug, as a potential adjuvant therapy for glioblastoma is both justified and necessary. Abstract Glioblastoma (GBM) is the most common and most aggressive primary brain tumor, with a very high rate of recurrence and a median survival of 15 months after diagnosis. Abundant evidence suggests that a certain sub-population of cancer cells harbors a stem-like phenotype and is likely responsible for disease recurrence, treatment resistance and potentially even for the infiltrative growth of GBM. GBM incidence has been negatively correlated with the serum levels of 25-hydroxy-vitamin D3, while the low pH within tumors has been shown to promote the expression of the vitamin D3-degrading enzyme 24-hydroxylase, encoded by the CYP24A1 gene. Therefore, we hypothesized that calcitriol can specifically target stem-like glioblastoma cells and induce their differentiation. Here, we show, using in vitro limiting dilution assays, quantitative real-time PCR, quantitative proteomics and ex vivo adult organotypic brain slice transplantation cultures, that therapeutic doses of calcitriol, the hormonally active form of vitamin D3, reduce stemness to varying extents in a panel of investigated GSC lines, and that it effectively hinders tumor growth of responding GSCs ex vivo. We further show that calcitriol synergizes with Temozolomide ex vivo to completely eliminate some GSC tumors. These findings indicate that calcitriol carries potential as an adjuvant therapy for a subgroup of GBM patients and should be analyzed in more detail in follow-up studies.
Collapse
Affiliation(s)
- Julia Gerstmeier
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
| | - Anna-Lena Possmayer
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
| | - Süleyman Bozkurt
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Marina E. Hoffmann
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Ivan Dikic
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany;
| | - Michael C. Burger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, 60528 Frankfurt am Main, Germany;
| | - Christian Münch
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Donat Kögel
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
- German Cancer Consortium DKTK Partner Site Frankfurt/Main, 60590 Frankfurt am Main, Germany
- German Cancer Research Center DKFZ, 69120 Heidelberg, Germany
| | - Benedikt Linder
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
- Correspondence: ; Tel.: +49-69-6301-6930
| |
Collapse
|
4
|
Travers S, Litofsky NS. Daily Lifestyle Modifications to Improve Quality of Life and Survival in Glioblastoma: A Review. Brain Sci 2021; 11:brainsci11050533. [PMID: 33922443 PMCID: PMC8146925 DOI: 10.3390/brainsci11050533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Survival in glioblastoma remains poor despite advancements in standard-of-care treatment. Some patients wish to take a more active role in their cancer treatment by adopting daily lifestyle changes to improve their quality of life or overall survival. We review the available literature through PubMed and Google Scholar to identify laboratory animal studies, human studies, and ongoing clinical trials. We discuss which health habits patients adopt and which have the most promise in glioblastoma. While results of clinical trials available on these topics are limited, dietary restrictions, exercise, use of supplements and cannabis, and smoking cessation all show some benefit in the comprehensive treatment of glioblastoma. Marital status also has an impact on survival. Further clinical trials combining standard treatments with lifestyle modifications are necessary to quantify their survival advantages.
Collapse
|
5
|
In Vitro and In Vivo Antitumor Activity of Vitamin D3 in Malignant Gliomas: A Systematic Review. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2020. [DOI: 10.5812/ijcm.94542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Elmaci I, Ozpinar A, Ozpinar A, Perez JL, Altinoz MA. From epidemiology and neurometabolism to treatment: Vitamin D in pathogenesis of glioblastoma Multiforme (GBM) and a proposal for Vitamin D + all-trans retinoic acid + Temozolomide combination in treatment of GBM. Metab Brain Dis 2019; 34:687-704. [PMID: 30937698 DOI: 10.1007/s11011-019-00412-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Here we review tumoricidal efficacy of Vitamin D analogues in glioblastoma multiforme (GBM) and potential synergisms with retinoic acid and temozolomide based on epidemiological and cellular studies. Epidemiological data suggest that winter birth is associated with higher risk of GBM, and GBM debulking in the winter enhanced mortality, which may relate with lower exposure to sunlight essential to convert cholecalciferol to Vitamin D. Comparative studies on blood bank specimens revealed that higher prediagnosis levels of calcidiol are associated with lower risk of GBM in elderly men. Supplemental Vitamin D reduced mortality in GBM patients in comparison to nonusers. Expression of Vitamin D Receptor is associated with a good prognosis in GBM. Conversely, Vitamin D increases glial tumor synthesis of neutrophins NGF and NT-3, the low affinity neurotrophin receptor p75NTR, IL-6 and VEGF, which may enhance glioma growth. Antitumor synergisms between temozolomide and Vitamin D and Vitamin D with Vitamin A derivatives were observed. Hence, we hypothesize that Calcitriol + ATRA (All-Trans Retinoic Acid) + Temozolomide - CAT combination might be a safer approach to benefit from Vitamin D in the management of high-grade glial tumors. Adding acetazolomide to this protocol may reduce the risk of pseudotumor cerebri, as both Vitamin D and Vitamin A excess may cause intracranial hypertension; this approach may provide further benefit as acetazolomide also exhibits anticancer activity.
