1
|
Chen L, He Y, Lan J, Li Z, Gu D, Nie W, Zhang T, Ding Y. Advancements in nano drug delivery system for liver cancer therapy based on mitochondria-targeting. Biomed Pharmacother 2024; 180:117520. [PMID: 39395257 DOI: 10.1016/j.biopha.2024.117520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Based on poor efficacy and non-specific toxic side effects of conventional drug therapy for liver cancer, nano-based drug delivery system (NDDS) offers the advantage of drug targeting delivery. Subcellular targeting of nanomedicines on this basis enables more precise and effective termination of tumor cells. Mitochondria, as the crucial cell powerhouse, possesses distinctive physical and chemical properties in hepatoma cells different from that in hepatic cells, and controls apoptosis, tumor metastasis, and cellular drug resistance in hepatoma cells through metabolism and dynamics, which serves as a good choice for drug targeting delivery. Thus, mitochondria-targeting NDDS have become a recent research focus, showcasing the design of cationic nanoparticles, metal nanoparticles, mitochondrial peptide modification and so on. Although many studies have shown good results regarding anti-tumor efficacy, it is a long way to go before the successful translation of clinical application. Based on these, we summarized the specificity and importance of mitochondria in hepatoma cells, and reviewed the current mitochondria-targeting NDDS for liver cancer therapy, aiming to provide a better understanding for current development process, strengths and weaknesses of mitochondria-targeting NDDS as well as informing subsequent improvements and developments.
Collapse
Affiliation(s)
- Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yitian He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Donghao Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenlong Nie
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Liang Y, Wu J, Yan Y, Wang Y, Zhao H, Wang X, Chang S, Li S. Charge-Reversal Nano-Drug Delivery Systems in the Tumor Microenvironment: Mechanisms, Challenges, and Therapeutic Applications. Int J Mol Sci 2024; 25:9779. [PMID: 39337266 PMCID: PMC11432038 DOI: 10.3390/ijms25189779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The charge-reversal nano-drug delivery system (CRNDDS) is a promising system for delivering chemotherapy drugs and has gained widespread application in cancer treatment. In this review, we summarize the recent advancements in CRNDDSs in terms of cancer treatment. We also delve into the charge-reversal mechanism of the CRNDDSs, focusing on the acid-responsive, redox-responsive, and enzyme-responsive mechanisms. This study elucidates how these systems undergo charge transitions in response to specific microenvironmental stimuli commonly found in tumor tissues. Furthermore, this review explores the pivotal role of CRNDDSs in tumor diagnosis and treatment, and their potential limitations. By leveraging the unique physiological characteristics of tumors, such as the acidic pH, specific redox potential, and specific enzyme activity, these systems demonstrate enhanced accumulation and penetration at tumor sites, resulting in improved therapeutic efficacy and diagnostic accuracy. The implications of this review highlight the potential of charge-reversal drug delivery systems as a novel and targeted strategy for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Yizhu Liang
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Jiashuai Wu
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Yutong Yan
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Yunduan Wang
- Department of Biomedical Engineering, China Medical University, Shenyang 110122, China
| | - Hongtu Zhao
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Xiaopeng Wang
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Shijie Chang
- Department of Biomedical Engineering, China Medical University, Shenyang 110122, China
| | - Shuo Li
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
3
|
Zhao W, Liang Z, Yao Y, Ge Y, An G, Duan L, Yao J. GGT5: a potential immunotherapy response inhibitor in gastric cancer by modulating GSH metabolism and sustaining memory CD8+ T cell infiltration. Cancer Immunol Immunother 2024; 73:131. [PMID: 38748299 PMCID: PMC11096297 DOI: 10.1007/s00262-024-03716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE The variable responses to immunotherapy observed in gastric cancer (GC) patients can be attributed to the intricate nature of the tumor microenvironment. Glutathione (GSH) metabolism significantly influences the initiation and progression of gastric cancer. Consequently, targeting GSH metabolism holds promise for improving the effectiveness of Immune checkpoints inhibitors (ICIs). METHODS We investigated 16 genes related to GSH metabolism, sourced from the MSigDB database, using pan-cancer datasets from TCGA. The most representative prognosis-related gene was identified for further analysis. ScRNA-sequencing analysis was used to explore the tumor heterogeneity of GC, and the results were confirmed by Multiplex immunohistochemistry (mIHC). RESULTS Through DEGs, LASSO, univariate and multivariate Cox regression analyses, and survival analysis, we identified GGT5 as the hub gene in GSH metabolism with the potential to promote GC. Combining CIBERSORT, ssGSEA, and scRNA analysis, we constructed the immune architecture of GC. The subpopulations of T cells were isolated, revealing a strong association between GGT5 and memory CD8+ T cells. Furthermore, specimens from 10 GC patients receiving immunotherapy were collected. mIHC was used to assess the expression levels of GGT5 and memory CD8+ T cell markers. Our results established a positive correlation between GGT5 expression, the enrichment of memory CD8+ T cells, and a suboptimal response to immunotherapy. CONCLUSIONS Our study identifies GGT5, a hub gene in GSH metabolism, as a potential therapeutic target for inhibiting the response to immunotherapy in GC patients. These findings offer new insights into strategies for optimizing immunotherapy of GC.
Collapse
Affiliation(s)
- Wenjing Zhao
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ziwei Liang
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yongshi Yao
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yang Ge
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Guangyu An
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ling Duan
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiannan Yao
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Lin N, Erdos T, Louie C, Desai R, Lin N, Ayzenberg G, Venketaraman V. The Role of Glutathione in the Management of Cell-Mediated Immune Responses in Individuals with HIV. Int J Mol Sci 2024; 25:2952. [PMID: 38474196 PMCID: PMC10932396 DOI: 10.3390/ijms25052952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Human immunodeficiency virus (HIV) is a major cause of death worldwide. Without appropriate antiretroviral therapy, the infection can develop into acquired immunodeficiency syndrome (AIDS). AIDS leads to the dysregulation of cell-mediated immunity resulting in increased susceptibility to opportunistic infections and excessive amounts of inflammatory cytokines. HIV-positive individuals also demonstrate diminished glutathione (GSH) levels which allows for increased viral replication and increased pro-inflammatory cytokine release, further contributing to the high rates of mortality seen in patients with HIV. Adequate GSH supplementation has reduced inflammation and slowed the decline of CD4+ T cell counts in HIV-positive individuals. We aim to review the current literature regarding the role of GSH in cell-mediated immune responses in individuals with HIV- and AIDS-defining illnesses.
Collapse
Affiliation(s)
- Nicole Lin
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| | - Thomas Erdos
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| | - Carson Louie
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| | - Raina Desai
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| | - Naomi Lin
- Creighton University School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Gregory Ayzenberg
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| |
Collapse
|
5
|
Brzozowa-Zasada M, Piecuch A, Bajdak-Rusinek K, Gołąbek K, Michalski M, Janelt K, Matysiak N. Glutaredoxin 2 Protein (Grx2) as an Independent Prognostic Factor Associated with the Survival of Colon Adenocarcinoma Patients. Int J Mol Sci 2024; 25:1060. [PMID: 38256132 PMCID: PMC10816802 DOI: 10.3390/ijms25021060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Glutaredoxin 2 (Grx2; Glrx2) is a glutathione-dependent oxidoreductase located in mitochondria, which is central to the regulation of glutathione homeostasis and mitochondrial redox, and plays a crucial role in highly metabolic tissues. In response to mitochondrial redox signals and oxidative stress, Grx2 can catalyze the oxidation and S-glutathionylation of membrane-bound thiol proteins in mitochondria. Therefore, it can have a significant impact on cancer development. To investigate this further, we performed an immunohistochemical analysis of Grx2 protein expression in colon adenocarcinoma samples collected from patients with primary colon adenocarcinoma (stage I and II) and patients with metastasis to regional lymph nodes (stage III). The results of our study revealed a significant relationship between the immunohistochemical expression of Grx2 and tumor histological grade, depth of invasion, regional lymph node involvement, angioinvasion, staging, and PCNA immunohistochemical expression. It was found that 87% of patients with stage I had high levels of Grx2 expression. In contrast, only 33% of patients with stage II and 1% of patients with stage III had high levels of Grx2 expression. Moreover, the multivariate analysis revealed that the immunohistochemical expression of Grx2 protein apart from the grade of tumor differentiation was an independent prognostic factors for the survival of patients with colon adenocarcinoma. Studies analyzing Grx2 levels in patients' blood confirmed that the highest levels of serum Grx2 protein was also found in stage I patients, which was reflected in the survival curves. A higher level of Grx2 in the serum has been associated with a more favorable outcome. These results were supported by in vitro analysis conducted on colorectal cancer cell lines that corresponded to stages I, II, and III of colorectal cancer, using qRT-PCR and Western Blot.
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (N.M.)
| | - Adam Piecuch
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (N.M.)
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (N.M.)
