1
|
Lei Y, Li XX, Guo Z. Impact of timing of morphine treatment on infarct size in experimental animal model of acute myocardial ischemia and reperfusion. Eur J Pharmacol 2022; 928:175094. [PMID: 35714691 DOI: 10.1016/j.ejphar.2022.175094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Morphine is generally used in clinical treatment for the patients who have not been effectively alleviated for chest pain after the treatment with nitrites or who contraindicate nitrite drugs. However, it was reported that the treatment with morphine in acute myocardial infarction or acute coronary artery syndromes induced increase in myocardial injury even increase of the mortality of the patients. After comparing the reported laboratory studies showing the cardioprotective effects and the clinical observations presenting the harmful consequences, we query whether the timing of the morphine treatment makes the difference in the prognosis of the ischemic/infarct myocardium. We found that intravenous injections of morphine (0.3 mg/kg) at 15 min before the acute myocardial ischemia, at 5 min and 20 min or 60 min after ligation of the coronary artery in separate groups of rats scheduled for acute myocardial ischemia, for 30 min or 90 min followed by reperfusion for 120 min, induced different results, reduction in the size of infarction, no effect and increases of the infarct sizes, respectively. The opioid μ- and kappa-receptors mediated the detrimental effect of morphine on the myocardial injury. The findings of this study suggest that administration of morphine may cause different consequences when used at different time in the pathology of acute myocardial ischemia and reperfusion. The underlying mechanisms in the pathology of acute myocardial ischemia warrant further study.
Collapse
Affiliation(s)
- Yi Lei
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China
| | - Xiao-Xi Li
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China; Department of Anaesthesia, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Zheng Guo
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China; Department of Anaesthesia, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), National Education Commission, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Ye R, Jneid H, Alam M, Uretsky BF, Atar D, Kitakaze M, Davidson SM, Yellon DM, Birnbaum Y. Do We Really Need Aspirin Loading for STEMI? Cardiovasc Drugs Ther 2022; 36:1221-1238. [PMID: 35171384 DOI: 10.1007/s10557-022-07327-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
Abstract
Aspirin loading (chewable or intravenous) as soon as possible after presentation is a class I recommendation by current ST elevation myocardial infarction (STEMI) guidelines. Earlier achievement of therapeutic antiplatelet effects by aspirin loading has long been considered the standard of care. However, the effects of the loading dose of aspirin (alone or in addition to a chronic maintenance oral dose) have not been studied. A large proportion of myocardial cell death occurs upon and after reperfusion (reperfusion injury). Numerous agents and interventions have been shown to limit infarct size in animal models when administered before or immediately after reperfusion. However, these interventions have predominantly failed to show significant protection in clinical studies. In the current review, we raise the hypothesis that aspirin loading may be the culprit. Data obtained from animal models consistently show that statins, ticagrelor, opiates, and ischemic postconditioning limit myocardial infarct size. In most of these studies, aspirin was not administered. However, when aspirin was administered before reperfusion (as is the case in the majority of studies enrolling STEMI patients), the protective effects of statin, ticagrelor, morphine, and ischemic postconditioning were attenuated, which can be plausibly attributable to aspirin loading. We therefore suggest studying the effects of aspirin loading before reperfusion on the infarct size limiting effects of statins, ticagrelor, morphine, and/ or postconditioning in large animal models using long reperfusion periods (at least 24 h). If indeed aspirin attenuates the protective effects, clinical trials should be conducted comparing aspirin loading to alternative antiplatelet regimens without aspirin loading in patients with STEMI undergoing primary percutaneous coronary intervention.
Collapse
Affiliation(s)
- Regina Ye
- University of Texas at Austin, Austin, TX, USA
| | - Hani Jneid
- Department of Medicine Baylor College of Medicine, 7200 Cambridge Street Houston, Texas, 77030, USA
| | - Mahboob Alam
- Department of Medicine Baylor College of Medicine, 7200 Cambridge Street Houston, Texas, 77030, USA
| | - Barry F Uretsky
- University of Arkansas for Medical Sciences, Central Arkansas Veterans Health System, Little Rock, AR, USA
| | - Dan Atar
- Department of Cardiology, Oslo University Hospital Ulleval, Oslo, Norway, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Masafumi Kitakaze
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Yochai Birnbaum
- Department of Medicine Baylor College of Medicine, 7200 Cambridge Street Houston, Texas, 77030, USA.
