1
|
Miyamoto S, Nagano Y, Miyazaki M, Nagamura Y, Sasaki K, Kawamura T, Yanagihara K, Imai T, Ohki R, Yashiro M, Tanaka M, Sakai R, Yamaguchi H. Integrin α5 mediates cancer cell-fibroblast adhesion and peritoneal dissemination of diffuse-type gastric carcinoma. Cancer Lett 2021; 526:335-345. [PMID: 34775002 DOI: 10.1016/j.canlet.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Diffuse-type gastric carcinoma (DGC) has a poor prognosis due to its rapid diffusive infiltration and frequent peritoneal dissemination. DGC is associated with massive fibrosis caused by aberrant proliferation of cancer-associated fibroblasts (CAFs). Previously, we reported that direct heterocellular interaction between cancer cells and CAFs is important for the peritoneal dissemination of DGC. In this study, we aimed to identify and target the molecules that mediate such heterocellular interactions. Monoclonal antibodies (mAbs) against intact DGC cells were generated and subjected to high-throughput screening to obtain several mAbs that inhibit the adhesion of DGC cells to CAFs. Immunoprecipitation and mass spectrometry revealed that all mAbs recognized integrin α5 complexed with integrin β1. Blocking integrin α5 in DGC cells or fibronectin, a ligand of integrin α5β1, deposited on CAFs abrogated the heterocellular interaction. Administration of mAbs or knockout of integrin α5 in DGC cells suppressed their invasion led by CAFs in vitro and peritoneal dissemination in a mouse xenograft model. Altogether, these findings demonstrate that integrin α5 mediates the heterotypic cancer cell-fibroblast interaction during peritoneal dissemination of DGC and may thus be a therapeutic target.
Collapse
Affiliation(s)
- Shingo Miyamoto
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Yoshiko Nagano
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Makoto Miyazaki
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Yuko Nagamura
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Kazuki Sasaki
- Department of Peptidomics, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Toshio Imai
- Department of Animal Experimentation, National Cancer Center Research Institute, Tokyo, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masato Tanaka
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Ryuichi Sakai
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hideki Yamaguchi
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan.
| |
Collapse
|
2
|
Lepsenyi M, Algethami N, Al-Haidari AA, Algaber A, Syk I, Rahman M, Thorlacius H. CXCL2-CXCR2 axis mediates αV integrin-dependent peritoneal metastasis of colon cancer cells. Clin Exp Metastasis 2021; 38:401-410. [PMID: 34115261 PMCID: PMC8318971 DOI: 10.1007/s10585-021-10103-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/14/2021] [Indexed: 01/10/2023]
Abstract
Peritoneal metastasis is an insidious aspect of colorectal cancer. The aim of the present study was to define mechanisms regulating colon cancer cell adhesion and spread to peritoneal wounds after abdominal surgery. Mice was laparotomized and injected intraperitoneally with CT-26 colon carcinoma cells and metastatic noduli in the peritoneal cavity was quantified after treatment with a CXCR2 antagonist or integrin-αV-antibody. CT-26 cells expressed cell surface chemokine receptors CXCR2, CXCR3, CXCR4 and CXCR5. Stimulation with the CXCR2 ligand, CXCL2, dose-dependently increased proliferation and migration of CT-26 cells in vitro. The CXCR2 antagonist, SB225002, dose-dependently decreased CXCL2-induced proliferation and migration of colon cancer cells in vitro. Intraperitoneal administration of CT-26 colon cancer cells resulted in wide-spread growth of metastatic nodules at the peritoneal surface of laparotomized animals. Laparotomy increased gene expression of CXCL2 at the incisional line. Pretreatment with CXCR2 antagonist reduced metastatic nodules by 70%. Moreover, stimulation with CXCL2 increased CT-26 cell adhesion to extracellular matrix (ECM) proteins in a CXCR2-dependent manner. CT-26 cells expressed the αV, β1 and β3 integrin subunits and immunoneutralization of αV abolished CXCL2-triggered adhesion of CT-26 to vitronectin, fibronectin and fibrinogen. Finally, inhibition of the αV integrin significantly attenuated the number of carcinomatosis nodules by 69% in laparotomized mice. These results were validated by use of the human colon cancer cell line HT-29 in vitro. Our data show that colon cancer cell adhesion and growth on peritoneal wound sites is mediated by a CXCL2-CXCR2 signaling axis and αV integrin-dependent adhesion to ECM proteins.