Collapse
Affiliation(s)
- Ilhan Elmaci
- Acibadem University, Istanbul, Neuroacademy Group, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey
| | - Alp Ozpinar
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer L Perez
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meric A Altinoz
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey.
- Neurooncology Branch, Neuroacademy Group, Istanbul, Turkey.
- Department of Psychiatry, Maastricht University, Maastricht, Holland, The Netherlands.
| |
Collapse
|
7
|
Brook L, Palade P, Maatough A, Whitfield GK, Emeterio LS, Hsieh D, Hsieh JC. Hairless regulates p53 target genes to exert tumor suppressive functions in glioblastoma. J Cell Biochem 2018; 120:533-543. [PMID: 30191601 DOI: 10.1002/jcb.27408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/11/2018] [Indexed: 11/07/2022]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor and is associated with a poor prognosis, with most patients living less than a year after diagnosis. Given that GBM nearly always recurs after conventional treatments, there is an urgent need to identify novel molecular targets. Hairless (HR) is a nuclear factor enriched in the skin and has been previously implicated in hair cycling. HR is also highly expressed in the brain, but its significance is unknown. We found that human hairless gene (HR) expression is significantly decreased in all GBM subtypes compared with normal brain tissue and is predictive of prognosis, which suggests that loss of HR expression can contribute to GBM pathogenesis. HR was recently discovered to bind to and regulate p53 responsive elements, and thus we hypothesized that HR may have a tumor suppressive function in GBM by modulating p53 target gene expression. We found that HR indeed regulates p53 target genes, including those implicated in cell cycle progression and apoptosis in the GBM-derived U87 cell line, and restoring HR expression triggered G2/M arrest and apoptosis. An analysis of sequenced genomes from patients with GBM revealed 10 HR somatic mutations in patients with glioma, two of which are located in the histone demethylase domain of HR. These two mutations, P996S and K1004N, were reconstructed and found to have impaired p53 transactivating properties. Collectively, the results of our study suggest that HR has tumor suppressive functions in GBM, which may be clinically relevant and a potential avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Lemlem Brook
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Patricia Palade
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Anas Maatough
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Graham Kerr Whitfield
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Lis San Emeterio
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - David Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jui-Cheng Hsieh
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| |
Collapse
|
8
|
Shan NL, Wahler J, Lee HJ, Bak MJ, Gupta SD, Maehr H, Suh N. Vitamin D compounds inhibit cancer stem-like cells and induce differentiation in triple negative breast cancer. J Steroid Biochem Mol Biol 2017; 173:122-129. [PMID: 27923595 PMCID: PMC5459680 DOI: 10.1016/j.jsbmb.2016.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 01/15/2023]
Abstract
Triple-negative breast cancer is one of the least responsive breast cancer subtypes to available targeted therapies due to the absence of hormonal receptors, aggressive phenotypes, and the high rate of relapse. Early breast cancer prevention may therefore play an important role in delaying the progression of triple-negative breast cancer. Cancer stem cells are a subset of cancer cells that are thought to be responsible for tumor progression, treatment resistance, and metastasis. We have previously shown that vitamin D compounds, including a Gemini vitamin D analog BXL0124, suppress progression of ductal carcinoma in situ in vivo and inhibit cancer stem-like cells in MCF10DCIS mammosphere cultures. In the present study, the effects of vitamin D compounds in regulating breast cancer stem-like cells and differentiation in triple-negative breast cancer were assessed. Mammosphere cultures, which enriches for breast cancer cells with stem-like properties, were used to assess the effects of 1α,25(OH)2D3 and BXL0124 on cancer stem cell markers in the triple-negative breast cancer cell line, SUM159. Vitamin D compounds significantly reduced the mammosphere forming efficiency in primary, secondary and tertiary passages of mammospheres compared to control groups. Key markers of cancer stem-like phenotype and pluripotency were analyzed in mammospheres treated with 1α,25(OH)2D3 and BXL0124. As a result, OCT4, CD44 and LAMA5 levels were decreased. The vitamin D compounds also down-regulated the Notch signaling molecules, Notch1, Notch2, Notch3, JAG1, JAG2, HES1 and NFκB, which are involved in breast cancer stem cell maintenance. In addition, the vitamin D compounds up-regulated myoepithelial differentiating markers, cytokeratin 14 and smooth muscle actin, and down-regulated the luminal marker, cytokeratin 18. Cytokeratin 5, a biomarker associated with basal-like breast cancer, was found to be significantly down-regulated by the vitamin D compounds. These results suggest that vitamin D compounds may serve as potential preventive agents to inhibit triple negative breast cancer by regulating cancer stem cells and differentiation.