| |
Collapse
|
3
|
Melo Z, Ishida C, Goldaraz MDLP, Rojo R, Echavarria R. Novel Roles of Non-Coding RNAs in Opioid Signaling and Cardioprotection. Noncoding RNA 2018; 4:ncrna4030022. [PMID: 30227648 PMCID: PMC6162605 DOI: 10.3390/ncrna4030022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease (CVD) is a significant cause of morbidity and mortality across the world. A large proportion of CVD deaths are secondary to coronary artery disease (CAD) and myocardial infarction (MI). Even though prevention is the best strategy to reduce risk factors associated with MI, the use of cardioprotective interventions aimed at improving patient outcomes is of great interest. Opioid conditioning has been shown to be effective in reducing myocardial ischemia-reperfusion injury (IRI) and cardiomyocyte death. However, the molecular mechanisms behind these effects are under investigation and could provide the basis for the development of novel therapeutic approaches in the treatment of CVD. Non-coding RNAs (ncRNAs), which are functional RNA molecules that do not translate into proteins, are critical modulators of cardiac gene expression during heart development and disease. Moreover, ncRNAs such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are known to be induced by opioid receptor activation and regulate opioid signaling pathways. Recent advances in experimental and computational tools have accelerated the discovery and functional characterization of ncRNAs. In this study, we review the current understanding of the role of ncRNAs in opioid signaling and opioid-induced cardioprotection.
Collapse
Affiliation(s)
- Zesergio Melo
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800 Col. Independencia, Guadalajara 44340, Jalisco, Mexico.
| | - Cecilia Ishida
- Programa de Genomica Computacional, Centro de Ciencias Genomicas, Universidad Nacional Autonoma de Mexico, Cuernavaca 62210, Morelos, Mexico.
| | - Maria de la Paz Goldaraz
- Departamento de Anestesiologia, Hospital de Especialidades UMAE CMNO, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico.
| | - Rocio Rojo
- Departamento de Anestesiologia, Hospital de Especialidades UMAE CMNO, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico.
| | - Raquel Echavarria
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800 Col. Independencia, Guadalajara 44340, Jalisco, Mexico.
| |
Collapse
|
4
|
Abstract
The World Health Organization suggests that the cardiovascular diseases (CVDs) are the major cause of mortality and account for two-thirds of the deaths all over the world. These diseases kill about 17 million people every year and 3 in every 10 deaths are due to these diseases. The past decade has seen considerable improvements in diagnosis as well as treatment of various heart diseases. Various new therapeutic targets are being identified through in-depth knowledge of the disease mechanisms which has favored the testing of new strategies leading to newer treatment options. Opioid peptides and G-protein-coupled opioid receptors (ORs) have been previously studied widely in terms of central nervous system actions in mitigating the pain and drug abuse. The OR agonism or antagonism induces cytoprotective states in the myocardium, rendering these receptors as an attractive target for protection of heart from the fatal heart diseases. The opioids can provide an extended window of protection of the heart from various diseases. Although the mechanisms may not be fully understood, they seem to play a crucial role in various CVDs such as hypertension, hyperlipidemia, ischemic heart disease myocardial ischemia, and congestive heart failure. Since these compounds are already being used in acute and chronic pain, soon these compounds might be approved for use as cardioprotective agents. The following review focuses on the new information acquired on the role of the ORs in various CVDs.
Collapse
Affiliation(s)
- Hemangi Rawal
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | | |
Collapse
|
5
|
Manning JR, Chelvarajan L, Levitan BM, Withers CN, Nagareddy PR, Haggerty CM, Fornwalt BK, Gao E, Tripathi H, Abdel-Latif A, Andres DA, Satin J. Rad GTPase deletion attenuates post-ischemic cardiac dysfunction and remodeling. ACTA ACUST UNITED AC 2018; 3:83-96. [PMID: 29732439 PMCID: PMC5931223 DOI: 10.1016/j.jacbts.2017.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rad-GTPase is an LTCC component that functions to govern calcium current in the myocardium. Deletion of Rad increases myocardial contractility secondary to increased trigger calcium entry. AMI induces heart failure, including reduced calcium homeostasis, but deletion of Rad prevents AMI myocardial calcium alterations. Rad deletion prevents post-MI scar spread by attenuating the inflammatory response. Future studies will explore whether Rad deletion is an effective therapeutic direction for providing combined safe, stable inotropic support to the failing heart in concert with protection against inflammatory signaling.
The protein Rad interacts with the L-type calcium channel complex to modulate trigger Ca2+ and hence to govern contractility. Reducing Rad levels increases cardiac output. Ablation of Rad also attenuated the inflammatory response following acute myocardial infarction. Future studies to target deletion of Rad in the heart could be conducted to establish a novel treatment paradigm whereby pathologically stressed hearts would be given safe, stable positive inotropic support without arrhythmias and without pathological structural remodeling. Future investigations will also focus on establishing inhibitors of Rad and testing the efficacy of Rad deletion in cardioprotection relative to the time of onset of acute myocardial infarction.