- Zabrze Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed-Research and Implementation Centre, Medical University of Silesia, 40-055 Katowice, Poland
| | - Kamil Janelt
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Natalia Matysiak
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (N.M.)
| |
Collapse
|
6
|
Vogel FCE, Chaves-Filho AB, Schulze A. Lipids as mediators of cancer progression and metastasis. NATURE CANCER 2024; 5:16-29. [PMID: 38273023 DOI: 10.1038/s43018-023-00702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/08/2023] [Indexed: 01/27/2024]
Abstract
Metastasis formation is a complex process, involving multiple crucial steps, which are controlled by different regulatory mechanisms. In this context, the contribution of cancer metabolism to the metastatic cascade is being increasingly recognized. This Review focuses on changes in lipid metabolism that contribute to metastasis formation in solid tumors. We discuss the molecular mechanisms by which lipids induce a pro-metastatic phenotype and explore the role of lipids in response to oxidative stress and as signaling molecules. Finally, we reflect on potential avenues to target lipid metabolism to improve the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Felix C E Vogel
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Adriano B Chaves-Filho
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
7
|
Chen C, Zhai E, Liu Y, Qian Y, Zhao R, Ma Y, Liu J, Huang Z, Chen J, Cai S. ALKBH5-mediated CHAC1 depletion promotes malignant progression and decreases cisplatin-induced oxidative stress in gastric cancer. Cancer Cell Int 2023; 23:293. [PMID: 38007439 PMCID: PMC10676604 DOI: 10.1186/s12935-023-03129-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
The m6a demethyltransferase ALKBH5 dynamically modulates gene expression and intracellular metabolic molecules by modifying RNA m6a in cancer cells. However, ALKBH5's function in gastric cancer (GC) has remained controversial. This study demonstrates that ALKBH5 is highly expressed in GC. Silencing ALKBH5 hampers proliferation, and metastatic potential, and induces cell death in GC cells. Through a comprehensive analysis of the transcriptome and m6A sequencing, alterations in certain ALKBH5 target genes, including CHAC1, were identified. ALKBH5's demethylation effect regulates CHAC1 RNA stability, leading to reduced CHAC1 expression. Moreover, CHAC1 modulates intracellular ROS levels, influencing the chemotherapy sensitivity of gastric cancer. In summary, our study unveils the pivotal role of the ALKBH5-CHAC1-ROS axis and highlights the significance of m6A methylation in gastric cancer.
Collapse
Affiliation(s)
- Chunting Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, P. R. China
| | - Ertao Zhai
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
| | - Yinan Liu
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Zhong Shan Er Lu, 510080, Guangzhou, P. R. China
| | - Yan Qian
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
| | - Risheng Zhao
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
| | - Yan Ma
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
| | - Jianqiu Liu
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
| | - Zhixin Huang
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
| | - Jianhui Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China.
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China.
| | - Shirong Cai
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China.
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China.
| |
Collapse
|
8
|
Marini HR, Facchini BA, di Francia R, Freni J, Puzzolo D, Montella L, Facchini G, Ottaiano A, Berretta M, Minutoli L. Glutathione: Lights and Shadows in Cancer Patients. Biomedicines 2023; 11:2226. [PMID: 37626722 PMCID: PMC10452337 DOI: 10.3390/biomedicines11082226] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
In cases of cellular injury, there is an observed increase in the production of reactive oxygen species (ROS). When this production becomes excessive, it can result in various conditions, including cancerogenesis. Glutathione (GSH), the most abundant thiol-containing antioxidant, is fundamental to re-establishing redox homeostasis. In order to evaluate the role of GSH and its antioxi-dant effects in patients affected by cancer, we performed a thorough search on Medline and EMBASE databases for relevant clinical and/or preclinical studies, with particular regard to diet, toxicities, and pharmacological processes. The conjugation of GSH with xenobiotics, including anti-cancer drugs, can result in either of two effects: xenobiotics may lose their harmful effects, or GSH conjugation may enhance their toxicity by inducing bioactivation. While being an interesting weapon against chemotherapy-induced toxicities, GSH may also have a potential protective role for cancer cells. New studies are necessary to better explain the relationship between GSH and cancer. Although self-prescribed glutathione (GSH) implementation is prevalent among cancer patients with the intention of reducing the toxic effects of anticancer treatments and potentially preventing damage to normal tissues, this belief lacks substantial scientific evidence for its efficacy in reducing toxicity, except in the case of cisplatin-related neurotoxicity. Therefore, the use of GSH should only be considered under medical supervision, taking into account the appropriate timing and setting.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| | - Bianca Arianna Facchini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80133 Napoli, Italy;
| | - Raffaele di Francia
- Gruppo Oncologico Ricercatori Italiani (GORI-ONLUS), 33170 Pordenone, Italy;
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Liliana Montella
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (L.M.); (G.F.)
| | - Gaetano Facchini
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (L.M.); (G.F.)
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, 80131 Napoli, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| |
Collapse
|
9
|
Alapati S, Fortuna G, Ramage G, Delaney C. Evaluation of Metabolomics as Diagnostic Targets in Oral Squamous Cell Carcinoma: A Systematic Review. Metabolites 2023; 13:890. [PMID: 37623834 PMCID: PMC10456490 DOI: 10.3390/metabo13080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
In recent years, high-throughput technologies have facilitated the widespread use of metabolomics to identify biomarkers and targets for oral squamous cell carcinoma (OSCC). As a result, the primary goal of this systematic review is to identify and evaluate metabolite biomarkers and their pathways for OSCC that featured consistently across studies despite methodological variations. Six electronic databases (Medline, Cochrane, Web of Science, CINAHL, ProQuest, and Embase) were reviewed for the longitudinal studies involving OSCC patients and metabolic marker analysis (in accordance with PRISMA 2020). The studies included ranged from the inception of metabolomics in OSCC (i.e., 1 January 2007) to 30 April 2023. The included studies were then assessed for their quality using the modified version of NIH quality assessment tool and QUADOMICS. Thirteen studies were included after screening 2285 studies. The majority of the studies were from South Asian regions, and metabolites were most frequently derived from saliva. Amino acids accounted for more than quarter of the detected metabolites, with glutamate and methionine being the most prominent. The top dysregulated metabolites indicated dysregulation of six significantly enriched pathways including aminoacyl-tRNA biosynthesis, glutathione metabolism and arginine biosynthesis with the false discovery rate (FDR) <0.05. Finally, this review highlights the potential of metabolomics for early diagnosis and therapeutic targeting of OSCC. However, larger studies and standardized protocols are needed to validate these findings and make them a clinical reality.
Collapse
Affiliation(s)
- Susanth Alapati
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (S.A.)
| | - Giulio Fortuna
- Department of Oral Medicine, Glasgow Dental School, School of Medicine, Dentistry and Nursing, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (S.A.)
| | - Christopher Delaney
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (S.A.)
| |
Collapse
|
10
|
Naik A, Kumar K, Chatterjee N, Misra SK. Polyphenol-Based Nanoscale Iron Exchangers for Regulating Anticancer Chemotherapy by Modulating the Activity of Intracellular Glutathione. ACS APPLIED BIO MATERIALS 2023; 6:288-295. [PMID: 36562772 DOI: 10.1021/acsabm.2c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The elevated glutathione (GSH) level in cancer cells contributes to the poor response to chemotherapy and necessitates the use of maximum tolerated drug doses, leading to myriad side effects. We have developed a biocompatible and fluorescently trackable nanosystem, iron(III)-bound nanocarbonaceous polyphenol (FeNCP), to modulate the available GSH pool in cancer cells for synergistic effects in treatments with a cytotoxic anticancer drug, doxorubicin (Dox). This nanosystem was designed using a nanoscale carbon system as a platform to generate a GSH-responsive gallic acid-iron complex. The effective interaction between FeNCP and GSH was probed in PBS (pH 7.4) and cell lysates using UV-Vis, fluorescence spectrophotometry, 1H NMR, flow cytometry, and confocal and transmission electron microscopic studies. The concurrent treatment of cancer cells with subcytotoxic FeNCP and Dox leads to dose reduction indices of Dox of ∼6.1 for HepG2 (hepatocellular carcinoma) and 6.7 for B16F0 (melanoma) to kill ∼50% of the cell population, which is suggestive of the requirement of a multifold lower dose of Dox. Notably, this combination was relatively more cytotoxic toward cancer cell lines than the model normal cell line, Vero. The increased reactive oxygen species levels in combinatorial treatment reveal that FeNCP serves as a potential candidate for modulating glutathione activity and potentiating cytotoxic effects of Dox. The intelligent multifold design of this nanosystem might enable the applicability in optical detection of GSH and imaging-assisted surgery in the future, in addition to the potential to advance treatment regimens in anticancer chemotherapy.
Collapse
Affiliation(s)
- Aishwarya Naik
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Krishan Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Niranjan Chatterjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Santosh K Misra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.,Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
11
|
Turathum B, Gao EM, Yang F, Liu YB, Yang ZY, Liu CC, Xue YJ, Wu MH, Wang L, Grataitong K, Chian RC. Role of pyroglutamic acid in cumulus cells of women with polycystic ovary syndrome. J Assist Reprod Genet 2022; 39:2737-2746. [PMID: 36322230 PMCID: PMC9790836 DOI: 10.1007/s10815-022-02647-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Polycystic ovary syndrome is a complex heterogeneous endocrine disorder associated with established metabolic abnormalities and is a common cause of infertility in females. Glutathione metabolism in the cumulus cells (CCs) of women with PCOS may be correlated to the quality of oocytes for infertility treatment; therefore, we used a metabolomics approach to examine changes in CCs from women with PCOS and oocyte quality. METHODS Among 135 women undergoing fertility treatment in the present study, there were 43 women with PCOS and 92 without. CCs were collected from the two groups and levels of pyroglutamic acid were measured using LC-MS/MS followed by qPCR and Western blot analysis to examine genes and proteins involved in pyroglutamic acid metabolism related to glutathione synthesis. RESULTS Women with PCOS showed increased levels of L-pyroglutamic acid, L-glutamate, and L-phenylalanine and decreased levels of Cys-Gly and N-acetyl-L-methionine. Gene expression of OPLAH, involved in pyroglutamic synthesis, was significantly increased in women with PCOS compared with those without. Gene expression of GSS was significantly decreased in women with PCOS and synthesis of glutathione synthetase protein was decreased. Expression of nuclear factor erythroid 2-related factor 2, involved in resistance to oxidative stress, was significantly increased in women with PCOS. CONCLUSIONS CCs of women with PCOS showed high concentrations of pyroglutamic acid and reduced glutathione synthesis, which causes oxidative stress in CCs, suggesting that decreased glutathione synthesis due to high levels of pyroglutamic acid in CCs may be related to the quality of oocytes in women with PCOS.
