1
|
Sengupta S, Leinaas HP. Phenotypic plasticity and thermal efficiency of temperature responses in two conspecific springtail populations from contrasting climates. J Therm Biol 2024; 123:103914. [PMID: 38981302 DOI: 10.1016/j.jtherbio.2024.103914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Temperature drives adaptation in life-history traits through direct effects on physiological processes. However, multiple life-history traits co-evolve as a life-history strategy. Therefore, physiological limitations constraining the evolution of trait means and phenotypic plasticity can be larger for some traits than the others. Comparisons of thermal responses across life-history traits can improve our understanding of the mechanisms determining the life-history strategies. In the present study, we focused on a soil microarthropod species abundant across the Northern Hemisphere, Folsomia quadrioculata (Collembola), with previously known effects of macroclimate. We selected an arctic and a temperate population from areas with highly contrasting climates - the arctic tundra and a coniferous forest floor, respectively - and compared them for thermal plasticity and thermal efficiency in growth, development, fecundity, and survival across four temperatures for a major part of their life cycle. We intended to understand the mechanisms by which temperature drives the evolution of life-history strategies. We found that the temperate population maximized performance at 10-15 °C, whereas the arctic population maintained its thermal efficiency across a wider temperature range (10-20 °C). Thermal plasticity varied in a trait-specific manner, and when considered together with differences in thermal efficiency, indicated that stochasticity in temperature conditions may be important in shaping the life-history strategies. Our study suggests that adopting a whole-organism approach and including physiological time considerations while analysing thermal adaptation will markedly improve our understanding of plausible links between thermal adaptation and responses to global climate change.
Collapse
Affiliation(s)
- Sagnik Sengupta
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway.
| | - Hans Petter Leinaas
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| |
Collapse
|
2
|
Botsch JC, Zaveri AN, Nell LA, McCormick AR, Book KR, Phillips JS, Einarsson Á, Ives AR. Disentangling the drivers of decadal body size decline in an insect population. GLOBAL CHANGE BIOLOGY 2024; 30:e17014. [PMID: 37943090 DOI: 10.1111/gcb.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/10/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
While climate warming is widely predicted to reduce body size of ectotherms, evidence for this trend is mixed. Body size depends not only on temperature but also on other factors, such as food quality and intraspecific competition. Because temperature trends or other long-term environmental factors may affect population size and food sources, attributing trends in average body size to temperature requires the separation of potentially confounding effects. We evaluated trends in the body size of the midge Tanytarsus gracilentus and potential drivers (water temperature, population size, and food quality) between 1977 and 2015 at Lake Mývatn, Iceland. Although temperatures increased at Mývatn over this period, there was only a slight (non-significant) decrease in midge adult body size, contrary to theoretical expectations. Using a state-space model including multiple predictors, body size was negatively associated with both water temperature and midge population abundance, and it was positively associated with 13 C enrichment of midges (an indicator of favorable food conditions). The magnitude of these effects were similar, such that simultaneous changes in temperature, abundance, and carbon stable isotopic signature could counteract each other in the long-term body size trend. Our results illustrate how multiple factors, all of which could be influenced by global change, interact to affect average ectotherm body size.
Collapse
Affiliation(s)
- Jamieson C Botsch
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aayush N Zaveri
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lucas A Nell
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amanda R McCormick
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - K Riley Book
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph S Phillips
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Árni Einarsson
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
- Mývatn Research Station, Skútustaðir, Iceland
| | - Anthony R Ives
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Hug DOH, Stegmayer RI, Blanckenhorn WU, Verhulst NO. Thermal preference of adult mosquitoes (Culicidae) and biting midges (Ceratopogonidae) at different altitudes in Switzerland. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:562-573. [PMID: 37052330 DOI: 10.1111/mve.12653] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Mosquitoes (Diptera: Culicidae) and biting midges (Diptera: Ceratopogonidae) are among the most important vectors of human and veterinary pathogens. For modelling the distribution of these pathogens, entomological aspects are essential, which in turn are highly dependent on environmental factors, such as temperature. In this study, mosquitoes and biting midges were sampled in multiple microclimates at two low (360, 480 meters above sea level, m.a.s.l.) and two high (1250, 1530 m.a.s.l.) altitude locations in Switzerland. Sets of various traps (CO2 -baited CDC, LED-UV, resting boxes, oviposition cups) equipped with dataloggers were placed in transects at five sites with similar vegetation at each location. Only the CDC and the LED-UV traps collected enough insects for analyses. Taxonomic diversity was greater for mosquitoes but lower for biting midges at lower altitudes. Both mosquitoes and biting midges had a thermal preference. Culicoides preferred the traps with warmer microclimate, especially at lower altitudes, whereas mosquito preferences depended on the species, but not on altitude. Relative humidity had a significant positive impact on catches of biting midges but not mosquitoes. To obtain better data on thermal preferences of resting and ovipositing vectors in addition to host seeking individuals, new and improved collecting methods are needed.
Collapse
Affiliation(s)
- David O H Hug
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zürich, Switzerland
| | - Raffael I Stegmayer
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zürich, Switzerland
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Niels O Verhulst
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Giesen A, Blanckenhorn WU, Schäfer MA, Shimizu KK, Shimizu-Inatsugi R, Misof B, Podsiadlowski L, Niehuis O, Lischer HEL, Aeschbacher S, Kapun M. Geographic Variation in Genomic Signals of Admixture Between Two Closely Related European Sepsid Fly Species. Evol Biol 2023; 50:395-412. [PMID: 37854269 PMCID: PMC10579158 DOI: 10.1007/s11692-023-09612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/28/2023] [Indexed: 10/20/2023]
Abstract
The extent of interspecific gene flow and its consequences for the initiation, maintenance, and breakdown of species barriers in natural systems remain poorly understood. Interspecific gene flow by hybridization may weaken adaptive divergence, but can be overcome by selection against hybrids, which may ultimately promote reinforcement. An informative step towards understanding the role of gene flow during speciation is to describe patterns of past gene flow among extant species. We investigate signals of admixture between allopatric and sympatric populations of the two closely related European dung fly species Sepsis cynipsea and S. neocynipsea (Diptera: Sepsidae). Based on microsatellite genotypes, we first inferred a baseline demographic history using Approximate Bayesian Computation. We then used genomic data from pooled DNA of natural and laboratory populations to test for past interspecific gene flow based on allelic configurations discordant with the inferred population tree (ABBA-BABA test with D-statistic). Comparing the detected signals of gene flow with the contemporary geographic relationship among interspecific pairs of populations (sympatric vs. allopatric), we made two contrasting observations. At one site in the French Cevennes, we detected an excess of past interspecific gene flow, while at two sites in Switzerland we observed lower signals of past microsatellite genotypes gene flow among populations in sympatry compared to allopatric populations. These results suggest that the species boundaries between these two species depend on the past and/or present eco-geographic context in Europe, which indicates that there is no uniform link between contemporary geographic proximity and past interspecific gene flow in natural populations. Supplementary Information The online version contains supplementary material available at 10.1007/s11692-023-09612-5.