Collapse
Affiliation(s)
- Mattias Lepsenyi
- Section of Surgery, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Nader Algethami
- Section of Surgery, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Amr A Al-Haidari
- Section of Surgery, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Anwar Algaber
- Section of Surgery, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Ingvar Syk
- Section of Surgery, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Milladur Rahman
- Section of Surgery, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Henrik Thorlacius
- Section of Surgery, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 20502, Malmö, Sweden.
| |
Collapse
|
3
|
|
4
|
Simón-Gracia L, Hunt H, Teesalu T. Peritoneal Carcinomatosis Targeting with Tumor Homing Peptides. Molecules 2018; 23:molecules23051190. [PMID: 29772690 PMCID: PMC6100015 DOI: 10.3390/molecules23051190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
Over recent decades multiple therapeutic approaches have been explored for improved management of peritoneally disseminated malignancies—a grim condition known as peritoneal carcinomatosis (PC). Intraperitoneal (IP) administration can be used to achieve elevated local concentration and extended half-life of the drugs in the peritoneal cavity to improve their anticancer efficacy. However, IP-administered chemotherapeutics have a short residence time in the IP space, and are not tumor selective. An increasing body of work suggests that functionalization of drugs and nanoparticles with targeting peptides increases their peritoneal retention and provides a robust and specific tumor binding and penetration that translates into improved therapeutic response. Here we review the progress in affinity targeting of intraperitoneal anticancer compounds, imaging agents and nanoparticles with tumor-homing peptides. We review classes of tumor-homing peptides relevant for PC targeting, payloads for peptide-guided precision delivery, applications for targeted compounds, and the effects of nanoformulation of drugs and imaging agents on affinity-based tumor delivery.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia.
| | - Hedi Hunt
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia.
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia.
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
- Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
5
|
Mukai S, Oue N, Oshima T, Imai T, Sekino Y, Honma R, Sakamoto N, Sentani K, Kuniyasu H, Egi H, Tanabe K, Yoshida K, Ohdan H, Yasui W. Overexpression of PCDHB9
promotes peritoneal metastasis and correlates with poor prognosis in patients with gastric cancer. J Pathol 2017; 243:100-110. [DOI: 10.1002/path.4931] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/31/2017] [Accepted: 06/16/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Shoichiro Mukai
- Department of Molecular Pathology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| | - Naohide Oue
- Department of Molecular Pathology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
| | - Takashi Oshima
- Department of Surgery; Yokohama City University; Yokohama Japan
| | - Takeharu Imai
- Department of Molecular Pathology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
- Department of Surgical Oncology, Graduate School of Medicine; Gifu University; Gifu Japan
| | - Yohei Sekino
- Department of Molecular Pathology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
| | - Ririno Honma
- Department of Molecular Pathology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology; Nara Medical University; Nara Japan
| | - Hiroyuki Egi
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| | - Kazuaki Tanabe
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine; Gifu University; Gifu Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| | - Wataru Yasui
- Department of Molecular Pathology; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
| |
Collapse
|
6
|
Sluiter N, de Cuba E, Kwakman R, Kazemier G, Meijer G, Te Velde EA. Adhesion molecules in peritoneal dissemination: function, prognostic relevance and therapeutic options. Clin Exp Metastasis 2016; 33:401-16. [PMID: 27074785 PMCID: PMC4884568 DOI: 10.1007/s10585-016-9791-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/07/2016] [Indexed: 12/14/2022]
Abstract
Peritoneal dissemination is diagnosed in 10–25 % of colorectal cancer patients. Selected patients are treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. For these patients, earlier diagnosis, optimised selection criteria and a personalised approach are warranted. Biomarkers could play a crucial role here. However, little is known about possible candidates. Considering tumour cell adhesion as a key step in peritoneal dissemination, we aim to provide an overview of the functional importance of adhesion molecules in peritoneal dissemination and discuss the prognostic, diagnostic and therapeutic options of these candidate biomarkers. A systematic literature search was conducted according to the PRISMA guidelines. In 132 in vitro, ex vivo and in vivo studies published between 1995 and 2013, we identified twelve possibly relevant adhesion molecules in various cancers that disseminate peritoneally. The most studied molecules in tumour cell adhesion are integrin α2β1, CD44 s and MUC16. Furthermore, L1CAM, EpCAM, MUC1, sLex and Lex, chemokine receptors, Betaig-H3 and uPAR might be of clinical importance. ICAM1 was found to be less relevant in tumour cell adhesion in the context of peritoneal metastases. Based on currently available data, sLea and MUC16 are the most promising prognostic biomarkers for colorectal peritoneal metastases that may help improve patient selection. Different adhesion molecules appear expressed in haematogenous and transcoelomic spread, indicating two different attachment processes. However, our extensive assessment of available literature reveals that knowledge on metastasis-specific genes and their possible candidates is far from complete.