Collapse
Affiliation(s)
- Bongkoch Turathum
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand
| | - Er-Meng Gao
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
- Shanghai Clinical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Feng Yang
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
| | - Yu-Bing Liu
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
| | - Zhi-Yong Yang
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
| | - Chen-Chen Liu
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
| | - Yun-Jing Xue
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
| | - Meng-Hua Wu
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
| | - Ling Wang
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
| | - Khwanthana Grataitong
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand
| | - Ri-Cheng Chian
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Kalyanaraman B. NAC, NAC, Knockin' on Heaven's door: Interpreting the mechanism of action of N-acetylcysteine in tumor and immune cells. Redox Biol 2022; 57:102497. [PMID: 36242913 PMCID: PMC9563555 DOI: 10.1016/j.redox.2022.102497] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
N-acetylcysteine (NAC) has been used as a direct scavenger of reactive oxygen species (hydrogen peroxide, in particular) and an antioxidant in cancer biology and immuno-oncology. NAC is the antioxidant drug most frequently employed in studies using tumor cells, immune cells, and preclinical mouse xenografts. Most studies use redox-active fluorescent probes such as dichlorodihydrofluorescein, hydroethidine, mitochondria-targeted hydroethidine, and proprietary kit-based probes (i.e., CellROX Green and CellROX Red) for intracellular detection of superoxide or hydrogen peroxide. Inhibition of fluorescence by NAC was used as a key experimental observation to support the formation of reactive oxygen species and redox mechanisms proposed for ferroptosis, tumor metastasis, and redox signaling in the tumor microenvironment. Reactive oxygen species such as superoxide and hydrogen peroxide stimulate or abrogate tumor cells and immune cells depending on multiple factors. Understanding the mechanism of antioxidants is crucial for interpretation of the results. Because neither NAC nor the fluorescent probes indicated above react directly with hydrogen peroxide, it is critically important to reinterpret the results to advance our understanding of the mechanism of action of NAC and shed additional mechanistic insight on redox-regulated signaling in tumor biology. To this end, this review is focused on how NAC could affect multiple pathways in cancer cells, including iron signaling, ferroptosis, and the glutathione-dependent antioxidant and redox signaling mechanism, and how NAC could inhibit oxidation of the fluorescent probes through multiple mechanisms.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
13
|
Obrador E, Salvador-Palmer R, López-Blanch R, Oriol-Caballo M, Moreno-Murciano P, Estrela JM. N-Acetylcysteine Promotes Metastatic Spread of Melanoma in Mice. Cancers (Basel) 2022; 14:cancers14153614. [PMID: 35892873 PMCID: PMC9331881 DOI: 10.3390/cancers14153614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Malignant melanoma is a cancer derived from melanocytes, the cells that produce pigment (melanin) in the skin. It develops on the skin, but can also appear on the mucous membranes and in other locations. Melanomas are responsible for 80% of deaths related to skin cancers. In recent years, the number of cases has increased alarmingly, likely in relation to sun exposure habits. Once melanoma spreads to distant parts of the body, the 5-year survival rate is about 10%. N-acetylcysteine (NAC) is a drug with antioxidant properties, and thereby could play a role in preventing cancer. NAC is commonly used as a mucolytic in different respiratory diseases, to treat acetaminophen (Tylenol) poisoning, and is also present in different nutritional supplements. Nevertheless, the use of NAC and other antioxidants in cancer has been questioned. Here, we show that high therapeutic doses of NAC may cause metastatic spread of a malignant melanoma. Abstract N-acetylcysteine (NAC) is a direct Cys donor and a promoter of glutathione (GSH) synthesis. GSH regulates melanoma growth and NAC has been suggested to increase melanoma metastases in mice. We found that high therapeutic doses of NAC do not increase the growth of melanoma xenografts, but can cause metastatic spread and distant metastases. Nevertheless, this is not due to an antioxidant effect since NAC, in fact, increases the generation of reactive oxygen species in the growing metastatic melanoma. Trolox, an antioxidant vitamin E derivative, administered in vivo, decreased metastatic growth. Metastatic cells isolated from NAC-treated mice showed an increase in the nuclear translocation of Nrf2, as compared to controls. Nrf2, a master regulator of the antioxidant response, controls the expression of different antioxidant enzymes and of the γ-glutamylcysteine ligase (the rate-limiting step in GSH synthesis). Cystine uptake through the xCT cystine-glutamate antiporter (generating intracellular Cys) and the γ-glutamylcysteine ligase activity are key to control metastatic growth. This is associated to an increase in the utilization of L-Gln by the metastatic cells, another metastases promoter. Our results demonstrate the potential of NAC as an inducer of melanoma metastases spread, and suggest that caution should be taken when administering GSH promoters to cancer patients.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (R.L.-B.); (M.O.-C.)
- Scientia BioTech S.L., 46002 Valencia, Spain;
- Correspondence: (E.O.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (R.L.-B.); (M.O.-C.)
| | - Rafael López-Blanch
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (R.L.-B.); (M.O.-C.)
- Scientia BioTech S.L., 46002 Valencia, Spain;
| | - María Oriol-Caballo
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (R.L.-B.); (M.O.-C.)
| | | | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (R.L.-B.); (M.O.-C.)
- Scientia BioTech S.L., 46002 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
- Correspondence: (E.O.); (J.M.E.)
| |
Collapse
|
14
|
Tang Y, Zhang Z, Chen Y, Qin S, Zhou L, Gao W, Shen Z. Metabolic Adaptation-Mediated Cancer Survival and Progression in Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11071324. [PMID: 35883815 PMCID: PMC9311581 DOI: 10.3390/antiox11071324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Undue elevation of ROS levels commonly occurs during cancer evolution as a result of various antitumor therapeutics and/or endogenous immune response. Overwhelming ROS levels induced cancer cell death through the dysregulation of ROS-sensitive glycolytic enzymes, leading to the catastrophic depression of glycolysis and oxidative phosphorylation (OXPHOS), which are critical for cancer survival and progression. However, cancer cells also adapt to such catastrophic oxidative and metabolic stresses by metabolic reprograming, resulting in cancer residuality, progression, and relapse. This adaptation is highly dependent on NADPH and GSH syntheses for ROS scavenging and the upregulation of lipolysis and glutaminolysis, which fuel tricarboxylic acid cycle-coupled OXPHOS and biosynthesis. The underlying mechanism remains poorly understood, thus presenting a promising field with opportunities to manipulate metabolic adaptations for cancer prevention and therapy. In this review, we provide a summary of the mechanisms of metabolic regulation in the adaptation of cancer cells to oxidative stress and the current understanding of its regulatory role in cancer survival and progression.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Wei Gao
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu 610106, China
- Correspondence: (W.G.); (Z.S.)
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, China
- Correspondence: (W.G.); (Z.S.)
| |
Collapse
|
15
|
Vetrik M, Kucka J, Kobera L, Konefal R, Lobaz V, Pavlova E, Bajecny M, Heizer T, Brus J, Sefc L, Pratx G, Hruby M. Fluorinated diselenide nanoparticles for radiosensitizing therapy of cancer. Free Radic Biol Med 2022; 187:132-140. [PMID: 35618181 DOI: 10.1016/j.freeradbiomed.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Radiation resistance of cancer cells represents one of the major challenges in cancer treatment. The novel self-assembled fluoralkylated diselenide nanoparticles (fluorosomes) based on seleno-l-cystine (17FSe2) possess redox-active properties that autocatalytically decompose hydrogen peroxide (H2O2) and oxidize the intracellular glutathione (GSH) that results in regulation of cellular oxidative stress. Alkylfluorinated diselenide nanoparticles showed a significant cytotoxic and radiosensitizing effect on cancer cells. The EL-4 tumor-bearing C56BL/6 mice treated with 17FSe2 followed by fractionated radiation treatment (4 × 2Gy) completely suppressed tumor growth. Our results suggest that described diselenide system behaves as a potent radiosensitizer agent targeting tumor growth and preventing tumor recurrence.
Collapse
Affiliation(s)
- Miroslav Vetrik
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic; Stanford University, Stanford School of Medicine, Stanford, CA, 94305, USA.
| | - Jan Kucka
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Libor Kobera
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Rafal Konefal
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Martin Bajecny
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovska 3, Prague 2, 120 00, Czech Republic
| | - Tomas Heizer
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovska 3, Prague 2, 120 00, Czech Republic
| | - Jiri Brus
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Ludek Sefc
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovska 3, Prague 2, 120 00, Czech Republic
| | - Guillem Pratx
- Stanford University, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Martin Hruby
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| |
Collapse
|
16
|
Abstract
Supramolecular assemblies are essential components of living organisms. Cellular scaffolds, such as the cytoskeleton or the cell membrane, are formed via secondary interactions between proteins or lipids and direct biological processes such as metabolism, proliferation and transport. Inspired by nature’s evolution of function through structure formation, a range of synthetic nanomaterials has been developed in the past decade, with the goal of creating non-natural supramolecular assemblies inside living mammalian cells. Given the intricacy of biological pathways and the compartmentalization of the cell, different strategies can be employed to control the assembly formation within the highly crowded, dynamic cellular environment. In this Review, we highlight emerging molecular design concepts aimed at creating precursors that respond to endogenous stimuli to build nanostructures within the cell. We describe the underlying reaction mechanisms that can provide spatial and temporal control over the subcellular formation of synthetic nanostructures. Showcasing recent advances in the development of bioresponsive nanomaterials for intracellular self-assembly, we also discuss their impact on cellular function and the challenges associated with establishing structure–bioactivity relationships, as well as their relevance for the discovery of novel drugs and imaging agents, to address the shortfall of current solutions to pressing health issues. ![]()
Creating artificial nanostructures inside living cells requires the careful design of molecules that can transform into active monomers within a complex cellular environment. This Review explores the recent development of bioresponsive precursors for the controlled formation of intracellular supramolecular assemblies.