Collapse
Affiliation(s)
- Athene Giesen
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin A. Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig, Bonn, Germany
| | | | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University, Freiburg, Germany
| | - Heidi E. L. Lischer
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Simon Aeschbacher
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Kapun
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Division of Cell & Developmental Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| |
Collapse
|
5
|
Reyes-Ramírez A, Belgaidi Z, Gibert P, Pommier T, Siberchicot A, Mouton L, Desouhant E. Larval density in the invasive Drosophila suzukii: Immediate and delayed effects on life-history traits. Ecol Evol 2023; 13:e10433. [PMID: 37636864 PMCID: PMC10450837 DOI: 10.1002/ece3.10433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
The effects of density are key in determining population dynamics, since they can positively or negatively affect the fitness of individuals. These effects have great relevance for polyphagous insects for which immature stages develop within a single site of finite feeding resources. Drosophila suzukii is a crop pest that induces severe economic losses for agricultural production; however, little is known about the effects of density on its life-history traits. In the present study, we (i) investigated the egg distribution resulting from females' egg-laying strategy and (ii) tested the immediate (on immatures) and delayed (on adults) effects of larval density on emergence rate, development time, potential fecundity, and adult size. The density used varied in a range between 1 and 50 larvae. We showed that 44.27% of the blueberries used for the oviposition assay contained between 1 and 11 eggs in aggregates. The high experimental density (50 larvae) has no immediate effect in the emergence rate but has effect on larval developmental time. This trait was involved in a trade-off with adult life-history traits: The time of larval development was reduced as larval density increased, but smaller and less fertile females were produced. Our results clearly highlight the consequences of larval crowding on the juveniles and adults of this fly.
Collapse
Affiliation(s)
- Alicia Reyes-Ramírez
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Zaïnab Belgaidi
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Patricia Gibert
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Thomas Pommier
- UMR 1418, Laboratoire d'Ecologie Microbienne, INRAE, CNRS, VetAgro Sup Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Aurélie Siberchicot
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Laurence Mouton
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Emmanuel Desouhant
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| |
Collapse
|
6
|
Rohner PT, Moczek AP. Evolutionary and plastic variation in larval growth and digestion reveal the complex underpinnings of size and age at maturation in dung beetles. Ecol Evol 2021; 11:15098-15110. [PMID: 34765163 PMCID: PMC8571579 DOI: 10.1002/ece3.8192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Abstract
Age and size at maturity are key life-history components, yet the proximate underpinnings that mediate intra- and interspecific variation in life history remain poorly understood. We studied the proximate underpinnings of species differences and nutritionally plastic variation in adult size and development time in four species of dung beetles. Specifically, we investigated how variation in insect growth mediates adult size variation, tested whether fast juvenile growth trades-off with developmental stability in adult morphology and quantified plastic responses of digestive systems to variation in food quality. Contrary to the common size-development time trade-off, the largest species exhibited by far the shortest development time. Correspondingly, species diverged strongly in the shape of growth trajectories. Nutritionally plastic adjustments to growth were qualitatively similar between species but differed in magnitude. Although we expected rapid growth to induce developmental costs, neither instantaneous growth rates nor the duration of larval growth were related to developmental stability in the adult. This renders the putative costs of rapid growth enigmatic. We further found that larvae that encounter a challenging diet develop a larger midgut and digest more slowly than animals reared on a more nutritious diet. These data are consistent with the hypothesis that larvae invest into a more effective digestive system when exposed to low-quality nutrition, but suggest that species may diverge readily in their reliance on these mechanisms. More generally, our data highlight the complex, and often hidden, relationships between immature growth and age and size at maturation even in ecologically similar species.
Collapse
Affiliation(s)
| | - Armin P. Moczek
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
| |
Collapse
|
7
|
Blanckenhorn WU, Berger D, Rohner PT, Schäfer MA, Akashi H, Walters RJ. Comprehensive thermal performance curves for yellow dung fly life history traits and the temperature-size-rule. J Therm Biol 2021; 100:103069. [PMID: 34503806 DOI: 10.1016/j.jtherbio.2021.103069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Ambient temperature strongly determines the behaviour, physiology, and life history of all organisms. The technical assessment of organismal thermal niches in form of now so-called thermal performance curves (TPC) thus has a long tradition in biological research. Nevertheless, several traits do not display the idealized, intuitive dome-shaped TPC, and in practice assessments often do not cover the entire realistic or natural temperature range of an organism. We here illustrate this by presenting comprehensive sex-specific TPCs for the major (juvenile) life history traits of yellow dung flies (Scathophaga stercoraria; Diptera: Scathophagidae). This concerns estimation of prominent biogeographic rules, such as the temperature-size-rule (TSR), the common phenomenon in ectothermic organisms that body size decreases as temperature increases. S. stercoraria shows an untypical asymptotic TPC of continuous body size increase with decreasing temperature without a peak (optimum), thus following the TSR throughout their entire thermal range (unlike several other insects presented here). Egg-to-adult mortality (our best fitness estimator) also shows no intermediate maximum. Both may relate to this fly entering pupal winter diapause below 12 °C. While development time presents a negative exponential relationship with temperature, development rate and growth rate typify the classic TPC form for this fly. The hitherto largely unexplored close relative S. suilla with an even more arctic distribution showed very similar responses, demonstrating large overlap among two ecologically similar, coexisting dung fly species, thus implying limited utility of even complete TPCs for predicting species distribution and coexistence.
Collapse
Affiliation(s)
- Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Evolutionary Biology Centre, University of Uppsala, Norbyvägen 18D, S-752 36, Uppsala, Sweden
| | - Patrick T Rohner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Martin A Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hiroshi Akashi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Biological Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Richard J Walters
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Centre for Environmental and Climate Research, Lund University, Sweden
| |
Collapse
|
8
|
Kangassalo K, Sorvari J, Nousiainen I, Pölkki M, Valtonen TM, Krams I, Rantala MJ. Intra- and Trans-Generational Phenotypic Responses of the Greater Wax Moth, Galleria mellonella, to a Low-Nutrition Larval Diet. ANN ZOOL FENN 2020. [DOI: 10.5735/086.057.0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Katariina Kangassalo
- Department of Biology, Section of Ecology, FI-20014 University of Turku, Finland
| | - Jouni Sorvari
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Ilkka Nousiainen
- Department of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, EE-51014 Tartu, Estonia
| | - Mari Pölkki
- Department of Biology, Section of Ecology, FI-20014 University of Turku, Finland
| | - Terhi M. Valtonen
- Department of Biology, Section of Ecology, FI-20014 University of Turku, Finland
| | - Indrikis Krams
- Latvian Biomedical Research and Study Center, Rātsupītes iela 1, LV-1067 Rīga, Latvia
| | - Markus J. Rantala
- Department of Biology, Section of Ecology, FI-20014 University of Turku, Finland
| |
Collapse
|
9
|
Tayal M, Somavat P, Rodriguez I, Martinez L, Kariyat R. Cascading effects of polyphenol-rich purple corn pericarp extract on pupal, adult, and offspring of tobacco hornworm ( Manduca sexta L.). Commun Integr Biol 2020; 13:43-53. [PMID: 32313606 PMCID: PMC7159316 DOI: 10.1080/19420889.2020.1735223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 10/27/2022] Open
Abstract
A major bottleneck in the commercialization of plant-based pest management compounds is that the extraction methods are complex, time-consuming, and even highly expensive. Using a recently developed inexpensive extraction and quantification methodology to isolate polyphenols (including anthocyanins and condensed tannins) from purple corn pericarp, we examined their effects on Manduca sexta, a common insect herbivore. Following up on our previous work which demonstrated the negative impacts of polyphenol-rich extract on larval stages, we further examined whether there are any cascading effects on subsequent life stages (pupal and adult) including any possible transgenerational effects. Our results show that polyphenol-rich purple corn extract-fed caterpillars had significantly lower pupal mass and survival. Moreover, adult moths also had lower mass when eclosed from caterpillars reared on the extract diet. To test whether there were any transgenerational effects, we allowed male and female adults fed on purple corn extract diet and control diet to mate and lay eggs in a full factorial experiment. We found that purple corn extract-fed adult pair laid a lower number of eggs compared to other treatments. In addition, we also found that second instar M. sexta caterpillars hatched from eggs laid by any mating combination with at least one parent reared on purple corn extract gained significantly lower mass compared to caterpillars with both parents reared on the control diet. Taken together, our results show that there are cascading negative effects for feeding purple corn pericarp extract on pupal, adult, and second generation of M. sexta, reaffirming its potential application as a cost-effective and environmentally friendly pest deterrent.