Collapse
Affiliation(s)
- Naing Lin Shan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA
| | - Joseph Wahler
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA
| | - Hong Jin Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Min Ji Bak
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA
| | - Soumyasri Das Gupta
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA
| | - Hubert Maehr
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
9
|
|
10
|
Wallace JM. Integrative Tumor Board: Glioblastoma Multiforme. Integr Cancer Ther 2016. [DOI: 10.1177/1534735404264968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jeanne M. Wallace
- Nutritional Solutions, Inc. 1697 East 3450 North North Logan, UT 84341 USA
| |
Collapse
|
11
|
Abstract
Vitamin D, also known as cholecalciferol, is the precursor to the active steroid hormone 1, 25-dihydroxyvitamin D3 (calcitriol; 1, 25(OH)2D3). The main physiological role for 1, 25(OH)2D3 is to regulate calcium and inorganic phosphate homeostasis for bone health. More recently, vitamin D has been investigated for its effects in the prevention and treatment of a variety of diseases such as cancer, autoimmune disorders, and cardiovascular disease. Preclinical data strongly support a role for vitamin D in the prevention of cancer through its anti-proliferative, pro-apoptotic, and anti-angiogenic effects on cells. Epidemiologic and clinical studies have shown mixed data on the correlation between serum vitamin D levels and cancer risk. This report seeks to outline results from the most recent preclinical and clinical studies investigating the potential role of vitamin D in cancer prevention.
Collapse
Affiliation(s)
- Rachel A Ness
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
12
|
The Role of Glucose Modulation and Dietary Supplementation in Patients With Central Nervous System Tumors. Curr Treat Options Oncol 2016; 16:36. [PMID: 26143267 DOI: 10.1007/s11864-015-0356-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OPINION STATEMENT Central nervous system gliomas are the most common primary brain tumor, and these are most often high-grade gliomas. Standard therapy includes a combination of surgery, radiation, and chemotherapy which provides a modest increase in survival, but virtually, no patients are cured, the overall prognosis remains poor, and new therapies are desperately needed. Tumor metabolism is a well-recognized but understudied therapeutic approach to treating cancers. Dietary and nondietary modulation of glucose homeostasis and the incorporation of dietary supplements and other natural substances are potentially important interventions to affect cancer cell growth, palliate symptoms, reduce treatment-associated side effects, and improve the quality and quantity of life in patients with cancer. These approaches are highly desired by patients. However, they can be financially burdensome, associated with toxicities, and have, on occasion, reduced the efficacy of proven therapies and negatively impacted patient outcomes. The lack of rigorous scientific data evaluating almost all diet and supplement-based therapies currently limits their incorporation into standard oncologic practice. Rigorous studies are needed to document and improve these potentially useful approaches in patients with brain and other malignancies.
Collapse
|
13
|
Jayaram S, Gupta MK, Shivakumar BM, Ghatge M, Sharma A, Vangala RK, Sirdeshmukh R. Insights from Chromosome-Centric Mapping of Disease-Associated Genes: Chromosome 12 Perspective. J Proteome Res 2015; 14:3432-40. [PMID: 26143930 DOI: 10.1021/acs.jproteome.5b00488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In line with the aims of the Chromosome-based Human Proteome Project and the Biology/Disease-based Human Proteome Project, we have been studying differentially expressed transcripts and proteins in gliomas—the most prevalent primary brain tumors. Here, we present a perspective on important insights from this analysis in terms of their co-expression, co-regulation/de-regulation, and co-localization on chromosome 12 (Chr. 12). We observe the following: (1) Over-expression of genes mapping onto amplicon regions of chromosomes may be considered as a biological validation of mass spectrometry data. (2) Their co-localization further suggests common determinants of co-expression and co-regulation of these clusters. (3) Co-localization of "missing" protein genes of Chr. 12 in close proximity to functionally related genes may help in predicting their functions. (4) Further, integrating differentially expressed gene-protein sets and their ontologies with medical terms associated with clinical phenotypes in a chromosome-centric manner reveals a network of genes, diseases, and pathways—a diseasome network. Thus, chromosomal mapping of disease data sets can help uncover important regulatory and functional links that may offer new insights for biomarker development.