Collapse
|
17
|
Carpenter EL, Becker AL, Indra AK. NRF2 and Key Transcriptional Targets in Melanoma Redox Manipulation. Cancers (Basel) 2022; 14:cancers14061531. [PMID: 35326683 PMCID: PMC8946769 DOI: 10.3390/cancers14061531] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Melanocytes are dendritic, pigment-producing cells located in the skin and are responsible for its protection against the deleterious effects of solar ultraviolet radiation (UVR), which include DNA damage and elevated reactive oxygen species (ROS). They do so by synthesizing photoprotective melanin pigments and distributing them to adjacent skin cells (e.g., keratinocytes). However, melanocytes encounter a large burden of oxidative stress during this process, due to both exogenous and endogenous sources. Therefore, melanocytes employ numerous antioxidant defenses to protect themselves; these are largely regulated by the master stress response transcription factor, nuclear factor erythroid 2-related factor 2 (NRF2). Key effector transcriptional targets of NRF2 include the components of the glutathione and thioredoxin antioxidant systems. Despite these defenses, melanocyte DNA often is subject to mutations that result in the dysregulation of the proliferative mitogen-activated protein kinase (MAPK) pathway and the cell cycle. Following tumor initiation, endogenous antioxidant systems are co-opted, a consequence of elevated oxidative stress caused by metabolic reprogramming, to establish an altered redox homeostasis. This altered redox homeostasis contributes to tumor progression and metastasis, while also complicating the application of exogenous antioxidant treatments. Further understanding of melanocyte redox homeostasis, in the presence or absence of disease, would contribute to the development of novel therapies to aid in the prevention and treatment of melanomas and other skin diseases.
Collapse
Affiliation(s)
- Evan L. Carpenter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (E.L.C.); (A.L.B.)
| | - Alyssa L. Becker
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (E.L.C.); (A.L.B.)
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (E.L.C.); (A.L.B.)
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
18
|
Carvalho LAC, Queijo RG, Baccaro ALB, Siena ÁDD, Silva WA, Rodrigues T, Maria-Engler SS. Redox-Related Proteins in Melanoma Progression. Antioxidants (Basel) 2022; 11:438. [PMID: 35326089 PMCID: PMC8944639 DOI: 10.3390/antiox11030438] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Despite the available therapies, the minimum residual disease is still refractory. Reactive oxygen and nitrogen species (ROS and RNS) play a dual role in melanoma, where redox imbalance is involved from initiation to metastasis and resistance. Redox proteins modulate the disease by controlling ROS/RNS levels in immune response, proliferation, invasion, and relapse. Chemotherapeutics such as BRAF and MEK inhibitors promote oxidative stress, but high ROS/RNS amounts with a robust antioxidant system allow cells to be adaptive and cooperate to non-toxic levels. These proteins could act as biomarkers and possible targets. By understanding the complex mechanisms involved in adaptation and searching for new targets to make cells more susceptible to treatment, the disease might be overcome. Therefore, exploring the role of redox-sensitive proteins and the modulation of redox homeostasis may provide clues to new therapies. This study analyzes information obtained from a public cohort of melanoma patients about the expression of redox-generating and detoxifying proteins in melanoma during the disease stages, genetic alterations, and overall patient survival status. According to our analysis, 66% of the isoforms presented differential expression on melanoma progression: NOS2, SOD1, NOX4, PRX3, PXDN and GPX1 are increased during melanoma progression, while CAT, GPX3, TXNIP, and PRX2 are decreased. Besides, the stage of the disease could influence the result as well. The levels of PRX1, PRX5 and PRX6 can be increased or decreased depending on the stage. We showed that all analyzed isoforms presented some genetic alteration on the gene, most of them (78%) for increased mRNA expression. Interestingly, 34% of all melanoma patients showed genetic alterations on TRX1, most for decreased mRNA expression. Additionally, 15% of the isoforms showed a significant reduction in overall patient survival status for an altered group (PRX3, PRX5, TR2, and GR) and the unaltered group (NOX4). Although no such specific antioxidant therapy is approved for melanoma yet, inhibitors or mimetics of these redox-sensitive proteins have achieved very promising results. We foresee that forthcoming investigations on the modulation of these proteins will bring significant advances for cancer therapy.
Collapse
Affiliation(s)
- Larissa A. C. Carvalho
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| | - Rodrigo G. Queijo
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| | - Alexandre L. B. Baccaro
- Centro de Pós-Graduação e Pesquisa Oswaldo Cruz, Faculdade Oswaldo Cruz, Rua Brigadeiro Galvão, 535, Sao Paulo 01151-000, SP, Brazil;
| | - Ádamo D. D. Siena
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, SP, Brazil; (Á.D.D.S.); (W.A.S.J.)
| | - Wilson A. Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, SP, Brazil; (Á.D.D.S.); (W.A.S.J.)
| | - Tiago Rodrigues
- Center for Natural and Human Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo Andre 09210-580, SP, Brazil;
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| |
Collapse
|
19
|
Bonelli J, Ortega-Forte E, Vigueras G, Bosch M, Cutillas N, Rocas J, Ruiz J, Marchan V. Polyurethane-polyurea hybrid nanocapsules as efficient delivery systems of anticancer Ir(III) metallodrugs. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01542g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclometalated Ir(III) complexes hold great promise as an alternative to platinum metallodrugs for therapy and diagnosis of cancer. However, low aqueous solubility and poor cell membrane permeability difficult in vivo...
Collapse
|
20
|
An Intercellular Flow of Glutathione Regulated by Interleukin 6 Links Astrocytes and the Liver in the Pathophysiology of Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2021; 10:antiox10122007. [PMID: 34943110 PMCID: PMC8698416 DOI: 10.3390/antiox10122007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress has been proposed as a major mechanism of damage to motor neurons associated with the progression of amyotrophic lateral sclerosis (ALS). Astrocytes are the most numerous glial cells in the central nervous system and, under physiological conditions, protect neurons from oxidative damage. However, it is uncertain how their reactive phenotype may affect motor neurons during ALS progression. In two different ALS mouse models (SOD1G93A and FUS-R521C), we found that increased levels of proinflammatory interleukin 6 facilitate glutathione (GSH) release from the liver to blood circulation, which can reach the astrocytes and be channeled towards motor neurons as a mechanism of antioxidant protection. Nevertheless, although ALS progression is associated with an increase in GSH efflux from astrocytes, generation of reactive oxygen species also increases, suggesting that as the disease progresses, astrocyte-derived oxidative stress could be key to motor-neuron damage.
Collapse
|
21
|
Lytkin AI, Chernikov VV, Krutova ON, Golubev AA, Romanov RA. Standard Enthalpies of Formation of L-Glutathion and Products of Its Dissociation in Aqueous Solutions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421090156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Mani S, Swargiary G, Tyagi S, Singh M, Jha NK, Singh KK. Nanotherapeutic approaches to target mitochondria in cancer. Life Sci 2021; 281:119773. [PMID: 34192595 DOI: 10.1016/j.lfs.2021.119773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023]
Abstract
Treatment of cancer cells exemplifies a difficult test in the light of challenges associated with the nature of cancer cells and the severe side effects too. After making a large number of trials using both traditional and advanced therapies (immunotherapy and hormone therapy), approaches to design new therapies have reached a saturation level. However, nanotechnology-based approaches exhibit higher efficacy and great potential to bypass many of such therapeutic limitations. Because of their higher target specificity, the use of nanoparticles offers incredible potential in cancer therapeutics. Mitochondria, acting as a factory of energy production in cells, reveal an important role in the death as well as the survival of cells. Because of its significant involvement in the proliferation of cancer cells, it is being regarded as an important target for cancer therapeutics. Numerous studies reveal that nanotechnology-based approaches to directly target the mitochondria may help in improving the survival rate of cancer patients. In the current study, we have detailed the significance of mitochondria in the development of cancer phenotype, as well as indicated it as the potential targets for cancer therapy. Our study further highlights the importance of different nanoparticle-based approaches to target mitochondria of cancer cells and the associated outcomes of different studies. Though, nanotechnology-based approaches to target mitochondria of cancer cells demonstrate a potential and efficient way in cancer therapeutics. Yet, further study is needed to overcome the linked limitations.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP 201301, India.
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP 201301, India
| | - Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP 201301, India
| | - Manisha Singh
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP 201301, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Keshav K Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
23
|
Hipólito A, Martins F, Mendes C, Lopes-Coelho F, Serpa J. Molecular and Metabolic Reprogramming: Pulling the Strings Toward Tumor Metastasis. Front Oncol 2021; 11:656851. [PMID: 34150624 PMCID: PMC8209414 DOI: 10.3389/fonc.2021.656851] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is a major hurdle to the efficient treatment of cancer, accounting for the great majority of cancer-related deaths. Although several studies have disclosed the detailed mechanisms underlying primary tumor formation, the emergence of metastatic disease remains poorly understood. This multistep process encompasses the dissemination of cancer cells to distant organs, followed by their adaptation to foreign microenvironments and establishment in secondary tumors. During the last decades, it was discovered that these events may be favored by particular metabolic patterns, which are dependent on reprogrammed signaling pathways in cancer cells while they acquire metastatic traits. In this review, we present current knowledge of molecular mechanisms that coordinate the crosstalk between metastatic signaling and cellular metabolism. The recent findings involving the contribution of crucial metabolic pathways involved in the bioenergetics and biosynthesis control in metastatic cells are summarized. Finally, we highlight new promising metabolism-based therapeutic strategies as a putative way of impairing metastasis.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Filipa Martins
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| |
Collapse
|
24
|
Jou YC, Wang SC, Dia YC, Wang ST, Yu MH, Yang HY, Chen LC, Shen CH, Liu YW. Anti-Cancer Effects and Tumor Marker Role of Glutathione S-Transferase Mu 5 in Human Bladder Cancer. Int J Mol Sci 2021; 22:ijms22063056. [PMID: 33802702 PMCID: PMC8002531 DOI: 10.3390/ijms22063056] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Our previous study demonstrated that the glutathione S-transferase Mu 5 (GSTM5) gene is highly CpG-methylated in bladder cancer cells and that demethylation by 5-aza-dC activates GSTM5 gene expression. The aim of the present study was to investigate the role of GSTM5 in bladder cancer. The levels of GSTM5 gene expression and DNA methylation were analyzed in patients with bladder cancer, and functional studies of GSTM5 were conducted using GSTM5 overexpression in cultured bladder cancer cells. Clinical analysis revealed that the GSTM5 mRNA expression was lower in bladder cancer tissues than in normal tissues and that the level of GSTM5 DNA methylation was higher in bladder cancer tissues than in normal urine pellets. Overexpression of GSTM5 decreased cell proliferation, migration and colony formation capacity. Glutathione (GSH) assay results indicated that cellular GSH concentration was decreased by GSTM5 expression and that GSH supplementation reversed the decrease in proliferation and migration of cells overexpressing GSTM5. By contrast, a GSH synthesis inhibitor significantly decreased 5637 cell GSH levels, survival and migration. Furthermore, GSTM5 overexpression inhibited the adhesion of cells to the extracellular matrix protein fibronectin. To elucidate the effect of GSTM5 on anticancer drugs used to treat bladder cancer, cellular viability was compared between cells with or without GSTM5 overexpression. GSTM5-overexpressed cells showed no significant change in the cytotoxicity of cisplatin or mitomycin C in 5637, RT4 and BFTC 905 cells. Though a degree of resistance to doxorubicin was noted in 5637 cells overexpressing GSTM5, no such resistance was observed in RT4 and BFTC 905 cells. In summary, GSTM5 plays a tumor suppressor role in bladder cancer cells without significantly affecting chemoresistance to cisplatin and mitomycin C, and the cellular GSH levels highlight a key mechanism underlying the cancer inhibition effect of GSTM5. These findings suggest that low gene expression and high DNA methylation levels of GSTM5 may act as tumor markers for bladder cancer.