Collapse
Affiliation(s)
- Nina Sluiter
- Department of Surgery, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Erienne de Cuba
- Department of Surgery, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Department of Pathology, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Riom Kwakman
- Department of Surgery, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Geert Kazemier
- Department of Surgery, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Gerrit Meijer
- Department of Pathology, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Department of Pathology, Antoni van Leeuwenhoek Hospital (NKI-AVL), Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Elisabeth Atie Te Velde
- Department of Surgery, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Department of Surgical Oncology, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Salah R, Michaud P, Mati F, Harrat Z, Lounici H, Abdi N, Drouiche N, Mameri N. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 2013; 52:333-9. [DOI: 10.1016/j.ijbiomac.2012.10.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 11/26/2022]
|
8
|
Li Z, Miao Z, Jin G, Li X, Li H, Lv Z, Xu HM. βig-h3 supports gastric cancer cell adhesion, migration and proliferation in peritoneal carcinomatosis. Mol Med Rep 2012; 6:558-64. [PMID: 22710407 DOI: 10.3892/mmr.2012.951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/01/2012] [Indexed: 11/06/2022] Open
Abstract
βig-h3 is an extracellular matrix protein and its expression is highly induced by transforming growth factor (TGF-β). It has also been suggested to play an important role in the growth and invasion of colon and pancreatic cancers. In the present study, we demonstrated that βig-h3 is expressed in mesothelial cells, especially in patients with advanced gastric cancer. The positive rate of βig-h3 was significantly higher in cases with a more invasive and advanced serous-type, with visible peritoneal metastasis, and in peritoneal lavage cytological examination (PLC) (+) and peritoneal lavage fluid CEA mRNA(+) subgroups (p<0.05). Our study also showed that the expression of βig-h3 gradually increased with increasing TGF-β1 concentrations in vitro in a time-dependant manner. In addition, βig-h3 also induced human gastric carcinoma cell line (SGC-7901) cell adhesion in a dose-dependent manner and significantly increased cell migration and proliferation. The results suggest that βig-h3 expression in peritoneal mesothelial cells in gastric cancer patients is a marker of the biological behavior of gastric cancer and plays an important role in the process of peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Zhen Li
- Department of General Surgery, Fourth Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | | | | | | | | | | | | |
Collapse
|
9
|
Yagi R, Tanaka M, Sasaki K, Kamata R, Nakanishi Y, Kanai Y, Sakai R. ARAP3 inhibits peritoneal dissemination of scirrhous gastric carcinoma cells by regulating cell adhesion and invasion. Oncogene 2010; 30:1413-21. [PMID: 21076469 DOI: 10.1038/onc.2010.522] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During the analysis of phosphotyrosine-containing proteins in scirrhous gastric carcinoma cell lines, we observed an unusual expression of Arf-GAP with Rho-GAP domain, ankyrin repeat and PH domain 3 (ARAP3), a multimodular signaling protein that is a substrate of Src family kinases. Unlike other phosphotyrosine proteins, such as CUB domain-containing protein 1 (CDCP1) and Homo sapiens chromosome 9 open reading frame 10/oxidative stress-associated Src activator (C9orf10/Ossa), which are overexpressed and hyperphosphorylated in scirrhous gastric carcinoma cell lines, ARAP3 was underexpressed in cancerous human gastric tissues. In this study, we found that overexpression of ARAP3 in the scirrhous gastric carcinoma cell lines significantly reduced peritoneal dissemination. In vitro studies also showed that ARAP3 regulated cell attachment to the extracellular matrix, as well as invasive activities. These effects were suppressed by mutations in the Rho-GTPase-activating protein (GAP) domain or in the C-terminal two tyrosine residues that are phosphorylated by Src. Thus, the expression and phosphorylation state of ARAP3 may affect the invasiveness of cancer by modulating cell adhesion and motility. Our results suggest that ARAP3 is a unique Src substrate that suppresses peritoneal dissemination of scirrhous gastric carcinoma cells.