Collapse
Affiliation(s)
- Savita Jayaram
- Institute of Bioinformatics , International Tech Park, Bangalore-560066, India.,Manipal University , Madhav Nagar, Manipal-576104, India
| | - Manoj Kumar Gupta
- Institute of Bioinformatics , International Tech Park, Bangalore-560066, India.,Manipal University , Madhav Nagar, Manipal-576104, India
| | | | - Madankumar Ghatge
- Manipal University , Madhav Nagar, Manipal-576104, India.,Thrombosis Research Institute, Narayana Health , Bangalore-560099, India
| | - Ankit Sharma
- Manipal University , Madhav Nagar, Manipal-576104, India.,Thrombosis Research Institute, Narayana Health , Bangalore-560099, India
| | | | - Ravi Sirdeshmukh
- Institute of Bioinformatics , International Tech Park, Bangalore-560066, India.,Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Foundation, Narayana Health , Bangalore-560099, India
| |
Collapse
|
14
|
|
15
|
Giammanco M, Di Majo D, La Guardia M, Aiello S, Crescimannno M, Flandina C, Tumminello FM, Leto G. Vitamin D in cancer chemoprevention. PHARMACEUTICAL BIOLOGY 2015; 53:1399-1434. [PMID: 25856702 DOI: 10.3109/13880209.2014.988274] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT There is increasing evidence that Vitamin D (Vit D) and its metabolites, besides their well-known calcium-related functions, may also exert antiproliferative, pro-differentiating, and immune modulatory effects on tumor cells in vitro and may also delay tumor growth in vivo. OBJECTIVE The aim of this review is to provide fresh insight into the most recent advances on the role of Vit D and its analogues as chemopreventive drugs in cancer therapy. METHODS A systematic review of experimental and clinical studies on Vit D and cancer was undertaken by using the major electronic health database including ISI Web of Science, Medline, PubMed, Scopus and Google Scholar. RESULTS AND CONCLUSION Experimental and clinical observations suggest that Vit D and its analogues may be effective in preventing the malignant transformation and/or the progression of various types of human tumors including breast cancer, prostate cancer, colorectal cancer, and some hematological malignances. These findings suggest the possibility of the clinical use of these molecules as novel potential chemopreventive and anticancer agents.
Collapse
|
16
|
Abstract
ABSTRACT:Malignant astrocytomas are aggressive neoplasms with a dismal prognosis despite optimal treatment. Maximal resective surgery is traditionally complemented by radiation therapy. Chemotherapy is now used on patients as initial therapy when their functional status is congruent with further treatment. The classic agents used are nitrosoureas, but temozolomide has taken the front seat recently, with recent data demonstrating increased survival when this agent is used concurrently with radiation therapy in newly diagnosed glioblastoma patients. A new class of agents, refered to as biological modifiers, are increasingly used in clinical trials in an effort to affect the intrinsic biologic aberrations harboured by tumor cells. These drugs comprise differentiation agents, anti-angiogenic agents, matrix-metalloproteinase inhibitors and signal transduction inhibitors, among others. This article reviews the standard cytotoxic agents that have been used to treat malignant astrocytomas, and the different combination regimens offering promise. In addition, recent advances with biological modifiers are also discussed.