Collapse
Affiliation(s)
- Yeong-Chin Jou
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan
- Department of Health and Nutrition Biotechnology, Asian University, Taichung 41354, Taiwan
| | - Shou-Chieh Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
- Department of Food Science, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kuang Tien General Hospital, Taichung 437, Taiwan
| | - Yuan-Chang Dia
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
- Department of Pathology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan
| | - Shou-Tsung Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Min-Hua Yu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Hsin-Yi Yang
- Department of Clinical Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan
| | - Lei-Chin Chen
- Department of Nutrition, I-Shou University, Kaohsiung 82445, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan
- Department of Health and Nutrition Biotechnology, Asian University, Taichung 41354, Taiwan
| | - Yi-Wen Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| |
Collapse
|
25
|
|
26
|
Kelly B, Carrizo GE, Edwards-Hicks J, Sanin DE, Stanczak MA, Priesnitz C, Flachsmann LJ, Curtis JD, Mittler G, Musa Y, Becker T, Buescher JM, Pearce EL. Sulfur sequestration promotes multicellularity during nutrient limitation. Nature 2021; 591:471-476. [PMID: 33627869 PMCID: PMC7969356 DOI: 10.1038/s41586-021-03270-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The behaviour of Dictyostelium discoideum depends on nutrients1. When sufficient food is present these amoebae exist in a unicellular state, but upon starvation they aggregate into a multicellular organism2,3. This biology makes D. discoideum an ideal model for investigating how fundamental metabolism commands cell differentiation and function. Here we show that reactive oxygen species-generated as a consequence of nutrient limitation-lead to the sequestration of cysteine in the antioxidant glutathione. This sequestration limits the use of the sulfur atom of cysteine in processes that contribute to mitochondrial metabolism and cellular proliferation, such as protein translation and the activity of enzymes that contain an iron-sulfur cluster. The regulated sequestration of sulfur maintains D. discoideum in a nonproliferating state that paves the way for multicellular development. This mechanism of signalling through reactive oxygen species highlights oxygen and sulfur as simple signalling molecules that dictate cell fate in an early eukaryote, with implications for responses to nutrient fluctuations in multicellular eukaryotes.
Collapse
Affiliation(s)
- Beth Kelly
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gustavo E. Carrizo
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Joy Edwards-Hicks
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - David E. Sanin
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Michal A. Stanczak
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Chantal Priesnitz
- grid.5963.9Institute of Biochemistry and Molecular Biology, ZMBZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany ,grid.5963.9Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lea J. Flachsmann
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Jonathan D. Curtis
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gerhard Mittler
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Yaarub Musa
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Becker
- grid.10388.320000 0001 2240 3300Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Joerg M. Buescher
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Erika L. Pearce
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany ,grid.21107.350000 0001 2171 9311Present Address: The Bloomberg–Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
27
|
Lelièvre P, Sancey L, Coll JL, Deniaud A, Busser B. The Multifaceted Roles of Copper in Cancer: A Trace Metal Element with Dysregulated Metabolism, but Also a Target or a Bullet for Therapy. Cancers (Basel) 2020; 12:E3594. [PMID: 33271772 PMCID: PMC7760327 DOI: 10.3390/cancers12123594] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
In the human body, copper (Cu) is a major and essential player in a large number of cellular mechanisms and signaling pathways. The involvement of Cu in oxidation-reduction reactions requires close regulation of copper metabolism in order to avoid toxic effects. In many types of cancer, variations in copper protein levels have been demonstrated. These variations result in increased concentrations of intratumoral Cu and alterations in the systemic distribution of copper. Such alterations in Cu homeostasis may promote tumor growth or invasiveness or may even confer resistance to treatments. Once characterized, the dysregulated Cu metabolism is pinpointing several promising biomarkers for clinical use with prognostic or predictive capabilities. The altered Cu metabolism in cancer cells and the different responses of tumor cells to Cu are strongly supporting the development of treatments to disrupt, deplete, or increase Cu levels in tumors. The metallic nature of Cu as a chemical element is key for the development of anticancer agents via the synthesis of nanoparticles or copper-based complexes with antineoplastic properties for therapy. Finally, some of these new therapeutic strategies such as chelators or ionophores have shown promising results in a preclinical setting, and others are already in the clinic.
Collapse
Affiliation(s)
- Pierre Lelièvre
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (P.L.); (L.S.); (J.-L.C.)
| | - Lucie Sancey
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (P.L.); (L.S.); (J.-L.C.)
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (P.L.); (L.S.); (J.-L.C.)
| | - Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | - Benoit Busser
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (P.L.); (L.S.); (J.-L.C.)
- Department of Clinical Biochemistry, Grenoble Alpes University Hospital, 38043 Grenoble, France
| |
Collapse
|
28
|
Doepner M, Lee IY, Ridky TW. Drug Resistant Melanoma May Be Vulnerable to Inhibitors of Serine Synthesis. J Invest Dermatol 2020; 140:2114-2116. [PMID: 33099398 DOI: 10.1016/j.jid.2020.05.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
NRAS-driven melanomas frequently develop resistance to MAPK/extracellular signal-regulated kinase kinase inhibitors (MEKis), which limits their therapeutic utility. Nguyen et al. (2020) show that MEKi-resistant cells upregulate phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine synthesis. Suppression of PHGDH rendered cells sensitive to MEKis, suggesting that PHGDH may be a therapeutic target for melanoma.
Collapse
Affiliation(s)
- Miriam Doepner
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - In Young Lee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd W Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
29
|
Arslanbaeva LR, Santoro MM. Adaptive redox homeostasis in cutaneous melanoma. Redox Biol 2020; 37:101753. [PMID: 33091721 PMCID: PMC7578258 DOI: 10.1016/j.redox.2020.101753] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma is the most aggressive type of skin cancer. Although cutaneous melanoma accounts for a minority of all types of skin cancer, it causes the greatest number of skin cancer related deaths worldwide. Oxidative stress and redox homeostasis have been shown to be involved at each stage of a malignant melanocyte transformation, called melanomagenesis, as well as during drug resistance. Reactive oxygen species (ROS) play an important and diverse role that regulate many aspects of skin cell behaviors ranging from proliferation and stemness, to oxidative damage and cell death. On the other hand, antioxidants are associated with melanoma spread and metastasis. Overall, the contribution of redox homeostasis to melanoma development and progression is controversial and highly complex. The aim of this study is to examine the association between redox homeostasis and the melanomagenic process. To this purpose we are presenting what is currently known about the role of ROS in melanoma initiation and progression. In addition, we are discussing the role of antioxidant mechanisms during the spread of the disease and in cases of melanoma drug resistance. Although challenging, targeting redox homeostasis in melanoma progression remains to be a promising therapeutic approach, especially valid during melanoma drug resistance.
Collapse
Affiliation(s)
| | - Massimo M Santoro
- Department of Biology, University of Padua, 35131, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padua, Italy.
| |
Collapse
|
30
|
Monitoring biothiols dynamics in living cells by ratiometric fluorescent gold carbon dots. Talanta 2020; 218:121214. [DOI: 10.1016/j.talanta.2020.121214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
|
31
|
Rawat D, Chhonker SK, Naik RA, Koiri RK. Modulation of antioxidant enzymes, SIRT1 and NF-κB by resveratrol and nicotinamide in alcohol-aflatoxin B1-induced hepatocellular carcinoma. J Biochem Mol Toxicol 2020; 35:e22625. [PMID: 32894639 DOI: 10.1002/jbt.22625] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/09/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most commonly diagnosed cancer worldwide and is associated with poor prognosis. The current study aimed to assess the therapeutic efficacy of resveratrol when administered alone and in combination with nicotinamide against alcohol-aflatoxin B1-induced HCC. Results reveal that during the development and progression of cancer, there was a decline in the level of antioxidant enzymes catalase, glutathione peroxidase, glutathione reductase (GR), antioxidant glutathione, and glutathione S-transferase, which is an enzyme of detoxification pathways. Treatment of resveratrol restored the level of catalase and glutathione peroxidase toward normal in alcohol-aflatoxin B1-induced HCC; however, nicotinamide worked in concert with resveratrol only in upregulating the activity of glutathione reductase, glutathione level, and glutathione S-transferase. SIRT1 agonist resveratrol was observed to modulate the activity of antioxidant enzymes by negatively regulating the expression of nuclear factor-κB (NF-κB) in alcohol-aflatoxin B1-induced HCC, thereby suggesting a cross-talk between antioxidant enzymes SIRT1 and NF-κB during the development and progression of HCC and its therapeutics by resveratrol and nicotinamide.