Collapse
Affiliation(s)
- R Yagi
- Growth Factor Division and National Cancer Center Research Institute, Tsukiji, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Lv ZD, Na D, Liu FN, Du ZM, Sun Z, Li Z, Ma XY, Wang ZN, Xu HM. Induction of gastric cancer cell adhesion through transforming growth factor-beta1-mediated peritoneal fibrosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:139. [PMID: 21034459 PMCID: PMC2984409 DOI: 10.1186/1756-9966-29-139] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 10/29/2010] [Indexed: 12/11/2022]
Abstract
Background Peritoneal dissemination is one of the main causes of death in gastric cancer patients. Transforming growth factor-beta1 (TGF-β1), one of the most potent fibrotic stimuli for mesothelial cells, may play a key role in this processing. The purpose of this study is to elucidate the effects of TGF-β1 on regulation of gastric cancer adhesion to mesothelial cells. Methods Peritoneal tissues and peritoneal wash fluid were obtained for hematoxylin and eosin staining or ELISA to measure fibrosis and TGF-β1 levels, respectively. The peritoneal mesothelial cell line, HMrSV5, was used to determine the role of TGF-β1 in regulation of gastric cancer cell adhesion to mesothelial cells and expression of collagen, fibronectin, and Smad 2/3 by using adhesion assay, western blot, and RT-PCR. Results The data showed that TGF-β1 treatment was able to induce collagen III and fibronectin expression in the mesothelial cells, which was associated with an increased adhesion ability of gastric cancer cells, but knockdown of minimal sites of cell binding domain of extracellular matrix can partially inhibit these effects. Conclusion Peritoneal fibrosis induced by TGF-β1 may provide a favorable environment for the dissemination of gastric cancer.
Collapse
Affiliation(s)
- Zhi-Dong Lv
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Matsuoka T, Adair JE, Lih FB, Hsi LC, Rubino M, Eling TE, Tomer KB, Yashiro M, Hirakawa K, Olden K, Roberts JD. Elevated dietary linoleic acid increases gastric carcinoma cell invasion and metastasis in mice. Br J Cancer 2010; 103:1182-91. [PMID: 20842125 PMCID: PMC2967057 DOI: 10.1038/sj.bjc.6605881] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Dietary (n-6)-polyunsaturated fatty acids influence cancer development, but the mechanisms have not been well characterised in gastric carcinoma. METHODS We used two in vivo models to investigate the effects of these common dietary components on tumour metastasis. In a model of experimental metastasis, immunocompromised mice were fed diets containing linoleic acid (LA) at 2% (LLA), 8% (HLA) or 12% (VHLA) by weight and inoculated intraperitoneally (i.p.) with human gastric carcinoma cells (OCUM-2MD3). To model spontaneous metastasis, OCUM-2MD3 tumours were grafted onto the stomach walls of mice fed with the different diets. In in vitro assays, we investigated invasion and ERK phosphorylation of OCUM-2MD3 cells in the presence or absence of LA. Finally, we tested whether a cyclooxygenase (COX) inhibitor, indomethacin, could block peritoneal metastasis in vivo. RESULTS Both the HLA and VHLA groups showed increased incidence of tumour nodules (LA: 53%; HLA: 89%; VHLA: 100%; P<0.03); the VHLA group also displayed increased numbers of tumour nodules and higher total volume relative to LLA group in experimental metastasis model. Both liver invasion (78%) and metastasis to the peritoneal cavity (67%) were more frequent in VHLA group compared with the LLA group (22% and 11%, respectively; P<0.03) in spontaneous metastasis model. We also found that the invasive ability of these cells is greatly enhanced when exposed to LA in vitro. Linoleic acid also increased invasion of other scirrhous gastric carcinoma cells, OCUM-12, NUGC3 and MKN-45. Linoleic acid effect on OCUM-2MD3 cells seems to be dependent on phosphorylation of ERK. The data suggest that invasion and phosphorylation of ERK were dependent on COX. Indomethacin decreased the number of tumours and total tumour volume in both LLA and VHLA groups. Finally, COX-1, which is known to be an important enzyme in the generation of bioactive metabolites from dietary fatty acids, appears to be responsible for the increased metastatic behaviour of OCUM-2MD3 cells in the mouse model. CONCLUSION Dietary LA stimulates invasion and peritoneal metastasis of gastric carcinoma cells through COX-catalysed metabolism and activation of ERK, steps that compose pathway potentially amenable to therapeutic intervention.