Collapse
Affiliation(s)
- David Mathieu
- Division of Neurosurgery/Neuro-Oncology, Department of Surgery, Sherbrooke University and Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | | |
Collapse
|
17
|
Leyssens C, Verlinden L, Verstuyf A. The future of vitamin D analogs. Front Physiol 2014; 5:122. [PMID: 24772087 PMCID: PMC3982071 DOI: 10.3389/fphys.2014.00122] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/13/2014] [Indexed: 12/19/2022] Open
Abstract
The active form of vitamin D3, 1,25-dihydroxyvitamin D3, is a major regulator of bone and calcium homeostasis. In addition, this hormone also inhibits the proliferation and stimulates the differentiation of normal as well as malignant cells. Supraphysiological doses of 1,25-dihydroxyvitamin D3 are required to reduce cancer cell proliferation. However, these doses will lead in vivo to calcemic side effects such as hypercalcemia and hypercalciuria. During the last 25 years, many structural analogs of 1,25-dihydroxyvitamin D3 have been synthesized by the introduction of chemical modifications in the A-ring, central CD-ring region or side chain of 1,25-dihydroxyvitamin D3 in the hope to find molecules with a clear dissociation between the beneficial antiproliferative effects and adverse calcemic side effects. One example of such an analog with a good dissociation ratio is calcipotriol (Daivonex®), which is clinically used to treat the hyperproliferative skin disease psoriasis. Other vitamin D analogs were clinically approved for the treatment of osteoporosis or secondary hyperparathyroidism. No vitamin D analog is currently used in the clinic for the treatment of cancer although several analogs have been shown to be potent drugs in animal models of cancer. Transcriptomics studies as well as in vitro cell biological experiments unraveled basic mechanisms involved in the antineoplastic effects of vitamin D and its analogs. 1,25-dihydroxyvitamin D3 and analogs act in a cell type- and tissue-specific manner. Moreover, a blockade in the transition of the G0/1 toward S phase of the cell cycle, induction of apoptosis, inhibition of migration and invasion of tumor cells together with effects on angiogenesis and inflammation have been implicated in the pleiotropic effects of 1,25-dihydroxyvitamin D3 and its analogs. In this review we will give an overview of the action of vitamin D analogs in tumor cells and look forward how these compounds could be introduced in the clinical practice.
Collapse
Affiliation(s)
- Carlien Leyssens
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven Leuven, Belgium
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven Leuven, Belgium
| | - Annemieke Verstuyf
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven Leuven, Belgium
| |
Collapse
|
18
|
Salomón DG, Fermento ME, Gandini NA, Ferronato MJ, Arévalo J, Blasco J, Andrés NC, Zenklusen JC, Curino AC, Facchinetti MM. Vitamin D receptor expression is associated with improved overall survival in human glioblastoma multiforme. J Neurooncol 2014; 118:49-60. [PMID: 24584679 DOI: 10.1007/s11060-014-1416-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 02/21/2014] [Indexed: 12/25/2022]
Abstract
Vitamin D and its analogs have been shown to display anti-proliferative effects in a wide variety of cancer types including glioblastoma multiforme (GBM). These anticancer effects are mediated by its active metabolite, 1α, 25-dihydroxyvitamin D3 (calcitriol) acting mainly through vitamin D receptor (VDR) signaling. In addition to its involvement in calcitriol action, VDR has also been demonstrated to be useful as a prognostic factor for some types of cancer. However, to our knowledge, there are no studies evaluating the expression of VDR protein and its association with outcome in gliomas. Therefore, we investigated VDR expression by using immunohistochemical analysis in human glioma tissue microarrays, and analyzed the association between VDR expression and clinico-pathological parameters. We further investigated the effects of genetic and pharmacologic modulation of VDR on survival and migration of glioma cell lines. Our data demonstrate that VDR is increased in tumor tissues when compared with VDR in non-malignant brains, and that VDR expression is associated with an improved outcome in patients with GBM. We also show that both genetic and pharmacologic modulation of VDR modulates GBM cellular migration and survival and that VDR is necessary for calcitriol-mediated effects on migration. Altogether these results provide some limited evidence supporting a role for VDR in glioma progression.
Collapse
Affiliation(s)
- Débora G Salomón
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB - CONICET), Centro Científico Tecnológico Bahía Blanca, Camino La Carrindanga Km 7 - C.C. 857, 8000, Bahía Blanca, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The vitamin D receptor (VDR) gene polymorphisms in Turkish brain cancer patients. BIOMED RESEARCH INTERNATIONAL 2013; 2013:295791. [PMID: 23691496 PMCID: PMC3652122 DOI: 10.1155/2013/295791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/30/2013] [Accepted: 03/25/2013] [Indexed: 01/11/2023]
Abstract
Objective. It has been stated that brain cancers are an increasingly serious issue in many parts of the world. The aim of our study was to determine a possible relationship between Vitamin D receptor (VDR) gene polymorphisms and the risk of glioma and meningioma. Methods. We investigated the VDR Taq-I and VDR Fok-I gene polymorphisms in 100 brain cancer patients (including 44 meningioma cases and 56 glioma cases) and 122 age-matched healthy control subjects. This study was performed by polymerase chain reaction-based restriction fragment length polymorphism (RF LP). Results. VDR Fok-I ff genotype was significantly increased in meningioma patients (15.9%) compared with controls (2.5%), and carriers of Fok-I ff genotype had a 6.47-fold increased risk for meningioma cases. There was no significant difference between patients and controls for VDR Taq-I genotypes and alleles. Conclusions. We suggest that VDR Fok-I genotypes might affect the development of meningioma.