Collapse
Affiliation(s)
- Divya Rawat
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| | - Saurabh Kumar Chhonker
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| | - Rayees Ahmad Naik
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| | - Raj Kumar Koiri
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| |
Collapse
|
32
|
Obrador E, Salvador R, López-Blanch R, Jihad-Jebbar A, Alcácer J, Benlloch M, Pellicer JA, Estrela JM. Melanoma in the liver: Oxidative stress and the mechanisms of metastatic cell survival. Semin Cancer Biol 2020; 71:109-121. [PMID: 32428715 DOI: 10.1016/j.semcancer.2020.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 12/16/2022]
Abstract
Metastatic melanoma is a fatal disease with a rapid systemic dissemination. The most frequent target sites are the liver, bone, and brain. Melanoma metastases represent a heterogeneous cell population, which associates with genomic instability and resistance to therapy. Interaction of melanoma cells with the hepatic sinusoidal endothelium initiates a signaling cascade involving cytokines, growth factors, bioactive lipids, and reactive oxygen and nitrogen species produced by the cancer cell, the endothelium, and also by different immune cells. Endothelial cell-derived NO and H2O2 and the action of immune cells cause the death of most melanoma cells that reach the hepatic microvascularization. Surviving melanoma cells attached to the endothelium of pre-capillary arterioles or sinusoids may follow two mechanisms of extravasation: a) migration through vessel fenestrae or b) intravascular proliferation followed by vessel rupture and microinflammation. Invading melanoma cells first form micrometastases within the normal lobular hepatic architecture via a mechanism regulated by cross-talk with the stroma and multiple microenvironment-related molecular signals. In this review special emphasis is placed on neuroendocrine (systemic) mechanisms as potential promoters of liver metastatic growth. Growing metastatic cells undergo functional and metabolic changes that increase their capacity to withstand oxidative/nitrosative stress, which favors their survival. This adaptive process also involves upregulation of Bcl-2-related antideath mechanisms, which seems to lead to the generation of more resistant cell subclones.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - Rosario Salvador
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | | | - Ali Jihad-Jebbar
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - Javier Alcácer
- Pathology Laboratory, Quirón Hospital, 46010, Valencia, Spain
| | - María Benlloch
- Department of Health & Functional Valorization, San Vicente Martir Catholic University, 46001, Valencia, Spain
| | - José A Pellicer
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - José M Estrela
- Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
33
|
Cho H, Cho YY, Shim MS, Lee JY, Lee HS, Kang HC. Mitochondria-targeted drug delivery in cancers. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165808. [PMID: 32333953 DOI: 10.1016/j.bbadis.2020.165808] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are considered one of the most important subcellular organelles for targeting and delivering drugs because mitochondria are the main location for various cellular functions and energy (i.e., ATP) production, and mitochondrial dysfunctions and malfunctions cause diverse diseases such as neurodegenerative disorders, cardiovascular disorders, metabolic disorders, and cancers. In particular, unique mitochondrial characteristics (e.g., negatively polarized membrane potential, alkaline pH, high reactive oxygen species level, high glutathione level, high temperature, and paradoxical mitochondrial dynamics) in pathological cancers have been used as targets, signals, triggers, or driving forces for specific sensing/diagnosing/imaging of characteristic changes in mitochondria, targeted drug delivery on mitochondria, targeted drug delivery/accumulation into mitochondria, or stimuli-triggered drug release in mitochondria. In this review, we describe the distinctive structures, functions, and physiological properties of cancer mitochondria and discuss recent technologies of mitochondria-specific "key characteristic" sensing systems, mitochondria-targeted "drug delivery" systems, and mitochondrial stimuli-specific "drug release" systems as well as their strengths and weaknesses.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
34
|
Obrador E, Liu-Smith F, Dellinger RW, Salvador R, Meyskens FL, Estrela JM. Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biol Chem 2019; 400:589-612. [PMID: 30352021 DOI: 10.1515/hsz-2018-0327] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
The high number of somatic mutations in the melanoma genome associated with cumulative ultra violet (UV) exposure has rendered it one of the most difficult of cancers to treat. With new treatment approaches based on targeted and immune therapies, drug resistance has appeared as a consistent problem. Redox biology, including reactive oxygen and nitrogen species (ROS and RNS), plays a central role in all aspects of melanoma pathophysiology, from initiation to progression and to metastatic cells. The involvement of melanin production and UV radiation in ROS/RNS generation has rendered the melanocytic lineage a unique system for studying redox biology. Overall, an elevated oxidative status has been associated with melanoma, thus much effort has been expended to prevent or treat melanoma using antioxidants which are expected to counteract oxidative stress. The consequence of this redox-rebalance seems to be two-fold: on the one hand, cells may behave less aggressively or even undergo apoptosis; on the other hand, cells may survive better after being disseminated into the circulating system or after drug treatment, thus resulting in metastasis promotion or further drug resistance. In this review we summarize the current understanding of redox signaling in melanoma at cellular and systemic levels and discuss the experimental and potential clinic use of antioxidants and new epigenetic redox modifiers.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Feng Liu-Smith
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | | | - Rosario Salvador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Frank L Meyskens
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| | - José M Estrela
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
35
|
Hatai M, Horiyama S, Yoshikawa N, Kinoshita E, Kagota S, Shinozuka K, Nakamura K. trans-2-Pentenal, an Active Compound in Cigarette Smoke, Identified via Its Ability to Form Adducts with Glutathione. Chem Pharm Bull (Tokyo) 2019; 67:1000-1005. [DOI: 10.1248/cpb.c19-00345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mayuko Hatai
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
| | | | - Noriko Yoshikawa
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
- Mukogawa Women’s University, Institute for Bioscience
| | - Eriko Kinoshita
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
| | - Satomi Kagota
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
| | - Kazumasa Shinozuka
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
| | - Kazuki Nakamura
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
| |
Collapse
|
36
|
Sun J, Zhou C, Ma Q, Chen W, Atyah M, Yin Y, Fu P, Liu S, Hu B, Ren N, Zhou H. High GCLC level in tumor tissues is associated with poor prognosis of hepatocellular carcinoma after curative resection. J Cancer 2019; 10:3333-3343. [PMID: 31293636 PMCID: PMC6603424 DOI: 10.7150/jca.29769] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/05/2019] [Indexed: 12/21/2022] Open
Abstract
Glutamate-cysteine ligase catalytic subunit (GCLC) has been reported to overexpress in a variety types of cancer and be related with tumor progression and drug resistance. However, little has been known about GCLC's prognostic significance and biological roles in hepatocellular carcinoma (HCC). In the present study, we evaluated GCLC expression level using immunohistochemical staining (IHC) in tissue microarray (TMA) containing paired tumor and peritumoral liver tissues from 168 patients with HCC who received curative resection. GCLC levels in tumor tissues were significantly higher than in peritumoral liver tissues, and tumor GCLC level was associated with overall survival (OS) and disease-free survival (DFS). Five-year OS and DFS rates were 41.15% and 25.88% for the group with high tumor GCLC level, compared with 68.09% and 47.51% for the group with low tumor GCLC level (P<0.001 and P=0.001, respectively). Moreover, quantitative reverse transcription PCR (qRT-PCR) analysis demonstrated that GCLC was transcriptionally activated in HCC tissues when comparing with peritumoral tissues. Tumor GCLC level, which correlated to tumor differentiation, microvascular invasion and BCLC stage, was independent prognostic factors for both OS (P=0.006) and DFS (P=0.003). Importantly, tumor GCLC level was still significantly associated with OS and DFS in patients with early HCC. GCLC-based nomogram models were further established and exhibit significantly higher predictive accuracy as compared with routine clinical staging systems. In conclusion, tumor GCLC is a potential prognostic biomarker for HCC patients after receiving curative resection.
Collapse
Affiliation(s)
- Jialei Sun
- Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis & Cancer Invasion, Ministry of Education, China
| | - Chenhao Zhou
- Key Laboratory of Carcinogenesis & Cancer Invasion, Ministry of Education, China.,Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qianni Ma
- Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis & Cancer Invasion, Ministry of Education, China
| | - Wanyong Chen
- Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Department of Surgery, Institute of Fudan-Minhang Acadamic Health System, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Manar Atyah
- Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yirui Yin
- Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Peiyao Fu
- Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuang Liu
- Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bo Hu
- Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ning Ren
- Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Department of Surgery, Institute of Fudan-Minhang Acadamic Health System, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haijun Zhou
- Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis & Cancer Invasion, Ministry of Education, China
| |
Collapse
|
37
|
Expression of Antioxidant Enzymes in Patients with Uterine Polyp, Myoma, Hyperplasia, and Adenocarcinoma. Antioxidants (Basel) 2019; 8:antiox8040097. [PMID: 30978928 PMCID: PMC6523488 DOI: 10.3390/antiox8040097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/17/2022] Open
Abstract
We previously found that compared to patients with benign uterine diseases (polyps, myomas), patients with premalignant (hyperplasia simplex and complex) and malignant (adenocarcinoma) lesions had enhanced lipid peroxidation and altered uterine antioxidant enzyme (AOE) activities. To further elucidate the mechanism of the observed changes, we examined protein and mRNA levels of copper-zinc superoxide dismutase (CuZnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and transcription factor Nrf2. We also examined correlations of AOE expression with AOE activity, lipid hydroperoxides (LOOH) level, and level of Nrf2. Our results showed decreased CuZnSOD, CAT, and Nrf2 levels, and increased GPx and GR levels in hyperplasias, while in patients with adenocarcinoma, the level of CAT was decreased and GR was increased, compared to benign groups. Similar changes in mRNA levels were also detected, indicating predominantly translational control of the AOE expression. The positive correlation of enzyme expression/activity was recorded for CuZnSOD, GPx, and GR, but only among groups with benign diseases. Only GR and GPx expressions were positively correlated with LOOH. Nrf2 protein was positively correlated with mRNA levels of CuZnSOD and GR. Observed results indicate involvement of diverse redox mechanisms in etiopathogenesis of different gynecological diseases, and may improve redox-based approaches in current clinical practice.