Collapse
Affiliation(s)
- Mandeep Tayal
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Pavel Somavat
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Isabella Rodriguez
- Mathematics and Science Academy, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | | | - Rupesh Kariyat
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| |
Collapse
|
10
|
Reim E, Eichhorn D, Roy JD, Steinhoff POM, Fischer K. Nutritional stress reduces flight performance and exploratory behavior in a butterfly. INSECT SCIENCE 2019; 26:897-910. [PMID: 29660804 DOI: 10.1111/1744-7917.12596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Anthropogenic global change, including agricultural intensification and climate change, poses a substantial challenge to many herbivores due to a reduced availability of feeding resources. The concomitant food stress is expected to detrimentally affect performance, amongst others in dispersal-related traits. Thus, while dispersal is of utmost importance to escape from deteriorating habitat conditions, such conditions may negatively feedback on the ability to do so. Therefore, we here investigate the impact of larval and adult food stress on traits related to dispersal ability, including morphology, physiology, flight performance, and exploratory behavior, in a butterfly. We show that inadequate nutrition during development and in the adult stage diminishes flight performance, despite some re-allocation of somatic resources. Detrimental effects of food stress on flight performance were mainly caused by reductions in body mass and storage reserves. Similar results were found for exploratory behavior. Furthermore, exploratory behavior was found to be (moderately) repeatable at the individual level, which might indicate the existence of a personality trait. This notion is further supported by the fact that flight performance and exploratory behavior were positively correlated, potentially suggesting the existence of a dispersal syndrome. In summary, our findings may have important implications for dispersal in natural environments, as the conditions requiring dispersal the most impair flight ability and thereby likely dispersal rates.
Collapse
Affiliation(s)
- Elisabeth Reim
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Danny Eichhorn
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Jan D Roy
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | | | - Klaus Fischer
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| |
Collapse
|
11
|
Khelifa R, Blanckenhorn WU, Roy J, Rohner PT, Mahdjoub H. Usefulness and limitations of thermal performance curves in predicting ectotherm development under climatic variability. J Anim Ecol 2019; 88:1901-1912. [PMID: 31365760 DOI: 10.1111/1365-2656.13077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/31/2019] [Indexed: 01/25/2023]
Abstract
Thermal performance curves (TPCs) have been estimated in multiple ectotherm species to understand their thermal plasticity and adaptation and to predict the effect of global warming. However, TPCs are typically assessed under constant temperature regimes, so their reliability for predicting thermal responses in the wild where temperature fluctuates diurnally and seasonally remains poorly documented. Here, we use distant latitudinal populations of five species of sepsid flies (Diptera: Sepsidae) from the temperate region (Europe, North Africa, North America) to compare estimates derived from constant TPCs with observed development rate under fluctuating temperatures in laboratory and field conditions. TPCs changed across gradients in that flies originating from higher latitudes showed accelerated development at higher temperatures, an adaptive response. TPCs were then used to predict development rates observed under fluctuating temperatures; these predictions were relatively accurate in the laboratory but not the field. Interestingly, the precision of TPC predictions depended not only on the resolution of temperature data, with daily and overall temperature summing performing better than hourly temperature summing, but also on the frequency of temperatures falling below the estimated critical minimum temperature. Hourly temperature resolution most strongly underestimated actual development rates, because flies apparently either did not stop growing when temperatures dropped below this threshold, or they sped up their growth when the temperature rose again, thus most severely reflecting this error. We conclude that when flies do not encounter cold temperatures, TPC predictions based on constant temperatures can accurately reflect performance under fluctuating temperatures if adequately adjusted for nonlinearities, but when encountering cold temperatures, this method is more error-prone. Our study emphasizes the importance of the resolution of temperature data and cold temperatures in shaping thermal reaction norms.
Collapse
Affiliation(s)
- Rassim Khelifa
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jeannine Roy
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Patrick T Rohner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Hayat Mahdjoub
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Baur J, Giesen A, Rohner PT, Blanckenhorn WU, Schäfer MA. Exaggerated male forelegs are not more differentiated than wing morphology in two widespread sister species of black scavenger flies. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Julian Baur
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Athene Giesen
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Patrick T. Rohner
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Martin A. Schäfer
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| |
Collapse
|
13
|
Florez-Cuadros M, Berkebile D, Brewer G, Taylor DB. Effects of Diet Quality and Temperature on Stable Fly (Diptera: Muscidae) Development. INSECTS 2019; 10:E207. [PMID: 31315258 PMCID: PMC6681194 DOI: 10.3390/insects10070207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 12/04/2022]
Abstract
The effects of diet quality and temperature on the development time and size of stable flies, Stomoxys calcitrans (L.), was evaluated. Both development time and size varied relative to diet quality and temperature, and their effects were additive. Diet quality and temperature made similar contributions to the variance in size whereas temperature was responsible for >97% of the variance in development time. Regression analysis predicted the shortest development time, egg to adult, to be 12.7 days at 32 °C and 70% nutrients. Egg to adult development varied curvilinearly relative to diet quality and temperature on the degree day 10 (DD10) scale taking 261 DD10 at 30 °C and 50% nutrients. The thermal threshold was 11.5 °C with a thermal constant of 248. Very few stable flies developed to adult on the poorest diet (12.5% nutrients) and adults emerged from fewer than 1% of the puparia at 35 °C. The heaviest pupae (15.4 mg) were produced with the 100% diet at 15 °C and adults had a higher probability of emerging successfully from heavier puparia. The length of the discal-medial cell of adult wings had a cubic relationship with puparia weight and peaked at 21 °C. Egg to pupariation survival was predicted to peak at 27 °C and 71% diet whereas puparia to adult survival peaked at 24 °C and 100% diet. Diet quality and temperature had no effect on sex ratio and the rate of development did not differ between the sexes. Female stable flies were ≈5% larger than males. Composite metrics for egg to pupariation and egg to adult fitness were developed. The optimum for puparia fitness was 29 °C and 78% diet quality and for adult fitness 25 °C and 83% diet quality. Diet accounted for 31% of the variance in pupal fitness and 24% of the variance in adult fitness whereas temperature accounted for 17% and 20%, respectively.
Collapse
Affiliation(s)
- Melina Florez-Cuadros
- Department of Entomology, University of Nebraska - Lincoln, Lincoln, NE 68583-0816, USA
- Current affiliation: Centro Integral de Investigaciones (CIVIF), Leticia, Amazonas, Colombia
| | - Dennis Berkebile
- Agroecosystems Management Research Unit, USDA-ARS, Lincoln, NE 68583-0937, USA
| | - Gary Brewer
- Department of Entomology, University of Nebraska - Lincoln, Lincoln, NE 68583-0816, USA
| | - David B Taylor
- Agroecosystems Management Research Unit, USDA-ARS, Lincoln, NE 68583-0937, USA.