Collapse
|
20
|
Youssef DA, El Abbassi AM, Cutchins DC, Chhabra S, Peiris AN. Vitamin D deficiency: Implications for acute care in the elderly and in patients with chronic illness. Geriatr Gerontol Int 2011; 11:395-407. [DOI: 10.1111/j.1447-0594.2011.00716.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Role of vitamin d in the prevention of pancreatic cancer. J Nutr Metab 2011; 2010:721365. [PMID: 21274445 PMCID: PMC3025373 DOI: 10.1155/2010/721365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/12/2010] [Accepted: 12/14/2010] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is a malignancy of poor prognosis which is mostly diagnosed at advanced stages. Current treatment modalities are very limited creating great interest for novel preventive and therapeutic options. Vitamin D seems to have a protective effect against pancreatic cancer by participating in numerous proapoptotic, antiangiogenic, anti-inflammatory, prodifferentiating, and immunomodulating mechanisms. 25-hydroxyvitamin D [25(OH)D] serum concentrations are currently the best indicator of vitamin D status. There are three main sources of vitamin D: sun exposure, diet,and dietary supplements. Sun exposure has been associated with lower incidence of pancreatic cancer in ecological studies. Increased vitamin D levels seem to protect against pancreatic cancer, but caution is needed as excessive dietary intake may have opposite results. Future studies will verify the role of vitamin D in the prevention and therapy of pancreatic cancer and will lead to guidelines on adequate sun exposure and vitamin D dietary intake.
Collapse
|
22
|
Kyritsis AP, Bondy ML, Levin VA. Modulation of glioma risk and progression by dietary nutrients and antiinflammatory agents. Nutr Cancer 2011; 63:174-84. [PMID: 21302177 PMCID: PMC3047463 DOI: 10.1080/01635581.2011.523807] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gliomas are tumors of glial origin formed in the central nervous system and exhibit profound morphological and genetic heterogeneity. The etiology of this heterogeneity involves an interaction between genetic alterations and environmental risk factors. Scientific evidence suggests that certain natural dietary components, such as phytoestrogens, flavonoids, polyunsaturated fatty acids, and vitamins, may exert a protective effect against gliomas by changing the nature of the interaction between genetics and environment. Similarly, certain antiinflammatory drugs and dietary modifications, such as methionine restriction and the adoption of low-calorie or ketogenic diets, may take advantage of glioma and normal glial cells' differential requirements for glucose, methionine, and ketone bodies and may, therefore, be effective as part of preventive or treatment strategies for gliomas. Treatment trials of glioma patients and chemoprevention trials of individuals with a known genetic predisposition to glioma using the most promising of these agents, such as the antiinflammatory drugs curcumin and gamma-linolenic acid, are needed to validate or refute these agents' putative role in gliomas.
Collapse
|
23
|
Season of tumor surgery in relation to deaths among brain tumor patients: does sunlight and month of surgery play a role in brain tumor deaths? Acta Neurochir (Wien) 2009; 151:1369-75. [PMID: 19572100 DOI: 10.1007/s00701-009-0438-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/09/2009] [Indexed: 11/27/2022]
Abstract
The objective of this study is to investigate the effect at the season of the time of surgery on the survival of brain tumor patients. The population studied consisted of 101 patients (39 males and 62 females), gathered from a geographically large area in northern Finland (from 64 degrees N to 70 degrees N), aged between 20 and 82 years, with a solitary primary brain tumor treated surgically at the Oulu Clinic for Neurosurgery, Oulu University Hospital. The distribution of tumor surgery dates and mean hours of sunshine hours was analyzed by bimonthly periods. When comparing the proportion of deceased patients of all patients operated in each bimonthly period, a significant bimonthly peak in deaths was found in patients operated during the period of February to March (ratio 1.7, 95% CI 1.1-2.3). More than half of the patients who died during the peak period had grade III-IV gliomas. In 40% of the cases, the surgery time of deceased brain tumor patients occurred in the bimonthly period following the four darkest months of the year with the lowest amount of sunshine in northern Finland. The relation of low vitamin D level in the etiology and course of the disease as well as in treatment settings deserves further study.