Collapse
|
38
|
Chatterjee P, Yadav M, Chauhan N, Huang Y, Luo Y. Cancer Cell Metabolism Featuring Nrf2. Curr Drug Discov Technol 2018; 17:263-271. [PMID: 30207221 DOI: 10.2174/1570163815666180911092443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/14/2018] [Accepted: 08/31/2018] [Indexed: 11/22/2022]
Abstract
Although the major role of Nrf2 has long been established as a transcription factor for providing cellular protection against oxidative stress, multiple pieces of research and reviews now claim exactly the opposite. The dilemma - "to activate or inhibit" the protein requires an immediate answer, which evidently links cellular metabolism to the causes and purpose of cancer. Profusely growing cancerous cells have prolific energy requirements, which can only be fulfilled by modulating cellular metabolism. This review highlights the cause and effect of Nrf2 modulation in cancer that in turn channelize cellular metabolism, thereby fulfilling the energy requirements of cancer cells. The present work also highlights the purpose of genetic mutations in Nrf2, in relation to cellular metabolism in cancer cells, thus pointing out a newer approach where parallel mutations may be the key factor to decide whether to activate or inhibit Nrf2.
Collapse
Affiliation(s)
- Payal Chatterjee
- Department of Pharmaceutical Sciences, Softvision College, Indore, MP 452010, India.,Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Mukesh Yadav
- Department of Pharmaceutical Sciences, Softvision College, Indore, MP 452010, India
| | - Namrata Chauhan
- Department of Pharmaceutical Sciences, Softvision College, Indore, MP 452010, India
| | - Ying Huang
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Yun Luo
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| |
Collapse
|
39
|
Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol 2018; 217:2291-2298. [PMID: 29915025 PMCID: PMC6028537 DOI: 10.1083/jcb.201804161] [Citation(s) in RCA: 723] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 12/19/2022] Open
Abstract
Glutathione (GSH) is the most abundant antioxidant found in living organisms and has multiple functions, most of which maintain cellular redox homeostasis. GSH preserves sufficient levels of cysteine and detoxifies xenobiotics while also conferring therapeutic resistance to cancer cells. However, GSH metabolism plays both beneficial and pathogenic roles in a variety of malignancies. It is crucial to the removal and detoxification of carcinogens, and alterations in this pathway can have a profound effect on cell survival. Excess GSH promotes tumor progression, where elevated levels correlate with increased metastasis. In this review, we discuss recent studies that focus on deciphering the role of GSH in tumor initiation and progression as well as mechanisms underlying how GSH imparts treatment resistance to growing cancers. Targeting GSH synthesis/utilization therefore represents a potential means of rendering tumor cells more susceptible to different treatment options such as chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Ankita Bansal
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
40
|
Zhang SQ, Yung KLK, Chung SK, Chung SMS. Aldo-keto reductases-mediated cytotoxicity of 2-deoxyglucose: A novel anticancer mechanism. Cancer Sci 2018; 109:1970-1980. [PMID: 29617059 PMCID: PMC5989857 DOI: 10.1111/cas.13604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/24/2018] [Accepted: 03/31/2018] [Indexed: 01/01/2023] Open
Abstract
2‐Deoxyglucose (2DG) is a non‐metabolizable glucose analog currently in clinical trials to determine its efficacy in enhancing the therapeutic effects of radiotherapy and chemotherapy of several types of cancers. It is thought to preferentially kill cancer cells by inhibiting glycolysis because cancer cells are more dependent on glycolysis for their energy needs than normal cells. However, we found that the toxicity of 2DG in cancer cells is mediated by the enzymatic activities of AKR1B1 and/or AKR1B10 (AKR1Bs), which are often overexpressed in cancer cells. Our results show that 2DG kills cancer cells because, in the process of being reduced by AKR1Bs, depletion of their cofactor NADPH leads to the depletion of glutathione (GSH) and cell death. Furthermore, we showed that compounds that are better substrates for AKR1Bs than 2DG are more effective than 2DG in killing cancer cells that overexpressed these 2 enzymes. As cancer cells can be induced to overexpress AKR1Bs, the anticancer mechanism we identified can be applied to treat a large variety of cancers. This should greatly facilitate the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Shi-Qing Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,Division of Science and Technology, United International College, Zhuhai, China
| | - Kin-Lam Ken Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Sookja Kim Chung
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
41
|
Kinoshita C, Aoyama K, Nakaki T. Neuroprotection afforded by circadian regulation of intracellular glutathione levels: A key role for miRNAs. Free Radic Biol Med 2018; 119:17-33. [PMID: 29198727 DOI: 10.1016/j.freeradbiomed.2017.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023]
Abstract
Circadian rhythms are approximately 24-h oscillations of physiological and behavioral processes that allow us to adapt to daily environmental cycles. Like many other biological functions, cellular redox status and antioxidative defense systems display circadian rhythmicity. In the central nervous system (CNS), glutathione (GSH) is a critical antioxidant because the CNS is extremely vulnerable to oxidative stress; oxidative stress, in turn, causes several fatal diseases, including neurodegenerative diseases. It has long been known that GSH level shows circadian rhythm, although the mechanism underlying GSH rhythm production has not been well-studied. Several lines of recent evidence indicate that the expression of antioxidant genes involved in GSH homeostasis as well as circadian clock genes are regulated by post-transcriptional regulator microRNA (miRNA), indicating that miRNA plays a key role in generating GSH rhythm. Interestingly, several reports have shown that alterations of miRNA expression as well as circadian rhythm have been known to link with various diseases related to oxidative stress. A growing body of evidence implicates a strong correlation between antioxidative defense, circadian rhythm and miRNA function, therefore, their dysfunctions could cause numerous diseases. It is hoped that continued elucidation of the antioxidative defense systems controlled by novel miRNA regulation under circadian control will advance the development of therapeutics for the diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshio Nakaki
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
42
|
Kürschner G, Zhang Q, Clima R, Xiao Y, Busch JF, Kilic E, Jung K, Berndt N, Bulik S, Holzhütter HG, Gasparre G, Attimonelli M, Babu M, Meierhofer D. Renal oncocytoma characterized by the defective complex I of the respiratory chain boosts the synthesis of the ROS scavenger glutathione. Oncotarget 2017; 8:105882-105904. [PMID: 29285300 PMCID: PMC5739687 DOI: 10.18632/oncotarget.22413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022] Open
Abstract
Renal oncocytomas are rare benign tumors of the kidney and characterized by a deficient complex I (CI) enzyme activity of the oxidative phosphorylation (OXPHOS) system caused by mitochondrial DNA (mtDNA) mutations. Yet, little is known about the underlying molecular mechanisms and alterations of metabolic pathways in this tumor. We compared renal oncocytomas with adjacent matched normal kidney tissues on a global scale by multi-omics approaches, including whole exome sequencing (WES), proteomics, metabolomics, and metabolic pathway simulation. The abundance of proteins localized to mitochondria increased more than 2-fold, the only exception was a strong decrease in the abundance for CI subunits that revealed several pathogenic heteroplasmic mtDNA mutations by WES. We also observed renal oncocytomas to dysregulate main metabolic pathways, shunting away from gluconeogenesis and lipid metabolism. Nevertheless, the abundance of energy carrier molecules such as NAD+, NADH, NADP, ATP, and ADP were significantly higher in renal oncocytomas. Finally, a substantial 5000-fold increase of the reactive oxygen species scavenger glutathione can be regarded as a new hallmark of renal oncocytoma. Our findings demonstrate that renal oncocytomas undergo a metabolic switch to eliminate ATP consuming processes to ensure a sufficient energy supply for the tumor.