| |
Collapse
|
14
|
Jourdan J, Piro K, Weigand A, Plath M. Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Front Zool 2019; 16:29. [PMID: 31338113 PMCID: PMC6624920 DOI: 10.1186/s12983-019-0327-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/24/2019] [Indexed: 01/26/2023] Open
Abstract
Background Selective landscapes in rivers are made up by an array of selective forces that vary from source to downstream regions or between seasons, and local/temporal variation in fitness maxima can result in gradual spatio-temporal variation of phenotypic traits. This study aimed at establishing freshwater amphipods as future model organisms to study adaptive phenotypic diversification (evolutionary divergence and/or adaptive plasticity) along stream gradients. Methods We collected Gammarus roeselii from 16 sampling sites in the Rhine catchment during two consecutive seasons (summer and winter). Altogether, we dissected n = 1648 individuals and quantified key parameters related to morphological and life-history diversification, including naturally selected (e.g., gill surface areas) as well as primarily sexually selected traits (e.g., male antennae). Acknowledging the complexity of selective regimes in streams and the interrelated nature of selection factors, we assessed several abiotic (e.g., temperature, flow velocity) and biotic ecological parameters (e.g., conspecific densities, sex ratios) and condensed them into four principal components (PCs). Results Generalized least squares models revealed pronounced phenotypic differentiation in most of the traits investigated herein, and components of the stream gradient (PCs) explained parts of the observed differences. Depending on the trait under investigation, phenotypic differentiation could be ascribed to variation in abiotic conditions, anthropogenic disturbance (influx of thermally polluted water), or population parameters. For example, female fecundity showed altitudinal variation and decreased with increasing conspecific densities, while sexual dimorphism in the length of male antennae—used for mate finding and assessment—increased with increasing population densities and towards female-biased sex ratios. Conclusions We provide a comprehensive protocol for comparative analyses of intraspecific variation in life history traits in amphipods. Whether the observed phenotypic differentiation over small geographical distances reflects evolutionary divergence or plasticity (or both) remains to be investigated in future studies. Independent of the mechanisms involved, variation in several traits is likely to have consequences for ecosystem functions. For example, leaf-shredding in G. roeselii strongly depends on body size, which varied in dependence of several ecological parameters. Electronic supplementary material The online version of this article (10.1186/s12983-019-0327-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonas Jourdan
- 1Department of Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.,Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Kathrin Piro
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Alexander Weigand
- National Museum of Natural History Luxembourg, Luxembourg City, Luxembourg
| | - Martin Plath
- 4College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China.,5Shaanxi Key Laboratory for Molecular Biology for Agriculture, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
15
|
Rohner PT, Blanckenhorn WU. A Comparative Study of the Role of Sex-Specific Condition Dependence in the Evolution of Sexually Dimorphic Traits. Am Nat 2018; 192:E202-E215. [DOI: 10.1086/700096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Largely flat latitudinal life history clines in the dung fly Sepsis fulgens across Europe (Diptera: Sepsidae). Oecologia 2018; 187:851-862. [DOI: 10.1007/s00442-018-4166-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
|
17
|
Quesnel L, King WJ, Coulson G, Festa-Bianchet M. Tall young females get ahead: size-specific fecundity in wild kangaroos suggests a steep trade-off with growth. Oecologia 2017; 186:59-71. [PMID: 29127479 DOI: 10.1007/s00442-017-4003-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 11/06/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Louise Quesnel
- Département de biologie, Université de Sherbrooke, Sherbrooke, Canada.
| | - Wendy J King
- Département de biologie, Université de Sherbrooke, Sherbrooke, Canada
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Graeme Coulson
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Marco Festa-Bianchet
- Département de biologie, Université de Sherbrooke, Sherbrooke, Canada
- School of BioSciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
18
|
Rohner PT, Teder T, Esperk T, Lüpold S, Blanckenhorn WU. The evolution of male‐biased sexual size dimorphism is associated with increased body size plasticity in males. Funct Ecol 2017. [DOI: 10.1111/1365-2435.13004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Patrick T. Rohner
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
| | - Tiit Teder
- Department of ZoologyInstitute of Ecology and Earth SciencesUniversity of Tartu Tartu Estonia
- Department of EcologyFaculty of Environmental SciencesCzech University of Life Sciences Prague Praha 6 – Suchdol Czech Republic
| | - Toomas Esperk
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
- Department of ZoologyInstitute of Ecology and Earth SciencesUniversity of Tartu Tartu Estonia
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
| |
Collapse
|
19
|
Sex-dependent effects of larval food stress on adult performance under semi-natural conditions: only a matter of size? Oecologia 2017; 184:633-642. [PMID: 28685203 PMCID: PMC5511311 DOI: 10.1007/s00442-017-3903-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/20/2017] [Indexed: 12/12/2022]
Abstract
Organisms with complex life-cycles acquire essential nutrients as juveniles, and hence even a short-term food stress during development can impose serious fitness costs apparent in adults. We used the Glanville fritillary butterfly to investigate the effects of larval food stress on adult performance under semi-natural conditions in a population enclosure. We were specifically interested in whether the negative effects observed were due to body mass reduction only or whether additional effects unrelated to pupal mass were evident. The two sexes responded differently to the larval food stress. In females, larval food stress reduced pupal mass and reproductive performance. The reduced reproductive performance was partially mediated by pupal mass reduction. Food stressed females also had reduced within-patch mobility, and this effect was not dependent on pupal mass. Conversely, food stress had no effect on male pupal mass, suggesting a full compensation via prolonged development time. Nonetheless, food stressed males were less likely to sire any eggs, potentially due to changes in their territorial behavior, as indicated by food stress also increasing male within-patch mobility (i.e., patrolling behavior). When males did sire eggs, the offspring number and viability were unaffected by male food stress treatment. Viability was in general higher for offspring sired by lighter males. Our study highlights how compensatory mechanisms after larval food stress can act in a sex-specific manner and that the alteration in body mass is only partially responsible for the reduced adult performance observed.
Collapse
|
20
|
Barkae ED, Scharf I, Ovadia O. Differential effects of variance in prey arrival on foraging success and growth rate of two pit‐building antlion species. J Zool (1987) 2017. [DOI: 10.1111/jzo.12487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- E. D. Barkae
- Department of Life Sciences Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | - I. Scharf
- Department of Zoology Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - O. Ovadia
- Department of Life Sciences Ben‐Gurion University of the Negev Beer‐Sheva Israel
| |
Collapse
|
21
|
Okuzaki Y, Sota T. Factors Related to Altitudinal Body Size Variation in the Earthworm-Eating Ground Beetle Carabus japonicus. Zoolog Sci 2017; 34:229-234. [DOI: 10.2108/zs160182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yutaka Okuzaki
- Field Science Center for Northern Biosphere, Hokkaido University, Kita, Sapporo 060-0811, Japan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
22
|
Rohner PT, Blanckenhorn WU, Schäfer MA. Critical weight mediates sex-specific body size plasticity and sexual dimorphism in the yellow dung flyScathophaga stercoraria(Diptera: Scathophagidae). Evol Dev 2017; 19:147-156. [DOI: 10.1111/ede.12223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Patrick T. Rohner
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse Zurich Switzerland
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse Zurich Switzerland
| | - Martin A. Schäfer
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse Zurich Switzerland
| |
Collapse
|
23
|
Lind MI, Chen H, Meurling S, Guevara Gil AC, Carlsson H, Zwoinska MK, Andersson J, Larva T, Maklakov AA. Slow development as an evolutionary cost of long life. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12840] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Martin I. Lind
- Animal Ecology Department of Ecology and Genetics Uppsala University 752 36 Uppsala Sweden
| | - Hwei‐yen Chen
- Animal Ecology Department of Ecology and Genetics Uppsala University 752 36 Uppsala Sweden
| | - Sara Meurling
- Animal Ecology Department of Ecology and Genetics Uppsala University 752 36 Uppsala Sweden
| | | | - Hanne Carlsson
- Animal Ecology Department of Ecology and Genetics Uppsala University 752 36 Uppsala Sweden
| | - Martyna K. Zwoinska
- Animal Ecology Department of Ecology and Genetics Uppsala University 752 36 Uppsala Sweden
| | - Johan Andersson
- Animal Ecology Department of Ecology and Genetics Uppsala University 752 36 Uppsala Sweden
| | - Tuuli Larva
- Animal Ecology Department of Ecology and Genetics Uppsala University 752 36 Uppsala Sweden
| | - Alexei A. Maklakov
- Animal Ecology Department of Ecology and Genetics Uppsala University 752 36 Uppsala Sweden
- School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
24
|
Buhaciuc E, Székely P, Băncilă R, Cogălniceanu D. Food availability influences postmetamorphic growth in two spadefoot toad species (genus Pelobates). AMPHIBIA-REPTILIA 2017. [DOI: 10.1163/15685381-00003082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Understanding how major life history traits such as body size and mass and growth change in response to resource availability is crucial in explaining life history trade-offs. We conducted a laboratory experiment with three (high, medium and low) feeding intensity treatments using metamorphs of two spadefoot toads species,Pelobates syriacusandP. fuscus, from syntopic populations. We tested how total food consumption, final body size and mass, body mass increase, body mass and length growth rates and growth efficiency are influenced by food availability. The responses to food availability differed significantly between the species with respect to the total food consumption, body mass increase, body mass growth rate and growth efficiency (i.e. the ratio between total amount of food consumed during the experiment divided by the increase in body mass).P. syriacusmetamorphs had higher growth rates and growth efficiency thanP. fuscusjuveniles. Also,P. syriacusjuveniles responded to differences in food level by increasing growth efficiency with decreasing food levels. OverallP. syriacusseems better adapted to shortages in food availability thanP. fuscus. Our results clearly indicate that the differences in body size between the two species originate between metamorphosis and sexual maturity.