Collapse
|
24
|
Savaraj N, Wu C, Landy H, Wangpaijit M, Wei Y, Kuo MT, Robles C, Furst AJ, Lampidis T, Feun L. Procollagen Alpha 1 Type I: A Potential Aide in Histopathological Grading of Glioma. Cancer Invest 2009; 23:577-81. [PMID: 16305983 DOI: 10.1080/07357900500276915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Collagen type I production has been shown to play a role in malignant transformation. We examined procollagen type I expression in brain tumors and with histopathological grading. Expression levels of procollagen alpha 1 type 1 were determined in 5 glioma cell lines by RT-PCR, Northern, and Western blot analysis. In addition, 41 primary brain tumors and 2 metastatic lung cancers to the brain were examined by PCR. Of the 5 glioma cell line analyzed, 3 (glioma 1, SW-1783 and U-118) expressed procollagen alpha 1 type I and were sensitive to vitamin D3 (VD3). In contrast, 2 of the cell lines (U-373 and T-98G) lacked procollagen alpha 1 type 1 expression. In patients' samples, 14 of 15 anaplastic and low grade gliomas expressed procollagen alpha 1 type I, and 12 of the 14 expressed high levels. In contrast, only 12 of 21 high grade gliomas from patients expressed procollagen alpha 1 type1 and among these, only 4 of the 12 expressed high levels. Thus, there is an inversed correlation between procollagen alpha 1 type 1 expression and histopathological grading (R2=- 0.56, p=0.0005). Our data suggest that procollagen alpha 1 type I expression occurs more commonly in intermediate and low grade gliomas and may assist in histopathological grading.
Collapse
|
25
|
Abstract
Studies show an important relationship between vitamin D and malignancies, both in prevention and treatment. The extraskeletal actions of vitamin D relevant to oncology include being proapoptotic, antimetastatic, antiangiogenic, antiinflammatory, prodifferentiating, and immunomodulating. Widespread and severe vitamin D deficiencies exist worldwide. Decreased sun exposure, caused by lifestyle changes, as well as fear of skin cancers, is the main cause of these deficiencies. Recommended daily oral intakes, as well as suggested blood levels, are below optimal levels suggested by studies. Improvement in vitamin D status, through lifestyle changes and supplementation, can be of profound benefit regarding the occurrence and mortality of malignancies.
Collapse
Affiliation(s)
- Ira Cantor
- Steiner Medical and Therapeutic Center, Phoenixville, Pennsylvania 19460, USA.
| |
Collapse
|
26
|
Przybelski RJ, Binkley NC. Is vitamin D important for preserving cognition? A positive correlation of serum 25-hydroxyvitamin D concentration with cognitive function. Arch Biochem Biophys 2007; 460:202-5. [PMID: 17258168 DOI: 10.1016/j.abb.2006.12.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 12/15/2006] [Accepted: 12/15/2006] [Indexed: 12/15/2022]
Abstract
This study investigates the association of vitamin D status with cognitive function and discusses potential mechanisms for such an effect. The relationship of vitamin B12 with cognition was also assessed. A retrospective review of older adults presenting to a university-affiliated clinic providing consultative assessments for memory problems was performed. Charts of all patients (n=80) presenting for initial visits were reviewed to identify those who had serum 25-hydroxyvitamin D (25(OH)D), vitamin B12, and mini-mental state examination score (MMSE) all obtained on their first visit (n=32). Correlation analyses between MMSE and 25(OH)D and vitamin B12 levels were performed. Serum 25(OH)D concentration and MMSE showed a (p=0.006) positive correlation; no (p=0.875) correlation was observed between serum B12 concentration and MMSE. In conclusion, the positive, significant correlation between serum 25(OH)D concentration and MMSE in these patients suggests a potential role for vitamin D in cognitive function of older adults.
Collapse
Affiliation(s)
- Robert J Przybelski
- School of Medicine and Public Health, University of Wisconsin-Madison, 2870 University Avenue, Suite 100, Madison, WI 53705, USA.