Collapse
Affiliation(s)
- Janet R Manning
- Department of Physiology, University of Kentucky, Lexington KY.,Department of Biochemistry, University of Kentucky, Lexington KY
| | - Lakshman Chelvarajan
- Saha Cardiovascular Research Center, Department of Medicine, University of Kentucky, Lexington, KY
| | - Bryana M Levitan
- Department of Physiology, University of Kentucky, Lexington KY.,Gill Heart and Vascular Institute, University of Kentucky, Lexington KY
| | | | | | - Christopher M Haggerty
- Saha Cardiovascular Research Center, Department of Medicine, University of Kentucky, Lexington, KY.,Department of Imaging Science and Innovation, Geisinger, Danville PA
| | - Brandon K Fornwalt
- Saha Cardiovascular Research Center, Department of Medicine, University of Kentucky, Lexington, KY.,Department of Imaging Science and Innovation, Geisinger, Danville PA
| | - Erhe Gao
- Department of Physiology, University of Kentucky, Lexington KY.,Center for Translational Medicine, Temple University School of Medicine, Philadelphia PA
| | - Himi Tripathi
- Saha Cardiovascular Research Center, Department of Medicine, University of Kentucky, Lexington, KY
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, Department of Medicine, University of Kentucky, Lexington, KY.,Gill Heart and Vascular Institute, University of Kentucky, Lexington KY
| | - Douglas A Andres
- Department of Biochemistry, University of Kentucky, Lexington KY
| | - Jonathan Satin
- Department of Physiology, University of Kentucky, Lexington KY
| |
Collapse
|
6
|
Ter Horst EN, Krijnen PAJ, Flecknell P, Meyer KW, Kramer K, van der Laan AM, Piek JJ, Niessen HWM. Sufentanil-medetomidine anaesthesia compared with fentanyl/fluanisone-midazolam is associated with fewer ventricular arrhythmias and death during experimental myocardial infarction in rats and limits infarct size following reperfusion. Lab Anim 2017; 52:271-279. [PMID: 28776458 PMCID: PMC5967036 DOI: 10.1177/0023677217724485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
To improve infarct healing following myocardial infarction in humans, therapeutic interventions can be applied during the inflammatory response. Animal models are widely used to study this process. However, induction of MI in rodents is associated with high mortality due to ventricular fibrillation (VF) during coronary artery ligation. The anaesthetic agent used during the procedure appears to influence the frequency of this complication. In this retrospective study, the effect on ventricular arrhythmia incidence during ligation and infarct size following in vivo reperfusion of two anaesthetic regimens, sufentanil–medetomidine (SM) and fentanyl/fluanisone–midazolam (FFM) was evaluated in rats. Anaesthetics were administered subcutaneously using fentanyl/fluanisone (0.5 mL/kg) with midazolam (5 mg/kg) (FFM group, n = 48) or sufentanil (0.05 mg/kg) with medetomidine (0.15 mg/kg) (SM group, n = 47). The coronary artery was ligated for 40 min to induce MI. Heart rate and ventricular arrhythmias were recorded during ligation, and infarct size was measured via histochemistry after three days of reperfusion. In the SM group, heart rate and VF incidence were lower throughout the experiment compared with the FFM group (6% versus 30%) (P < 0.01). Fatal VF did not occur in the SM group whereas this occurred in 25% of the animals in the FFM group. Additionally, after three days of reperfusion, the infarcted area following SM anaesthesia was less than half as large as that following FFM anaesthesia (8.5 ± 6.4% versus 20.7 ± 5.6%) (P < 0.01). Therefore, to minimize the possibility of complications related to VF and acute death arising during ligation, SM anaesthesia is recommended for experimental MI in rats.