Collapse
Affiliation(s)
- Elena Buhaciuc
- Ovidius University Constanţa, Faculty of Natural and Agricultural Sciences, 900470 Constanţa, Romania
| | - Paul Székely
- Ovidius University Constanţa, Faculty of Natural and Agricultural Sciences, 900470 Constanţa, Romania
| | - Raluca Băncilă
- Ovidius University Constanţa, Faculty of Natural and Agricultural Sciences, 900470 Constanţa, Romania
- “Emil Racoviţă” Institute of Speleology of Romanian Academy, 13 Septembrie Road, 050711 Bucharest, Romania
| | - Dan Cogălniceanu
- Ovidius University Constanţa, Faculty of Natural and Agricultural Sciences, 900470 Constanţa, Romania
| |
Collapse
|
25
|
Brosset P, Lloret J, Muñoz M, Fauvel C, Van Beveren E, Marques V, Fromentin JM, Ménard F, Saraux C. Body reserves mediate trade-offs between life-history traits: new insights from small pelagic fish reproduction. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160202. [PMID: 27853538 PMCID: PMC5098963 DOI: 10.1098/rsos.160202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/05/2016] [Indexed: 05/11/2023]
Abstract
Limited resources in the environment prevent individuals from simultaneously maximizing all life-history traits, resulting in trade-offs. In particular, the cost of reproduction is well known to negatively affect energy investment in growth and maintenance. Here, we investigated these trade-offs during contrasting periods of high versus low fish size and body condition (before/after 2008) in the Gulf of Lions. Female reproductive allocation and performance in anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) were examined based on morphometric historical data from the 1970s and from 2003 to 2015. Additionally, potential maternal effects on egg quantity and quality were examined in 2014/2015. After 2008, the gonadosomatic index increased for sardine and remained steady for anchovy, while a strong decline in mean length at first maturity indicated earlier maturation for both species. Regarding maternal effects, for both species egg quantity was positively linked to fish size but not to fish lipid reserves, while the egg quality was positively related to lipid reserves. Atresia prevalence and intensity were rather low regardless of fish condition and size. Finally, estimations of total annual numbers of eggs spawned indicated a sharp decrease for sardine since 2008 but a slight increase for anchovy during the last 5 years. This study revealed a biased allocation towards reproduction in small pelagic fish when confronted with a really low body condition. This highlights that fish can maintain high reproductive investment potentially at the cost of other traits which might explain the present disappearance of old and large individuals in the Gulf of Lions.
Collapse
Affiliation(s)
- Pablo Brosset
- University of Montpellier, UMR MARBEC (IRD, Ifremer, UM, CNRS), 34203 Sète, France
- IFREMER, UMR MARBEC (IRD, Ifremer, UM, CNRS), 34203 Sète, France
- Author for correspondence: Pablo Brosset e-mail:
| | - Josep Lloret
- Faculty of Sciences, University of Girona, Girona, Spain
| | - Marta Muñoz
- Faculty of Sciences, University of Girona, Girona, Spain
| | - Christian Fauvel
- IFREMER, UMR MARBEC (IRD, Ifremer, UM, CNRS), 34250 Palavas Les Flots, France
| | | | - Virginie Marques
- IFREMER, UMR MARBEC (IRD, Ifremer, UM, CNRS), 34203 Sète, France
| | | | - Frédéric Ménard
- IRD, Mediterranean Institute of Oceanography (MIO), Aix-Marseille Université/CNRS/IRD/Université de Toulon, UM 110, 13288 Marseille, France
| | - Claire Saraux
- IFREMER, UMR MARBEC (IRD, Ifremer, UM, CNRS), 34203 Sète, France
| |
Collapse
|
26
|
Brosset P, Lloret J, Muñoz M, Fauvel C, Van Beveren E, Marques V, Fromentin JM, Ménard F, Saraux C. Body reserves mediate trade-offs between life-history traits: new insights from small pelagic fish reproduction. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160202. [PMID: 27853538 DOI: 10.5061/dryad.6jk98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/05/2016] [Indexed: 05/25/2023]
Abstract
Limited resources in the environment prevent individuals from simultaneously maximizing all life-history traits, resulting in trade-offs. In particular, the cost of reproduction is well known to negatively affect energy investment in growth and maintenance. Here, we investigated these trade-offs during contrasting periods of high versus low fish size and body condition (before/after 2008) in the Gulf of Lions. Female reproductive allocation and performance in anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) were examined based on morphometric historical data from the 1970s and from 2003 to 2015. Additionally, potential maternal effects on egg quantity and quality were examined in 2014/2015. After 2008, the gonadosomatic index increased for sardine and remained steady for anchovy, while a strong decline in mean length at first maturity indicated earlier maturation for both species. Regarding maternal effects, for both species egg quantity was positively linked to fish size but not to fish lipid reserves, while the egg quality was positively related to lipid reserves. Atresia prevalence and intensity were rather low regardless of fish condition and size. Finally, estimations of total annual numbers of eggs spawned indicated a sharp decrease for sardine since 2008 but a slight increase for anchovy during the last 5 years. This study revealed a biased allocation towards reproduction in small pelagic fish when confronted with a really low body condition. This highlights that fish can maintain high reproductive investment potentially at the cost of other traits which might explain the present disappearance of old and large individuals in the Gulf of Lions.
Collapse
Affiliation(s)
- Pablo Brosset
- University of Montpellier, UMR MARBEC (IRD, Ifremer, UM, CNRS), 34203 Sète, France; IFREMER, UMR MARBEC (IRD, Ifremer, UM, CNRS), 34203 Sète, France
| | - Josep Lloret
- Faculty of Sciences , University of Girona , Girona , Spain
| | - Marta Muñoz
- Faculty of Sciences , University of Girona , Girona , Spain
| | - Christian Fauvel
- IFREMER, UMR MARBEC (IRD, Ifremer, UM, CNRS) , 34250 Palavas Les Flots , France
| | | | - Virginie Marques
- IFREMER, UMR MARBEC (IRD, Ifremer, UM, CNRS) , 34203 Sète , France
| | | | - Frédéric Ménard
- IRD, Mediterranean Institute of Oceanography (MIO) , Aix-Marseille Université/CNRS/IRD/Université de Toulon , UM 110, 13288 Marseille , France
| | - Claire Saraux
- IFREMER, UMR MARBEC (IRD, Ifremer, UM, CNRS) , 34203 Sète , France
| |
Collapse
|
27
|
Walczyńska A, Kiełbasa A, Sobczyk M. 'Optimal thermal range' in ectotherms: Defining criteria for tests of the temperature-size-rule. J Therm Biol 2016; 60:41-8. [PMID: 27503715 DOI: 10.1016/j.jtherbio.2016.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
Abstract
Thermal performance curves for population growth rate r (a measure of fitness) were estimated over a wide range of temperature for three species: Coleps hirtus (Protista), Lecane inermis (Rotifera) and Aeolosoma hemprichi (Oligochaeta). We measured individual body size and examined if predictions for the temperature-size rule (TSR) were valid for different temperatures. All three organisms investigated follow the TSR, but only over a specific range between minimal and optimal temperatures, while maintenance at temperatures beyond this range showed the opposite pattern in these taxa. We consider minimal and optimal temperatures to be species-specific, and moreover delineate a physiological range outside of which an ectotherm is constrained against displaying size plasticity in response to temperature. This thermal range concept has important implications for general size-temperature studies. Furthermore, the concept of 'operating thermal conditions' may provide a new approach to (i) defining criteria required for investigating and interpreting temperature effects, and (ii) providing a novel interpretation for many cases in which species do not conform to the TSR.