Collapse
Affiliation(s)
- T Matsuoka
- The Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Science, NIH, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yashiro M, Hirakawa K. Cancer-stromal interactions in scirrhous gastric carcinoma. CANCER MICROENVIRONMENT 2010; 3:127-35. [PMID: 21209779 DOI: 10.1007/s12307-010-0036-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/03/2010] [Indexed: 12/29/2022]
Abstract
Fibroblasts play an important role in the progression, growth and spread of gastric cancers. Cancer-stroma interactions have been especially evident in the scirrhous type of gastric carcinoma. Fibroblasts are associated with the cancer progression at the primary and metastatic site. The proliferative and invasive ability of scirrhous gastric cancer cells are closely associated with the growth factors produced by organ-specific fibroblasts. Fibroblasts are therefore a key determinant in the malignant progression of gastric cancer and represent an important target for cancer therapies.
Collapse
|
13
|
Kawajiri H, Yashiro M, Shinto O, Nakamura K, Tendo M, Takemura S, Node M, Hamashima Y, Kajimoto T, Sawada T, Ohira M, Hirakawa K. A novel transforming growth factor beta receptor kinase inhibitor, A-77, prevents the peritoneal dissemination of scirrhous gastric carcinoma. Clin Cancer Res 2008; 14:2850-60. [PMID: 18451253 DOI: 10.1158/1078-0432.ccr-07-1634] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Transforming growth factor beta receptor (TGFbeta-R) is reported to correlate with the malignant potential of scirrhous gastric carcinoma. The aim of the current study is to clarify the possibility of molecular target therapy with a TGFbeta-R inhibitor, A-77, for the treatment of peritoneal dissemination of scirrhous gastric cancer. EXPERIMENTAL DESIGN Three scirrhous gastric cancer cell lines and two fibroblasts were used. For in vivo experiments, the A-77 was administered i.p. to mouse models of peritoneal dissemination. The influences of A-77 on the adhesion ability, invasion ability, and the expression of adhesion molecules were examined in vitro. RESULTS The A-77 administration resulted in a significantly (P < 0.01) better prognosis for the mice with peritoneal dissemination (median survival time, 51 days), compared with the control (median survival time, 25 days). A-77 therefore significantly (P < 0.01) decreased the weight and number of metastatic nodes. The adhesive ability and invasion ability of cancer cells were significantly decreased by A-77. A-77 decreased the expression of alpha(2), alpha(3), and alpha(5) integrins in gastric cancer cells. The histologic findings showed the degree of fibrosis to be less in the tumors treated by A-77. A-77 decreased the growth of fibroblast and invasion-stimulating activity of fibroblasts on cancer cells. CONCLUSION The TGFbeta-R inhibitor, A-77, decreased the expression of integrins in cancer cells and the proliferation of fibroblasts, which resulted in the decreased adhesive and invasive abilities of scirrhous gastric cancer cells to peritoneum. A-77 is thus considered to be useful for the inhibition of peritoneal dissemination of scirrhous gastric carcinoma.