Collapse
Affiliation(s)
- Ellis N Ter Horst
- 1 Department of Cardiology, Academic Medical Centre, Amsterdam, The Netherlands.,2 Netherlands Heart Institute, Utrecht, The Netherlands.,3 Institute for Cardiovascular Research (ICaR-VU), VU University Medical Centre, Amsterdam, The Netherlands.,4 Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Paul A J Krijnen
- 3 Institute for Cardiovascular Research (ICaR-VU), VU University Medical Centre, Amsterdam, The Netherlands.,4 Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Paul Flecknell
- 5 Comparative Biology Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Klaas W Meyer
- 6 Amsterdam Animal Research Centre, VU University, Amsterdam, The Netherlands
| | - Klaas Kramer
- 6 Amsterdam Animal Research Centre, VU University, Amsterdam, The Netherlands
| | - Anja M van der Laan
- 1 Department of Cardiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Jan J Piek
- 1 Department of Cardiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Hans W M Niessen
- 3 Institute for Cardiovascular Research (ICaR-VU), VU University Medical Centre, Amsterdam, The Netherlands.,4 Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands.,7 Department of Cardiac Surgery, VU University, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Maslov LN, Khaliulin I, Oeltgen PR, Naryzhnaya NV, Pei J, Brown SA, Lishmanov YB, Downey JM. Prospects for Creation of Cardioprotective and Antiarrhythmic Drugs Based on Opioid Receptor Agonists. Med Res Rev 2016; 36:871-923. [PMID: 27197922 PMCID: PMC5082499 DOI: 10.1002/med.21395] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022]
Abstract
It has now been demonstrated that the μ, δ1 , δ2 , and κ1 opioid receptor (OR) agonists represent the most promising group of opioids for the creation of drugs enhancing cardiac tolerance to the detrimental effects of ischemia/reperfusion (I/R). Opioids are able to prevent necrosis and apoptosis of cardiomyocytes during I/R and improve cardiac contractility in the reperfusion period. The OR agonists exert an infarct-reducing effect with prophylactic administration and prevent reperfusion-induced cardiomyocyte death when ischemic injury of heart has already occurred; that is, opioids can mimic preconditioning and postconditioning phenomena. Furthermore, opioids are also effective in preventing ischemia-induced arrhythmias.
Collapse
Affiliation(s)
| | - Igor Khaliulin
- School of Clinical SciencesUniversity of BristolBristolUK
| | | | | | - Jian‐Ming Pei
- Department of PhysiologyFourth Military Medical UniversityXi'anP. R. China
| | | | - Yury B. Lishmanov
- Research Institute for CardiologyTomskRussia
- National Research Tomsk Polytechnic University634050TomskRussia
| | | |
Collapse
|
8
|
Wong SSC, Irwin MG. Peri-operative cardiac protection for non-cardiac surgery. Anaesthesia 2016; 71 Suppl 1:29-39. [PMID: 26620144 DOI: 10.1111/anae.13305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Cardiovascular complications are an important cause of morbidity and mortality after non-cardiac surgery. Pre-operative identification of high-risk individuals and appropriate peri-operative management can reduce cardiovascular risk. It is important to continue chronic beta-blocker and statin therapy. Statins are relatively safe and peri-operative initiation may be beneficial in high-risk patients and those scheduled for vascular surgery. The pre-operative introduction of beta-blockers reduces myocardial injury but increases rates of stroke and mortality, possibly due to hypotension. They should only be considered in high-risk patients and the dose should be titrated to heart rate. Alpha-2 agonists may also contribute to hypotension. Aspirin continuation can increase the risk of major bleeding and offset the benefit of reduced myocardial risk. Contrary to the initial ENIGMA study, nitrous oxide does not seem to increase the risk of myocardial injury. Volatile anaesthetic agents and opioids have been shown to be cardioprotective in animal laboratory studies but these effects have, so far, not been conclusively reproduced clinically.
Collapse
Affiliation(s)
- S S C Wong
- Department of Anaesthesia, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - M G Irwin
- Department of Anaesthesia, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
9
|
Arvola O, Haapanen H, Herajärvi J, Anttila T, Puistola U, Karihtala P, Tuominen H, Anttila V, Juvonen T. Remote Ischemic Preconditioning Reduces Cerebral Oxidative Stress Following Hypothermic Circulatory Arrest in a Porcine Model. Semin Thorac Cardiovasc Surg 2016; 28:92-102. [PMID: 27568144 DOI: 10.1053/j.semtcvs.2016.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2016] [Indexed: 11/11/2022]
Abstract
Remote ischemic precondition has become prominent as one of the most promising methods to mitigate neurological damage following ischemic insult. The purpose of this study was to investigate whether the effects of remote ischemic preconditioning can be seen in the markers of oxidative stress or in redox-regulating enzymes in a porcine model. A total of 12 female piglets were randomly assigned to 2 groups. The study group underwent an intervention of 4 cycles of 5-minute ischemic preconditioning on the right hind leg. All piglets underwent 60-minute hypothermic circulatory arrest. Oxidative stress marker 8-hydroxydeoxyguanosine (8-OHdG) was measured from blood samples with enzyme-linked immunosorbent assay. After 7 days of follow-up, samples from the brain, heart, kidney, and ovary were harvested for histopathologic examination. The immunohistochemical stainings of hypoxia marker hypoxia-inducible factor-1-α, oxidative stress marker 8-OHdG, DNA repair enzyme 8-oxoguanine glycosylase, and antioxidant response regulators nuclear factor erythroid 2-related factor 2 and protein deglycase were analyzed. The level of 8-OHdG referred to baseline was decreased in the sagittal sinus׳ blood samples in the study group after a prolonged deep hypothermic circulatory arrest at 360 minutes after reperfusion. Total histopathologic score was 3.8 (1.8-6.0) in the study group and was 4.4 (2.5-6.5) in the control group (P = 0.72), demonstrating no statistically significant difference in cerebral injury. Our findings demonstrate that the positive effects of remote ischemic preconditioning can be seen in cellular oxidative balance regulators in an animal model after 7 days of preconditioned ischemic insult.