Collapse
Affiliation(s)
- Aleksandra Walczyńska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Anna Kiełbasa
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Mateusz Sobczyk
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
28
|
Blanckenhorn WU. Investigating yellow dung fly body size evolution in the field: Response to climate change? Evolution 2015; 69:2227-34. [DOI: 10.1111/evo.12726] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 06/29/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Wolf U. Blanckenhorn
- Institute of Evolutionary Biology and Environmental Studies; University of Zürich; Winterthurerstrasse 190 CH-8057 Zürich Switzerland
| |
Collapse
|
29
|
Takahashi KH, Blanckenhorn WU. Effect of genomic deficiencies on sexual size dimorphism through modification of developmental time in Drosophila melanogaster. Heredity (Edinb) 2015; 115:140-5. [PMID: 25899012 DOI: 10.1038/hdy.2015.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 09/03/2014] [Accepted: 12/23/2014] [Indexed: 11/09/2022] Open
Abstract
Sexual size dimorphism (SSD), a difference in body size between sexes, is common in many taxa. In insects, females are larger than males in >70% of all taxa in most orders. The fruit fly, Drosophila melanogaster is one prominent model organism to investigate SSD since its clear and representative female-biased SSD and its growth regulation are well studied. Elucidating the number and nature of genetic elements that can potentially influence SSD would be helpful in understanding the evolutionary potential of SSD. Here, we investigated the SSD pattern caused by artificially introduced genetic variation in D. melanogaster, and examined whether variation in SSD was mediated by the sex-specific modification of developmental time. To map the genomic regions that had effects on sexual wing size and/or developmental time differences (SDtD), we reanalyzed previously published genome-wide deficiency mapping data to evaluate the effects of 376 isogenic deficiencies covering a total of ~67% of the genomic regions of the second and third chromosomes of D. melanogaster. We found genetic variation in SSD and SDtD generated by genomic deficiencies, and a negative genetic correlation between size and development time. We also found SSD and SDtD allometries that are not qualitatively congruent, which however overall at best only partly help in explaining the patterns found. We identified several genomic deficiencies with the tendency to either exaggerate or suppress SSD, in agreement with quantitative genetic null expectations of many loci with small effects. These novel findings contribute to a better understanding of the evolutionary potential of sexual dimorphism.
Collapse
Affiliation(s)
- K H Takahashi
- Graduate School of Environmental Science, Okayama University, Kita-ku, Okayama, Japan
| | - W U Blanckenhorn
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| |
Collapse
|
30
|
Stage- and sex-specific heat tolerance in the yellow dung fly Scathophaga stercoraria. J Therm Biol 2014; 46:1-9. [DOI: 10.1016/j.jtherbio.2014.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/05/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
|
31
|
Tammaru T, Vellau H, Esperk T, Teder T. Searching for constraints by cross-species comparison: reaction norms for age and size at maturity in insects. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Toomas Tammaru
- Department of Zoology; Institute of Ecology and Earth Sciences; University of Tartu; Vanemuise 46, EE-51014 Tartu Estonia
| | - Helen Vellau
- Department of Zoology; Institute of Ecology and Earth Sciences; University of Tartu; Vanemuise 46, EE-51014 Tartu Estonia
| | - Toomas Esperk
- Department of Zoology; Institute of Ecology and Earth Sciences; University of Tartu; Vanemuise 46, EE-51014 Tartu Estonia
| | - Tiit Teder
- Department of Zoology; Institute of Ecology and Earth Sciences; University of Tartu; Vanemuise 46, EE-51014 Tartu Estonia
| |
Collapse
|
32
|
Dmitriew C, Blanckenhorn WU. Condition dependence and the maintenance of genetic variance in a sexually dimorphic black scavenger fly. J Evol Biol 2014; 27:2408-19. [DOI: 10.1111/jeb.12488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/25/2014] [Indexed: 11/29/2022]
Affiliation(s)
- C. Dmitriew
- Institute of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
| | - W. U. Blanckenhorn
- Institute of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
| |
Collapse
|
33
|
Teder T, Vellau H, Tammaru T. Age and size at maturity: a quantitative review of diet-induced reaction norms in insects. Evolution 2014; 68:3217-28. [PMID: 25180817 DOI: 10.1111/evo.12518] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 08/15/2014] [Indexed: 11/29/2022]
Abstract
Optimality models predict that diet-induced bivariate reaction norms for age and size at maturity can have diverse shapes, with the slope varying from negative to positive. To evaluate these predictions, we perform a quantitative review of relevant data, using a literature-derived database of body sizes and development times for over 200 insect species. We show that bivariate reaction norms with a negative slope prevail in nearly all taxonomic and ecological categories of insects as well as in some other ectotherm taxa with comparable life histories (arachnids and amphibians). In insects, positive slopes are largely limited to species, which feed on discrete resource items, parasitoids in particular. By contrast, with virtually no meaningful exceptions, herbivorous and predatory insects display reaction norms with a negative slope. This is consistent with the idea that predictable resource depletion, a scenario selecting for positively sloped reaction norms, is not frequent for these insects. Another source of such selection-a positive correlation between resource levels and juvenile mortality rates-should similarly be rare among insects. Positive slopes can also be predicted by models which integrate life-history evolution and population dynamics. As bottom-up regulation is not common in most insect groups, such models may not be most appropriate for insects.
Collapse
Affiliation(s)
- Tiit Teder
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, EE-51014, Tartu, Estonia.
| | | | | |
Collapse
|
34
|
Rohner PT, Ang Y, Lei Z, Puniamoorthy N, Blanckenhorn WU, Meier R. Genetic data confirm the species status of Sepsis nigripes Meigen (Diptera : Sepsidae) and adds one species to the Alpine fauna while questioning the synonymy of Sepsis helvetica Munari. INVERTEBR SYST 2014. [DOI: 10.1071/is14023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Due to their interesting biology, conspicuous sexual dimorphism and the ability to conduct experiments on species that breed under laboratory condition, sepsid flies (Diptera : Sepsidae) are becoming increasingly important model organisms in evolutionary biology. Accurate species boundaries and well supported phylogenetic hypotheses are thus of interest to many biologists. Here we resolve the conflict surrounding the taxonomic status of the European Sepsis nigripes Meigen, 1826, which is shown to be a valid species using morphological and molecular data applied to multiple species concepts. The species is also placed onto a phylogenetic tree for the genus Sepsis that includes most European and North American species. In addition, we assess the genetic variability between two populations of the Holarctic Sepsis luteipes Melander & Spuler, 1917 from Europe and North America and find conflicting evidence between morphology and DNA sequences. Different species concepts here yield different inferences, and if two species were to be accepted based on molecular data, Sepsis helvetica Munari, 1985 from Europe would have to be resurrected from synonymy. We provide high-resolution images for all species in order to aid in accurate identification. Both species are also added to Sepsidnet, the digital reference collection for Sepsidae (http://sepsidnet-rmbr.nus.edu.sg). Lastly, we discuss a field site in the Swiss Alps where 12 species of Sepsis occur sympatrically on the same pasture.