Collapse
Affiliation(s)
- Hidemi Kawajiri
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Due to their favorable properties and pharmacokinetics, peptides are often regarded as "agents of choice" for imaging and radiotherapy. Chemical strategies have been developed that allow their site specific labeling with various radionuclides for PET and SPECT, without compromising their biological integrity. Together with the overexpression of a wide range of peptide receptors and binding sites on tumor cells or matrix components, this class of compounds offers multiple imaging applications. Furthermore, radiolabeled peptides have great potential as carrier molecules for site-specific delivery of other signalling units, such as fluorescent moieties, cyctotoxic compounds or metals for magnetic resonance imaging. In addition, great efforts have been made to exploit the favorable characteristics of peptides for the development of larger constructs, such as multimeric ligands, polymer-peptide conjugates and "peptide-coated" liposomes and nanoparticles. Some peptides have already entered clinical routine application; some are currently being evaluated in clinical studies. However, a variety of peptides is still "waiting" to enter the imaging arena. This chapter presents a brief overview of the highly active field of peptide radiopharmaceuticals and the future potential of multimeric and polymeric peptide constructs.
Collapse
Affiliation(s)
- I Dijkraaf
- Department of Nuclear Medicine, Technische Universität München, Ismaninger Strasse 22, 81675 München, Germany
| | | |
Collapse
|
15
|
Jurczok A, Fornara P, Söling A. Bioluminescence imaging to monitor bladder cancer cell adhesion in vivo: a new approach to optimize a syngeneic, orthotopic, murine bladder cancer model. BJU Int 2007; 101:120-4. [PMID: 17888045 DOI: 10.1111/j.1464-410x.2007.07193.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To improve the orthotopic murine bladder cancer model by using bioluminescent (BL) MB49 tumour cells for noninvasive in vivo monitoring of tumour growth and to examine the efficacy of integrin receptor-blocking oligopeptides on preventing tumour cell adhesion in this improved bladder cancer model. MATERIALS AND METHODS The capacity of oligopeptide combinations to interfere with tumour cell adhesion was assessed in vivo in a syngeneic, orthotopic, murine bladder cancer model. Tumour outgrowth was monitored noninvasively by bioluminescence imaging (BLI) after administration of luciferase-expressing MB49(LUC) bladder cancer cells. The presence of tumour cells was verified histologically and immunohistochemically on paraffin wax-embedded sections of excised bladders. RESULTS Anti-adhesive oligopeptides effectively inhibited tumour outgrowth. BLI detected tumour cells at an early stage when there were no clinical signs of cancer in any of the mice. The technique has high sensitivity in detecting tumour cell implantation, but is less reliable in assessing tumour volume in advanced-stage disease due to light attenuation in large tumours. CONCLUSIONS Peptides targeting adhesion molecules prevent attachment of bladder cancer cells to the injured bladder wall. BLI is a sensitive method for detecting luminescent bladder cancer cells in an orthotopic mouse model.
Collapse
Affiliation(s)
- Andreas Jurczok
- Department of Urology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
16
|
Kosaka K, Yashiro M, Sakate Y, Hirakawa K. A synergistic antitumor effect of interleukin-2 addition with CD80 immunogene therapy for peritoneal metastasis of gastric carcinoma. Dig Dis Sci 2007; 52:1946-53. [PMID: 17404853 DOI: 10.1007/s10620-006-9637-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 10/01/2006] [Indexed: 12/21/2022]
Abstract
The co-stimulatory molecule CD80 is a ligand of CD28, which plays a key role in the induction of cell-mediated immune responses. Many tumors, including gastric cancer, decrease the expression of CD80, which results in the failure of immune recognition. We evaluated the effect of interleukin-2 addition combined with CD80 infection on the peritoneal metastasis in gastric cancer. CD80 infection combined with interleukin-2 addition significantly increased the activated cytotoxicity of mononuclear cells compared to CD80 gene infection and compared to the lacZ control group. In vivo, the survival of animals with intraperitoneal tumor was longest in those given CD80 infection with interleukin-2 addition (median survival, 46 days), followed by those given interleukin-2 (39 days), those given CD80 infection (37 days), and those given lacZ (29 days). These results suggest that interleukin-2 addition might contribute to improving the observed outcome of CD80 immunogene therapy in peritoneal metastasis of gastric carcinoma.