Collapse
Affiliation(s)
- Oiva Arvola
- Department of Surgery, Oulu University Hospital, Oulu, Finland
| | - Henri Haapanen
- Department of Surgery, Oulu University Hospital, Oulu, Finland
| | | | - Tuomas Anttila
- Department of Surgery, Oulu University Hospital, Oulu, Finland
| | - Ulla Puistola
- Department of Obstetrics and Gynecology, Oulu University Hospital, Oulu, Finland
| | - Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Hannu Tuominen
- Department of Pathology, Oulu University Hospital, Oulu, Finland
| | - Vesa Anttila
- Department of Surgery, Oulu University Hospital, Oulu, Finland
| | - Tatu Juvonen
- Department of Surgery, Oulu University Hospital, Oulu, Finland; Department of Cardiac Surgery, Heart and Lung Center HUCH, Helsinki, Finland.
| |
Collapse
|
10
|
Role of Opioid Receptors Signaling in Remote Electrostimulation--Induced Protection against Ischemia/Reperfusion Injury in Rat Hearts. PLoS One 2015; 10:e0138108. [PMID: 26430750 PMCID: PMC4592126 DOI: 10.1371/journal.pone.0138108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/25/2015] [Indexed: 01/28/2023] Open
Abstract
Aims Our previous studies demonstrated that remote electro-stimulation (RES) increased myocardial GSK3 phosphorylation and attenuated ischemia/ reperfusion (I/R) injury in rat hearts. However, the role of various opioid receptors (OR) subtypes in preconditioned RES-induced myocardial protection remains unknown. We investigated the role of OR subtype signaling in RES-induced cardioprotection against I/R injury of the rat heart. Methods & Results Male Spraque-Dawley rats were used. RES was performed on median nerves area with/without pretreatment with various receptors antagonists such as opioid receptor (OR) subtype receptors (KOR, DOR, and MOR). The expressions of Akt, GSK3, and PKCε expression were analyzed by Western blotting. When RES was preconditioned before the I/R model, the rat's hemodynamic index, infarction size, mortality and serum CK-MB were evaluated. Our results showed that Akt, GSK3 and PKCε expression levels were significantly increased in the RES group compared to the sham group, which were blocked by pretreatment with specific antagonists targeting KOR and DOR, but not MOR subtype. Using the I/R model, the duration of arrhythmia and infarct size were both significantly attenuated in RES group. The mortality rates of the sham RES group, the RES group, RES group + KOR antagonist, RES group + DOR/MOR antagonists (KOR left), RES group + DOR antagonist, and RES group + KOR/MOR antagonists (DOR left) were 50%, 20%, 67%, 13%, 50% and 55%, respectively. Conclusion The mechanism of RES-induced myocardial protection against I/R injury seems to involve multiple target pathways such as Akt, KOR and/or DOR signaling.