| | | |
Collapse
|
27
|
Diesel B, Radermacher J, Bureik M, Bernhardt R, Seifert M, Reichrath J, Fischer U, Meese E. Vitamin D3 Metabolism in Human Glioblastoma Multiforme: Functionality of CYP27B1 Splice Variants, Metabolism of Calcidiol, and Effect of Calcitriol. Clin Cancer Res 2005; 11:5370-80. [PMID: 16061850 DOI: 10.1158/1078-0432.ccr-04-1968] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A better understanding of the vitamin D(3) metabolism is required to evaluate its potential therapeutic value for cancers. Here, we set out to contribute to the understanding of vitamin D(3) metabolism in glioblastoma multiforme. EXPERIMENTAL DESIGN We did nested touchdown reverse transcription-PCR (RT-PCR) to identify CYP27B1 splice variants and real-time RT-PCR to quantify the expression of CYP27B1. A cell line was treated with calcitriol to determine the effect on the expression of CYP27B1, 1alpha,25-dihydroxyvitamin D(3)-24-hydroxylase (CYP24), and vitamin D(3) receptor (VDR). We generated three antibodies for the specific detection of CYP27B1 and splice variants. High-performance TLC was done to determine the endogenous CYP27B1 activity and the functionality of CYP27B1 splice variants. Using WST-1 assay, we determined the effect of vitamin D(3) metabolites on proliferation. RESULTS We report a total of 16 splice variants of CYP27B1 in glioblastoma multiforme and a different expression of CYP27B1 and variants between glioblastoma multiforme and normal tissues. We found preliminary evidence for enzymatic activity of endogenous CYP27B1 in glioblastoma multiforme cell cultures but not for the functionality of the splice variants. By adding calcitriol, we found a proliferative effect for some cell lines depending on the dose of calcitriol. The administration of calcitriol led to an elevated expression of CYP27B1 and CYP24 but left the expression of the VDR unaltered. CONCLUSIONS Our findings show that glioblastoma multiforme cell lines metabolize calcidiol. In addition, we show various effects mediated by calcitriol. We found a special vitamin D(3) metabolism and mode of action in glioblastoma multiforme that has to be taken into account in future vitamin D(3)-related therapies.
Collapse
Affiliation(s)
- Britta Diesel
- Institut für Humangenetik, Theoretische Medizin, Universität des Saarlandes, Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Driever PH, Wagner S, Hofstädter F, Wolff JEA. Valproic acid induces differentiation of a supratentorial primitive neuroectodermal tumor. Pediatr Hematol Oncol 2004; 21:743-51. [PMID: 15739631 DOI: 10.1080/08880010490514985] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In preclinical models the antiepileptic drug valproic acid induces differentiation of neoplastic cells, representing an evolving anticancer approach that takes into account that malignant cells resemble immature progenitor cells capable of terminal differentiation. The authors report on a child suffering from a relapsing supratentorial primitive neuroectodermal tumor that received valproic acid for epilepsy treatment over 7 months before the relapse. In contrast to the initial tumor, the relapsing tumor showed glial differentiation and low proliferation index. This is the first report of a relapsed supratentorial primitive neuroectodermal tumor that shows histologically confirmed signs of tumor cell differentiation induction.
Collapse
Affiliation(s)
- P Hernáiz Driever
- Department of Pediatric Oncology, Campus Virchow Hospital, Charité Universitätsmedizin-Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
29
|
Bouillon R, Verstuyf A, Verlinden L, Eelen G, Mathieu C. Prospects for vitamin D receptor modulators as candidate drugs for cancer and (auto)immune diseases. Recent Results Cancer Res 2003; 164:353-6. [PMID: 12899534 DOI: 10.1007/978-3-642-55580-0_25] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of less calcemic vitamin D analogs creates possible therapeutic applications for immune modulation (e.g., autoimmune diseases and graft rejection), inhibition of cell proliferation and induction of cell differentiation (e.g., cancer). Recently more insight was obtained in the mechanism of action of the analogs at the biological and molecular level. Critical remarks are summarized on why the step towards the clinic has not yet been taken and how better selective vitamin D receptor modulators could be designed.
Collapse
Affiliation(s)
- Roger Bouillon
- Legendo, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
30
|
Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D. New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 2002; 13:100-5. [PMID: 11893522 DOI: 10.1016/s1043-2760(01)00547-1] [Citation(s) in RCA: 589] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Accumulating data have provided evidence that 1 alpha,25 dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] is involved in brain function. Thus, the nuclear receptor for 1,25-(OH)(2)D(3) has been localized in neurons and glial cells. Genes encoding the enzymes involved in the metabolism of this hormone are also expressed in brain cells. The reported biological effects of 1,25-(OH)(2)D(3) in the nervous system include the biosynthesis of neurotrophic factors and at least one enzyme involved in neurotransmitter synthesis. 1,25-(OH)(2)D(3) can also inhibit the synthesis of inducible nitric oxide synthase and increase glutathione levels, suggesting a role for the hormone in brain detoxification pathways. Neuroprotective and immunomodulatory effects of this hormone have been described in several experimental models, indicating the potential value of 1,25-(OH)(2)D(3) pharmacological analogs in neurodegenerative and neuroimmune diseases. In addition, 1,25-(OH)(2)D(3) induces glioma cell death, making the hormone of potential interest in the management of brain tumors. These results reveal previously unsuspected roles for 1,25-(OH)(2)D(3) in brain function and suggest possible areas of future research.
Collapse
|