Collapse
Affiliation(s)
- Kinshi Kosaka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | | | | | | |
Collapse
|
17
|
Jurczok A, Schneider A, Fornara P. Inhibition of tumor implantation after laparoscopy by specific oligopeptides: a novel approach to adjuvant intraperitoneal therapy to prevent tumor implantation in an animal model. Eur Urol 2006; 52:590-5. [PMID: 17097215 DOI: 10.1016/j.eururo.2006.10.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 10/23/2006] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The development of intra-abdominal tumor spread and port-site metastases in urothelial cancer are still questions regarding the safety of laparoscopic methods for the resection of malignancies. Currently, the actual incidence of intra-abdominal tumor spread and port-site metastasis remains unknown. Herein, we investigated the influence of antiadhesive oligopeptides and cytotoxic agents (administered intraperitoneally) on implantation of a tumor cell suspension after laparoscopic surgery in an experimental model. METHODS Forty C57 bl6 mice underwent laparoscopy with CO(2) insufflation and instillation of a MB 49 syngenic urothelial tumor cell suspension into the abdominal cavity. Mice were randomly allocated to one of the following groups (n=10 mice per group), and all agents were administrated intraperitoneally: (1) control (phosphate-buffered saline); (2) unspecific oligopeptides; (3) specific oligopeptides; (4) mitomycin. The mice were sacrificed 14 d after the procedure, and the peritoneal cavity and port sites examined for the presence of tumor. RESULTS A significant reduction in tumor implantation and port-site metastases was observed in all treatment groups (specific oligopeptides and mitomycin). The oligopeptide group showed the best performance regarding body weight. CONCLUSIONS This study suggests that tumor implantation after laparoscopic surgery and port-site metastases might be prevented by the intraperitoneal administration of specific oligopeptides or cytotoxic agents. Moreover, oligopeptides, in comparison with mitomycin, caused less weight loss of the mice.
Collapse
Affiliation(s)
- Andreas Jurczok
- Department of Urology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany.
| | | | | |
Collapse
|
18
|
Favoulet P, Benoit L, Favre JP. Intérêt des lavages abdominaux pour la prévention de l’ensemencement néoplasique péritonéal. ACTA ACUST UNITED AC 2003; 128:590-3. [PMID: 14659611 DOI: 10.1016/j.anchir.2003.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spontaneous or iatrogenous peritoneal seeding is responsible for locoregional recurrent cancer or peritoneal carcinomatosis. Few surgeons are used to wash the abdominal cavity to prevent peritoneal seeding. But experimentally, washing is not able to dislodge or destroy tumour cells adherent to the peritoneum or to the surgical wounds. The antitumoral effect of abdominal washing is increased by addition of antiseptics or anti-adherent agents.
Collapse
Affiliation(s)
- P Favoulet
- Service de chirurgie digestive, thoracique et cancérologique, centre hospitalier universitaire du Bocage, 2, boulevard du Maréchal-de-Lattre-de-Tassigny, 21079, Dijon, France
| | | | | |
Collapse
|
19
|
Mizejewski GJ. Peptides as receptor ligand drugs and their relationship to G-coupled signal transduction. Expert Opin Investig Drugs 2001; 10:1063-73. [PMID: 11772235 DOI: 10.1517/13543784.10.6.1063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peptides act as effector agents that regulate and/or mediate physiological processes, serving as hormones, neurotransmitters and signal transducing factors. The low molecular weight peptides affect receptor-mediated events, which influence cardiovascular, gastrointestinal and neurocranial systems. While some peptides have been marketed as drugs, many have served as leads or templates for the development of non-peptide drugs that mimic peptide actions. This review presents the advantages and disadvantages of using peptides as drugs that bind as ligands to cell-surface receptors and considers their applications in such events. The value of both the peptides and their mimics is based on their participation in the biomodulation of physiological processes, which frequently employ scaffolding proteins acting in a cascading sequence of protein-to-protein interactions. The peptides bind to G-coupled surface receptors to initiate a signal that is transduced to the interior of the cell through multiple layers of phosphorylating enzymes and binding proteins. Peptides have been further employed to identify the molecular targets of signal transduction, the uncoupling of which might provide a means for various disease therapies. The exploitation of such peptide-mediated signal pathways, which are of primary importance to tumour cells, may provide an attractive strategy for anticancer therapy in the future.
Collapse
Affiliation(s)
- G J Mizejewski
- Wadsworth Center, New York State Dept. of Health, Empire State Plaza, Albany, NY 12201, USA.
| |
Collapse
|