Collapse
|
11
|
Wolff G, Truse R, Decking U. Extracellular Adenosine Formation by Ecto-5'-Nucleotidase (CD73) Is No Essential Trigger for Early Phase Ischemic Preconditioning. PLoS One 2015; 10:e0135086. [PMID: 26261991 PMCID: PMC4532361 DOI: 10.1371/journal.pone.0135086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/16/2015] [Indexed: 11/20/2022] Open
Abstract
Background Adenosine is a powerful trigger for ischemic preconditioning (IPC). Myocardial ischemia induces intracellular and extracellular ATP degradation to adenosine, which then activates adenosine receptors and elicits cardioprotection. Conventionally extracellular adenosine formation by ecto-5’-nucleotidase (CD73) during ischemia was thought to be negligible compared to the massive intracellular production, but controversial reports in the past demand further evaluation. In this study we evaluated the relevance of ecto-5’-nucleotidase (CD73) for infarct size reduction by ischemic preconditioning in in vitro and in vivo mouse models of myocardial infarction, comparing CD73-/- and wild type (WT) mice. Methods and Results 3x5 minutes of IPC induced equal cardioprotection in isolated saline perfused hearts of wild type (WT) and CD73-/- mice, reducing control infarct sizes after 20 minutes of ischemia and 90 minutes of reperfusion from 46 ± 6.3% (WT) and 56.1 ± 7.6% (CD73-/-) to 26.8 ± 4.7% (WT) and 25.6 ± 4.7% (CD73-/-). Coronary venous adenosine levels measured after IPC stimuli by high-pressure liquid chromatography showed no differences between WT and CD73-/- hearts. Pharmacological preconditioning of WT hearts with adenosine, given at the measured venous concentration, was evenly cardioprotective as conventional IPC. In vivo, 4x5 minutes of IPC reduced control infarct sizes of 45.3 ± 8.9% (WT) and 40.5 ± 8% (CD73-/-) to 26.3 ± 8% (WT) and 22.6 ± 6.6% (CD73-/-) respectively, eliciting again equal cardioprotection. The extent of IPC-induced cardioprotection in male and female mice was identical. Conclusion The infarct size limiting effects of IPC in the mouse heart in vitro and in vivo are not significantly affected by genetic inactivation of CD73. The ecto-5’-nucleotidase derived extracellular formation of adenosine does not contribute substantially to adenosine’s well known cardioprotective effect in early phase ischemic preconditioning.
Collapse
Affiliation(s)
- Georg Wolff
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| | - Richard Truse
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Decking
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Contribution of Opioid Receptors to the Cytoprotective Effect of the Adaptation to Chronic Hypoxia at Anoxia/Reoxygenation of Isolated Cardiomyocytes. Bull Exp Biol Med 2015; 159:209-12. [DOI: 10.1007/s10517-015-2924-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Indexed: 11/26/2022]
|
13
|
Cohen MV, Downey JM. Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future. Br J Pharmacol 2015; 172:1913-32. [PMID: 25205071 PMCID: PMC4386972 DOI: 10.1111/bph.12903] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/22/2014] [Accepted: 08/29/2014] [Indexed: 12/19/2022] Open
Abstract
Ischaemic pre- and postconditioning are potent cardioprotective interventions that spare ischaemic myocardium and decrease infarct size after periods of myocardial ischaemia/reperfusion. They are dependent on complex signalling pathways involving ligands released from ischaemic myocardium, G-protein-linked receptors, membrane growth factor receptors, phospholipids, signalling kinases, NO, PKC and PKG, mitochondrial ATP-sensitive potassium channels, reactive oxygen species, TNF-α and sphingosine-1-phosphate. The final effector is probably the mitochondrial permeability transition pore and the signalling produces protection by preventing pore formation. Many investigators have worked to produce a roadmap of this signalling with the hope that it would reveal where one could intervene to therapeutically protect patients with acute myocardial infarction whose hearts are being reperfused. However, attempts to date to show efficacy of such an intervention in large clinical trials have been unsuccessful. Reasons for this inability to translate successes in the experimental laboratory to the clinical arena are evaluated in this review. It is suggested that all patients with acute coronary syndromes currently presenting to the hospital and being treated with platelet P2Y12 receptor antagonists, the current standard of care, are indeed already benefiting from protection from the conditioning pathways outlined earlier. If that proves to be the case, then future attempts to further decrease infarction will have to rely on interventions which protect by a different mechanism.
Collapse
Affiliation(s)
- Michael V Cohen
- Department of Physiology, University of South Alabama College of MedicineMobile, AL, USA
- Department of Medicine, University of South Alabama College of MedicineMobile, AL, USA
| | - James M Downey
- Department of Physiology, University of South Alabama College of MedicineMobile, AL, USA
| |
Collapse
|
14
|
Jia JJ, Li JH, Jiang L, Lin BY, Wang L, Su R, Zhou L, Zheng SS. Liver protection strategies in liver transplantation. Hepatobiliary Pancreat Dis Int 2015; 14:34-42. [PMID: 25655288 DOI: 10.1016/s1499-3872(15)60332-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Liver transplantation is the therapy of choice for patients with end-stage liver diseases. However, the gap between the low availability of organs and high demand is continuously increasing. Innovative strategies for organ protection are necessary to expand donor pool and to achieve better outcomes for liver transplantation. The present review analyzed and compared various strategies of liver protection. DATA SOURCES Databases such as PubMed, Embase and Ovid were searched for the literature related to donor liver protection strategies using following key words: "ischemia reperfusion injury", "graft preservation", "liver transplantation", "machine perfusion" and "conditioning". Of the 146 studies identified, only those with cutting edge strategies were analyzed. RESULTS A variety of therapeutic approaches were proposed to alleviate graft ischemia/reperfusion injury, which included static cold storage, machine perfusion (hypothermic, normothermic and subnormothermic), manual conditioning (pre, post and remote), and pharmacological conditioning. Evidences from animal experiments and clinical trials suggested that all these strategies could potentially protect liver graft; however, their clinical applications are limited partially due to their own disadvantages. CONCLUSIONS There are a plenty of methods suggested to decrease the degree of donor liver transplantation-related injury. However, none of these approaches is perfect in clinical practice. More translational researches (molecular and clinical studies) are needed to improve the techniques in liver graft protection.