Collapse
|
35
|
Walzer A, Schausberger P. Intra- and trans-generational costs of reduced female body size caused by food limitation early in life in mites. PLoS One 2013; 8:e79089. [PMID: 24265745 PMCID: PMC3827130 DOI: 10.1371/journal.pone.0079089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/18/2013] [Indexed: 11/18/2022] Open
Abstract
Background Food limitation early in life may be compensated for by developmental plasticity resulting in accelerated development enhancing survival at the expense of small adult body size. However and especially for females in non-matching maternal and offspring environments, being smaller than the standard may incur considerable intra- and trans-generational costs. Methodology/Principal Findings Here, we evaluated the costs of small female body size induced by food limitation early in life in the sexually size-dimorphic predatory mite Phytoseiulus persimilis. Females are larger than males. These predators are adapted to exploit ephemeral spider mite prey patches. The intra- and trans-generational effects of small maternal body size manifested in lower maternal survival probabilities, decreased attractiveness for males, and a reduced number and size of eggs compared to standard-sized females. The trans-generational effects of small maternal body size were sex-specific with small mothers producing small daughters but standard-sized sons. Conclusions/Significance Small female body size apparently intensified the well-known costs of sexual activity because mortality of small but not standard-sized females mainly occurred shortly after mating. The disadvantages of small females in mating and egg production may be generally explained by size-associated morphological and physiological constraints. Additionally, size-assortative mate preferences of standard-sized mates may have rendered small females disproportionally unattractive mating partners. We argue that the sex-specific trans-generational effects were due to sexual size dimorphism – females are the larger sex and thus more strongly affected by maternal stress than the smaller males – and to sexually selected lower plasticity of male body size.
Collapse
Affiliation(s)
- Andreas Walzer
- Group of Arthropod Ecology and Behavior, Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
- * E-mail:
| | - Peter Schausberger
- Group of Arthropod Ecology and Behavior, Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
36
|
Marcil-Ferland D, Festa-Bianchet M, Martin AM, Pelletier F. Despite catch-up, prolonged growth has detrimental fitness consequences in a long-lived vertebrate. Am Nat 2013; 182:775-85. [PMID: 24231538 DOI: 10.1086/673534] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Individuals experiencing poor growth early in life may later make up their size deficit. Compensatory growth or growth prolongation may lead to such catch-up, involving different life-history trade-offs under natural conditions. Frequent recaptures and detailed monitoring of animals surviving to asymptotic size are required to compare growth tactics and their fitness consequences. No study to date has obtained such detailed information for wild animals. We used repeated mass measurements (mean 11.6/animal) spanning the lifetime of 104 bighorn ewes (Ovis canadensis) to quantify growth tactics and identify the determinants and life-history costs of these tactics. Growth prolongation, not compensatory growth, led to partial catch-up: mass difference at age 7 was reduced to 4%, for two groups that differed by nearly 20% as yearlings. Ewes that had been light as yearlings prolonged their growth regardless of density or age of primiparity. Growth prolongation did not affect fecundity or longevity. Ewes that experienced poor early growth prolonged growth at the expense of reproductive fitness, weaning a smaller proportion of their lambs. By tracking multiyear growth patterns and comparing events at different life-history stages, we quantified a trade-off between growth and reproduction that would be overlooked if only the adult phenotype was considered. Compensatory growth in long-lived animals appears unlikely when early growth restrictions are mostly density dependent.
Collapse
Affiliation(s)
- Dominique Marcil-Ferland
- Département de biologie et Centre d'Études Nordiques, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Quebec J1K 2R1, Canada
| | | | | | | |
Collapse
|
37
|
Kjærsgaard A, Pertoldi C, Loeschcke V, Blanckenhorn WU. The effect of fluctuating temperatures during development on fitness-related traits of Scatophaga stercoraria (Diptera: Scathophagidae). ENVIRONMENTAL ENTOMOLOGY 2013; 42:1069-1078. [PMID: 24331617 DOI: 10.1603/en13074] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Development of ectotherms is highly temperature dependent. Studies using variable thermal environments can improve ecological relevance of data because organisms naturally face day-to-day stochastic temperature fluctuations as well as seasonal changes in the amplitude of such daily fluctuations. The objective of this study was to investigate if, and to what extent, the use of constant temperatures is justified in studies of the model species, yellow dung fly, Scatophaga stercoraria (L.). We examined the effect of temperature fluctuation on the expression of several life history traits and the effect on subsequent adult longevity. We used two fluctuating temperature treatments with the same mean but different amplitudes (15/21°C, 12/24°C; 12/12 h), and three constant temperature treatments spanning the wide temperature range faced in the wild (12, 18, and 24°C). Large temperature fluctuation was mostly detrimental (lower juvenile survival, slower growth, smaller body size, and longer development), whereas moderate temperature fluctuation usually gave responses similar to the constant regime. When developing in fluctuating temperatures, adult longevity (no effect), body size (lower), and wing shape (narrower wings) deviated from the expectations based on the constant temperature reaction norms, presumably because of acclimation responses. Contrary to some studies no obvious beneficial effects of moderate temperature fluctuation were observed. Instead, yellow dung flies seem to canalize development in the face of temperature fluctuation up to a point when detrimental effects become unavoidable. The relatively greater effects of extreme constant developmental temperatures question their biological relevance in experiments.
Collapse
Affiliation(s)
- Anders Kjærsgaard
- Department of Bioscience, Integrative Ecology and Evolution, Aarhus University, Ny Munkegade 114-116, DK-8000, Denmark
| | | | | | | |
Collapse
|
38
|
Berger D, Postma E, Blanckenhorn WU, Walters RJ. Quantitative genetic divergence and standing genetic (co)variance in thermal reaction norms along latitude. Evolution 2013; 67:2385-99. [PMID: 23888859 DOI: 10.1111/evo.12138] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/04/2013] [Indexed: 02/04/2023]
Abstract
Although the potential to adapt to warmer climate is constrained by genetic trade-offs, our understanding of how selection and mutation shape genetic (co)variances in thermal reaction norms is poor. Using 71 isofemale lines of the fly Sepsis punctum, originating from northern, central, and southern European climates, we tested for divergence in juvenile development rate across latitude at five experimental temperatures. To investigate effects of evolutionary history in different climates on standing genetic variation in reaction norms, we further compared genetic (co)variances between regions. Flies were reared on either high or low food resources to explore the role of energy acquisition in determining genetic trade-offs between different temperatures. Although the latter had only weak effects on the strength and sign of genetic correlations, genetic architecture differed significantly between climatic regions, implying that evolution of reaction norms proceeds via different trajectories at high latitude versus low latitude in this system. Accordingly, regional genetic architecture was correlated to region-specific differentiation. Moreover, hot development temperatures were associated with low genetic variance and stronger genetic correlations compared to cooler temperatures. We discuss the evolutionary potential of thermal reaction norms in light of their underlying genetic architectures, evolutionary histories, and the materialization of trade-offs in natural environments.