Collapse
Affiliation(s)
- Gerrit Kürschner
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, Berlin, Germany.,Technical University of Berlin, Institute of Bioanalytics, Department of Biotechnology, Berlin, Germany
| | - Qingzhou Zhang
- University of Regina, Department of Biochemistry, Regina, Canada
| | - Rosanna Clima
- University of Bari, Department of Biosciences, Biotechnology and Biopharmaceutics, Bari, Italy.,Department of Medical and Surgical Sciences-DIMEC, Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Yi Xiao
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, Berlin, Germany.,Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany
| | | | - Ergin Kilic
- University Hospital Charité, Institute of Pathology, Berlin, Germany
| | - Klaus Jung
- University Hospital Charité, Department of Urology, Berlin, Germany.,Berlin Institute for Urologic Research, Berlin, Germany
| | - Nikolaus Berndt
- Charité University Medicine Berlin, Institute of Biochemistry Computational Systems Biochemistry Group, Berlin, Germany
| | - Sascha Bulik
- Charité University Medicine Berlin, Institute of Biochemistry Computational Systems Biochemistry Group, Berlin, Germany
| | - Hermann-Georg Holzhütter
- Charité University Medicine Berlin, Institute of Biochemistry Computational Systems Biochemistry Group, Berlin, Germany
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences-DIMEC, Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Marcella Attimonelli
- University of Bari, Department of Biosciences, Biotechnology and Biopharmaceutics, Bari, Italy
| | - Mohan Babu
- University of Regina, Department of Biochemistry, Regina, Canada
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, Berlin, Germany
| |
Collapse
|
43
|
Jeddi F, Soozangar N, Sadeghi MR, Somi MH, Samadi N. Contradictory roles of Nrf2/Keap1 signaling pathway in cancer prevention/promotion and chemoresistance. DNA Repair (Amst) 2017; 54:13-21. [DOI: 10.1016/j.dnarep.2017.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/25/2017] [Accepted: 03/26/2017] [Indexed: 12/17/2022]
|
44
|
Menga A, Palmieri EM, Cianciulli A, Infantino V, Mazzone M, Scilimati A, Palmieri F, Castegna A, Iacobazzi V. SLC25A26 overexpression impairs cell function via mtDNA hypermethylation and rewiring of methyl metabolism. FEBS J 2017; 284:967-984. [PMID: 28118529 DOI: 10.1111/febs.14028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/01/2016] [Accepted: 01/20/2017] [Indexed: 12/22/2022]
Abstract
Cancer cells down-regulate different genes to give them a selective advantage in invasiveness and/or metastasis. The SLC25A26 gene encodes the mitochondrial carrier that catalyzes the import of S-adenosylmethionine (SAM) into the mitochondrial matrix, required for mitochondrial methylation processes, and is down-regulated in cervical cancer cells. In this study we show that SLC25A26 is down-regulated due to gene promoter hypermethylation, as a mechanism to promote cell survival and proliferation. Furthermore, overexpression of SLC25A26 in CaSki cells increases mitochondrial SAM availability and promotes hypermethylation of mitochondrial DNA, leading to decreased expression of key respiratory complex subunits, reduction of mitochondrial ATP and release of cytochrome c. In addition, increased SAM transport into mitochondria leads to impairment of the methionine cycle with accumulation of homocysteine at the expense of glutathione, which is strongly reduced. All these events concur to arrest the cell cycle in the S phase, induce apoptosis and enhance chemosensitivity of SAM carrier-overexpressing CaSki cells to cisplatin.
Collapse
Affiliation(s)
- Alessio Menga
- National Cancer Research Center, Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Erika M Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Italy
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Italy
| | | | - Massimiliano Mazzone
- Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, Vesalius Research Center, KU Leuven, Belgium
| | | | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Italy
| | - Alessandra Castegna
- National Cancer Research Center, Istituto Tumori 'Giovanni Paolo II', Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Italy
| | - Vito Iacobazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Italy
| |
Collapse
|
45
|
Das K, Sarkar S, Das PK. Fluorescent Indicator Displacement Assay: Ultrasensitive Detection of Glutathione and Selective Cancer Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25691-25701. [PMID: 27618963 DOI: 10.1021/acsami.6b06353] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This Research Article reports the development of nanohybrid comprising of anionic carbon dots (ACD) protected gold nanoparticle (GNP). ACD directly cap GNP through its anionic surface functionalization leading to the formation of stable aqueous GNP dispersion. This newly developed ACD-GNP nanohybrid has been thoroughly characterized by different spectroscopic and microscopic techniques. This nanohybrid is successfully employed toward the selective sensing of glutathione (GSH). The mechanism of GSH sensing by this nanosensor is based on the GSH triggered displacement of fluorescent indicator ACD from the GNP surface. Upon capping GNP, intrinsic fluorescence of ACD gets quenched. Addition of GSH displaces the fluorescent indicator ACD from GNP surface and restores the fluorescence signal of ACD. This nanosensor exhibits very high selectivity as well as sensitivity toward glutathione over the other biothiols and can detect as low as 6 nM of GSH. More importantly, selective imaging of the cancer cells over the noncancerous cells was achieved by this ACD-GNP hybrid implying its potential applications in biosensing, as well as in cancer diagnosis.
Collapse
Affiliation(s)
- Krishnendu Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science Jadavpur , Kolkata-700 032, India
| | - Saheli Sarkar
- Department of Biological Chemistry, Indian Association for the Cultivation of Science Jadavpur , Kolkata-700 032, India
| | - Prasanta Kumar Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science Jadavpur , Kolkata-700 032, India
| |
Collapse
|
46
|
Abstract
Current understanding points to unrepairable chromosomal damage as the critical determinant of accelerated senescence in cancer cells treated with radiation or chemotherapy. Nonetheless, the potent senescence inducer etoposide not only targets topoisomerase II to induce DNA damage but also produces abundant free radicals, increasing cellular reactive oxygen species (ROS). Toward examining roles for DNA damage and oxidative stress in therapy-induced senescence, we developed a quantitative flow cytometric senescence assay and screened 36 redox-active agents as enhancers of an otherwise ineffective dose of radiation. While senescence failed to correlate with total ROS, the radiation enhancers, etoposide and the other effective topoisomerase inhibitors each produced high levels of lipid peroxidation. The reactive aldehyde 4-hydroxy-2-nonenal, a lipid peroxidation end product, was sufficient to induce senescence in irradiated cells. In turn, sequestering aldehydes with hydralazine blocked effects of etoposide and other senescence inducers. These results suggest that lipid peroxidation potentiates DNA damage from radiation and chemotherapy to drive therapy-induced senescence.
Collapse
Affiliation(s)
- A C Flor
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - A P Doshi
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - S J Kron
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
47
|
Redoxable heteronanocrystals functioning magnetic relaxation switch for activatable T1 and T2 dual-mode magnetic resonance imaging. Biomaterials 2016; 101:121-30. [PMID: 27281684 DOI: 10.1016/j.biomaterials.2016.05.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 11/22/2022]
Abstract
T1/T2 dual-mode magnetic resonance (MR) contrast agents (DMCAs) have gained much attention because of their ability to improve accuracy by providing two pieces of complementary information with one instrument. However, most of these agents are "always ON" systems that emit MR contrast regardless of their interaction with target cells or biomarkers, which may result in poor target-to-background ratios. Herein, we introduce a rationally designed magnetic relaxation switch (MGRS) for an activatable T1/T2 dual MR imaging system. Redox-responsive heteronanocrystals, consisting of a superparamagnetic Fe3O4 core and a paramagnetic Mn3O4 shell, are synthesized through seed-mediated growth and subsequently surface-modified with polysorbate 80. The Mn3O4 shell acts as both a protector of Fe3O4 in aqueous environments to attenuate T2 relaxation and as a redoxable switch that can be activated in intracellular reducing environments by glutathione. This simultaneously generates large amounts of magnetically decoupled Mn(2+) ions and allows Fe3O4 to interact with the water protons. This smart nanoplatform shows an appropriate hydrodynamic size for the EPR effect (10-100 nm) and demonstrates biocompatibility. Efficient transitions of OFF/ON dual contrast effects are observed by in vitro imaging and MR relaxivity measurements. The ability to use these materials as DMCAs is demonstrated via effective passive tumor targeting for T1- and T2-weighted MR imaging in tumor-bearing mice.
Collapse
|
48
|
Yang J, Duan Y, Zhang X, Wang Y, Yu A. Modulating the cellular microenvironment with disulfide-containing nanoparticles as an auxiliary cancer treatment strategy. J Mater Chem B 2016; 4:3868-3873. [DOI: 10.1039/c6tb00847j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Disulfide-containing nanoparticles modulate cellular redox microenvironment when deliver drug into cells, and have significant influence on therapeutic response and efficacy.
Collapse
Affiliation(s)
- Jingmei Yang
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Yongchao Duan
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Yongjian Wang
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Ao Yu
- Central Laboratory
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
49
|
Le Gal K, Ibrahim MX, Wiel C, Sayin VI, Akula MK, Karlsson C, Dalin MG, Akyürek LM, Lindahl P, Nilsson J, Bergo MO. Antioxidants can increase melanoma metastasis in mice. Sci Transl Med 2015; 7:308re8. [DOI: 10.1126/scitranslmed.aad3740] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Williams MD, Zhang X, Park JJ, Siems WF, Gang DR, Resar LMS, Reeves R, Hill HH. Characterizing metabolic changes in human colorectal cancer. Anal Bioanal Chem 2015; 407:4581-95. [PMID: 25943258 DOI: 10.1007/s00216-015-8662-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/13/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer death worldwide, despite the fact that it is a curable disease when diagnosed early. The development of new screening methods to aid in early diagnosis or identify precursor lesions at risk for progressing to CRC will be vital to improving the survival rate of individuals predisposed to CRC. Metabolomics is an advancing area that has recently seen numerous applications to the field of cancer research. Altered metabolism has been studied for many years as a means to understand and characterize cancer. However, further work is required to establish standard procedures and improve our ability to identify distinct metabolomic profiles that can be used to diagnose CRC or predict disease progression. The present study demonstrates the use of direct infusion traveling wave ion mobility mass spectrometry to distinguish metabolic profiles from CRC samples and matched non-neoplastic epithelium as well as metastatic and primary tumors at different stages of disease (T1-T4). By directly infusing our samples, the analysis time was reduced significantly, thus increasing the speed and efficiency of this method compared to traditional metabolomics platforms. Partial least squares discriminant analysis was used to visualize differences between the metabolic profiles of sample types and to identify the specific m/z features that led to this differentiation. Identification of the distinct m/z features was made using the human metabolome database. We discovered alterations in fatty acid biosynthesis and oxidative, glycolytic, and polyamine pathways that distinguish tumors from non-malignant colonic epithelium as well as various stages of CRC. Although further studies are needed, our results indicate that colonic epithelial cells undergo metabolic reprogramming during their evolution to CRC, and the distinct metabolites could serve as diagnostic tools or potential targets in therapy or primary prevention. Graphical Abstract Colon tissue biopsy samples were collected from patients after which metabolites were extracted via sonication. Two-dimensional data were collected via IMS in tandem with MS (IMMS). Data were then interpreted statistically via PLS-DA. Scores plots provided a visualization of statistical separation and groupings of sample types. Loading plots allowed identification of influential ion features. Lists of these features were exported and analyzed for specific differences. Direct comparisons of the ion features led to the identification and comparative analyses of candidate biomarkers. These differences were then expressed visually in charts and tables.
Collapse
Affiliation(s)
- Michael D Williams
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | | | | | | | |
Collapse
|