Collapse
Affiliation(s)
- Jun-Jun Jia
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kikuchi C, Dosenovic S, Bienengraeber M. Anaesthetics as cardioprotectants: translatability and mechanism. Br J Pharmacol 2015; 172:2051-61. [PMID: 25322898 DOI: 10.1111/bph.12981] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/06/2014] [Accepted: 10/11/2014] [Indexed: 12/22/2022] Open
Abstract
The pharmacological conditioning of the heart with anaesthetics, such as volatile anaesthetics or opioids, is a phenomenon whereby a transient exposure to an anaesthetic agent protects the heart from the harmful consequences of myocardial ischaemia and reperfusion injury. The cellular and molecular mechanisms of anaesthetic conditioning appear largely to mimic those of ischaemic pre- and post-conditioning. Progress has been made on the understanding of the underlying mechanisms although the order of events and the specific targets of anaesthetics that trigger protection are not always clear. In the laboratory, the protection afforded by certain anaesthetics against cardiac ischaemia and reperfusion injury is powerful and reproducible but this has not necessarily translated into similarly robust clinical benefits. Indeed, clinical studies and meta-analyses delivered variable results when comparing in the laboratory setting protective and non-protective anaesthetics. Reasons for this include underlying conditions such as age, obesity and diabetes. Animal models for disease or ageing, human cardiomyocytes derived from stem cells of patients and further clinical studies are employed to better understand the underlying causes that prevent a more robust protection in patients.
Collapse
Affiliation(s)
- C Kikuchi
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Anesthesiology, Asahikawa Medical University, Asahikawa, Japan
| | | | | |
Collapse
|
16
|
Kleinbongard P, Heusch G. Extracellular signalling molecules in the ischaemic/reperfused heart - druggable and translatable for cardioprotection? Br J Pharmacol 2014; 172:2010-25. [PMID: 25204973 DOI: 10.1111/bph.12902] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/21/2014] [Accepted: 08/29/2014] [Indexed: 12/28/2022] Open
Abstract
In patients with acute myocardial infarction, timely reperfusion is essential to limit infarct size. However, reperfusion also adds to myocardial injury. Brief episodes of ischaemia/reperfusion in the myocardium or on organ remote from the heart, before or shortly after sustained myocardial ischaemia effectively reduce infarct size, provided there is eventual reperfusion. Such conditioning phenomena have been established in many experimental studies and also translated to humans. The underlying signal transduction, that is the molecular identity of triggers, mediators and effectors, is not clear yet in detail, but several extracellular signalling molecules, such as adenosine, bradykinin and opioids, have been identified to contribute to cardioprotection by conditioning manoeuvres. Several trials have attempted the translation of cardioprotection by such autacoids into a clinical scenario of myocardial ischaemia and reperfusion. Adenosine and its selective agonists reduced infarct size in a few studies, but this benefit was not translated into improved clinical outcome. All studies with bradykinin or drugs which increase bradykinin's bioavailability reported reduced infarct size and some of them also improved clinical outcome. Synthetic opioid agonists did not result in a robust infarct size reduction, but this failure of translation may relate to the cardioprotective properties of the underlying anaesthesia per se or of the comparator drugs. The translation of findings in healthy, young animals with acute coronary occlusion/reperfusion to patients of older age, with a variety of co-morbidities and co-medications, suffering from different scenarios of myocardial ischaemia/reperfusion remains a challenge.