Collapse
Affiliation(s)
- David Berger
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | |
Collapse
|
39
|
Blanckenhorn WU, Puniamoorthy N, Schäfer MA, Scheffczyk A, Römbke J. Standardized laboratory tests with 21 species of temperate and tropical sepsid flies confirm their suitability as bioassays of pharmaceutical residues (ivermectin) in cattle dung. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 89:21-28. [PMID: 23260241 DOI: 10.1016/j.ecoenv.2012.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 06/01/2023]
Abstract
Veterinary pharmaceuticals excreted in the dung of treated livestock can have strong non-target effects on the dung organism community. We report results of ecotoxicological tests with ivermectin for 21 species of temperate (Europe, North America) and tropical (Asia, Central America) black scavenger flies (Diptera: Sepsidae), using standardized methods developed previously for the yellow dung fly and the face fly. Our study documents great variation in ivermectin sensitivity of more than two orders of magnitude among species and even populations within species: estimated lethal effect concentrations LC(50) (at which 50% of the flies died) ranged from 0.05 to 18.55 μg/kg dung fresh weight (equivalent to 0.33-132.22 μg/kg dung dry weight). We also show that controlled laboratory tests can--within reasonable limits-be extended to the field or to laboratory settings without climate control, as obtained LC(50) were roughly similar. In addition to lethal effects, our study revealed relevant sub-lethal effects at lower ivermectin concentrations in terms of prolonged development, smaller body size and reduced juvenile growth rate. Finally, oviposition choice experiments showed that females generally do not discriminate against dung containing ivermectin residues. We conclude that sepsid flies are well suited test organisms for pharmaceutical residues in the dung of livestock due to their ease and speed of rearing and handling, particularly in the tropics, where high-tech laboratory equipment is often not available.
Collapse
Affiliation(s)
- Wolf U Blanckenhorn
- Institut für Evolutionsbiologie & Umweltwissenschaften, Universität Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
40
|
Walzer A, Schausberger P. Sex-specific developmental plasticity of generalist and specialist predatory mites (Acari: Phytoseiidae) in response to food stress. Biol J Linn Soc Lond 2011; 102:650-660. [PMID: 22003259 PMCID: PMC3191859 DOI: 10.1111/j.1095-8312.2010.01593.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied developmental plasticity under food stress in three female-biased size dimorphic predatory mite species, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni. All three species prey on two-spotted spider mites but differ in the degree of adaptation to this prey. Phytoseiulus persimilis is a specialized spider mite predator, N. californicus is a generalist with a preference for spider mites, and A. andersoni is a broad generalist. Immature predators were offered prey patches of varying density and their survival chances, dispersal tendencies, age and size at maturity measured. Amblyseius andersoni dispersed earlier from and had lower survival chances in low density prey patches than N. californicus and P. persimilis. Age at maturity was not affected by prey density in the generalist A. andersoni, whereas both the specialist P. persimilis and the generalist N. californicus accelerated development at low prey densities. Species-specific plasticity in age at maturity reflects opposite survival strategies when confronted with limited prey: to prematurely leave and search for other food (A. andersoni) or to stay and accelerate development (P. persimilis, N. californicus). In all species, size at maturity was more plastic in females than males, indicating that males incur higher fitness costs from deviations from optimal body size. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 650–660.
Collapse
Affiliation(s)
- Andreas Walzer
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences, 1190 Vienna, Austria
| | | |
Collapse
|
41
|
Blanckenhorn WU, Hoeck PEA, Reim C, Teuschl Y. A cost of being large: genetically large yellow dung flies lose out in intra-specific food competition. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9442-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Chown SL, Gaston KJ. Body size variation in insects: a macroecological perspective. Biol Rev Camb Philos Soc 2010; 85:139-69. [DOI: 10.1111/j.1469-185x.2009.00097.x] [Citation(s) in RCA: 455] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Food stress sensitivity and flight performance across phosphoglucose isomerase enzyme genotypes in the sooty copper butterfly. POPUL ECOL 2010. [DOI: 10.1007/s10144-009-0191-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
O'Hea NM, Kirwan L, Finn JA. Experimental mixtures of dung fauna affect dung decomposition through complex effects of species interactions. OIKOS 2010. [DOI: 10.1111/j.1600-0706.2009.18116.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Bauerfeind SS, Perlick JE, Fischer K. Disentangling environmental effects on adult life span in a butterfly across the metamorphic boundary. Exp Gerontol 2009; 44:805-11. [DOI: 10.1016/j.exger.2009.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 09/24/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
|
46
|
Tammaru T, Esperk T, Ivanov V, Teder T. Proximate sources of sexual size dimorphism in insects: locating constraints on larval growth schedules. Evol Ecol 2009. [DOI: 10.1007/s10682-009-9297-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Karl I, Schmitt T, Fischer K. Phosphoglucose isomerase genotype affects life-history traits and cold stress resistance in a Copper butterfly. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01438.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Demont M, Blanckenhorn WU, Hosken DJ, Garner TWJ. Molecular and quantitative genetic differentiation across Europe in yellow dung flies. J Evol Biol 2008; 21:1492-503. [PMID: 18800996 DOI: 10.1111/j.1420-9101.2008.01615.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Relating geographic variation in quantitative traits to underlying population structure is crucial for understanding processes driving population differentiation, isolation and ultimately speciation. Our study represents a comprehensive population genetic survey of the yellow dung fly Scathophaga stercoraria, an important model organism for evolutionary and ecological studies, over a broad geographic scale across Europe (10 populations from the Swiss Alps to Iceland). We simultaneously assessed differentiation in five quantitative traits (body size, development time, growth rate, proportion of diapausing individuals and duration of diapause), to compare differentiation in neutral marker loci (F(ST)) to that of quantitative traits (Q(ST)). Despite long distances and uninhabitable areas between sampled populations, population structuring was very low but significant (F(ST) = 0.007, 13 microsatellite markers; F(ST) = 0.012, three allozyme markers; F(ST) = 0.007, markers combined). However, only two populations (Iceland and Sweden) showed significant allelic differentiation to all other populations. We estimated high levels of gene flow [effective number of migrants (Nm) = 6.2], there was no isolation by distance, and no indication of past genetic bottlenecks (i.e. founder events) and associated loss of genetic diversity in any northern or island population. In contrast to the low population structure, quantitative traits were strongly genetically differentiated among populations, following latitudinal clines, suggesting that selection is responsible for life history differentiation in yellow dung flies across Europe.
Collapse
Affiliation(s)
- M Demont
- Zoological Museum, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
49
|
Engqvist L. Environment-dependent genetic correlations between development time and body mass in a scorpionfly. ZOOLOGY 2007; 110:344-53. [PMID: 17888643 DOI: 10.1016/j.zool.2007.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/09/2007] [Accepted: 07/19/2007] [Indexed: 10/22/2022]
Abstract
Development time and body mass at maturation are two important fitness traits fundamental for our understanding of life history theory. Generally, fast development is associated with small adult body mass, as it will take longer to grow large. However, the strength of this trade-off may depend on average food availability, as the potential benefit of long development will depend on the rate of food intake. Here, I report results of a food manipulation experiment during larval development of the scorpionfly Panorpa cognata (Insecta, Mecoptera). Development time showed considerable genetic variation, yet food level had no influence and there was a strong genetic correlation in development time across environments. As expected, larval and adult body weight was significantly affected by food availability. Furthermore, body mass was influenced by a highly significant genotype-by-environment interaction. The reaction norm for body mass in response to food treatment was much stronger in families with long development time compared with rapidly developing genotypes. This effect was accompanied by a shift in the genetic correlation between development time and body size when comparing the two food levels. Specifically, the genetic correlation between body mass and development time changed from being positive at high food levels to a negative genetic correlation at low food levels. These results are consistent with other empirical findings demonstrating a similar shift in genetic correlations between body mass and development time when comparing favourable and unfavourable environmental conditions.
Collapse
Affiliation(s)
- Leif Engqvist
- Department of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, D-53121, Bonn, Germany.
| |
Collapse
|
50
|
Why get big in the cold? Towards a solution to a life-history puzzle. Oecologia 2007; 155:215-25. [DOI: 10.1007/s00442-007-0902-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 08/08/2007] [Accepted: 10/15/2007] [Indexed: 11/26/2022]
|