Collapse
Affiliation(s)
- P Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University School of Medicine Essen, Essen, Germany
| | | |
Collapse
|
17
|
Maslov LN, Headrick JP, Mechoulam R, Krylatov AV, Lishmanov AY, Barzakh EI, Naryzhnaya NV, Zhang Y. The Role of Receptor Transactivation in the Cardioprotective Effects of Preconditioning and Postconditioning. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11055-013-9844-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Suo C, Sun L, Yang S. Alpinetin activates the δ receptor instead of the κ and μ receptor pathways to protect against rat myocardial cell apoptosis. Exp Ther Med 2013; 7:109-116. [PMID: 24348774 PMCID: PMC3861512 DOI: 10.3892/etm.2013.1359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/07/2013] [Indexed: 01/26/2023] Open
Abstract
Alpinetin is a natural flavonoid that protects cells against fatal injury in ischemia-reperfusion. δ receptor activation protects myocardial cells from trauma; however, the mechanism is unknown. The aim of this study was to explore the function of alpinetin in δ receptor-mediated myocardial apoptosis. The myocardial cells of newly born rats were cultivated and myocardial apoptosis was induced by serum deprivation. The MTT method was used to evaluate cell viability and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining was used to analyze apoptosis. The expression levels of opioid receptor mRNA and protein were tested using reverse transcription-polymerase reaction (RT-PCR) and western blot assays. In addition, an opioid receptor antagonist, as well as protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) inhibitors, were used to determine the inferred signaling pathway. The results showed that that alpinetin reduced the myocardial apoptosis induced by serum deprivation in a concentration-dependent manner. However, the protection conferred to the myocardial cells by alpinetin was blocked by the δ opioid receptor antagonist naltrindole, as well as by PKC and ERK inhibitors (GF109203X and U0126, respectively). In addition, it was shown that alpinetin was able to maintain the stability of the mitochondrial membrane potential, lower the level of intracytoplasmic cytochrome c and reduce Bax displacement from the cytoplasm to the mitochondria. It was concluded that alpinetin was able to activate δ receptors to induce the endogenous protection of myocardial cells via the PKC/ERK signaling pathway.
Collapse
Affiliation(s)
- Chuantao Suo
- Department of Cardiology, Daqing General Hospital Group Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Libo Sun
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuang Yang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
19
|
Perricone AJ, Bivona BJ, Jackson FR, Vander Heide RS. Conditional knockout of myocyte focal adhesion kinase abrogates ischemic preconditioning in adult murine hearts. J Am Heart Assoc 2013; 2:e000457. [PMID: 24080910 PMCID: PMC3835261 DOI: 10.1161/jaha.113.000457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Our laboratory has previously demonstrated the importance of a cytoskeletal‐based survival signaling pathway using in vitro models of ischemia/reperfusion (IR). However, the importance of this pathway in mediating stress‐elicited survival signaling in vivo is unknown. Methods and Results The essential cytoskeletal signaling pathway member focal adhesion kinase (FAK) was selectively deleted in adult cardiac myocytes using a tamoxifen‐inducible Cre‐Lox system (α‐MHC‐MerCreMer). Polymerase chain reaction (PCR) and Western blot were performed to confirm FAK knockout (KO). All mice were subjected to a 40‐minute coronary occlusion followed by 24 hours of reperfusion. Ischemic preconditioning (IP) was performed using a standard protocol. Control groups included wild‐type (WT) and tamoxifen‐treated α‐MHC‐MerCreMer+/−/FAKWT/WT (experimental control) mice. Infarct size was expressed as a percentage of the risk region. In WT mice IP significantly enhanced the expression of activated/phosphorylated FAK by 36.3% compared to WT mice subjected to a sham experimental protocol (P≤0.05; n=6 hearts [sham], n=4 hearts [IP]). IP significantly reduced infarct size in both WT and experimental control mice (43.7% versus 19.8%; P≤0.001; 44.7% versus 17.5%; P≤0.001, respectively). No difference in infarct size was observed between preconditioned FAK KO and nonpreconditioned controls (37.1% versus 43.7% versus 44.7%; FAK KO versus WT versus experimental control; P=NS). IP elicited a 67.2%/88.8% increase in activated phosphatidylinositol‐3‐kinase (PI3K) p85/activated Akt expression in WT mice, but failed to enhance the expression of either in preconditioned FAK KO mice. Conclusions Our results indicate that FAK is an essential mediator of IP‐elicited cardioprotection and provide further support for the hypothesis that cytoskeletal‐based signaling is an important component of stress‐elicited survival signaling.
Collapse
Affiliation(s)
- Adam J. Perricone
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA (A.J.P., B.J.B., F.R.J., R.S.V.H.)
| | - Benjamin J. Bivona
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA (A.J.P., B.J.B., F.R.J., R.S.V.H.)
| | - Fannie R. Jackson
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA (A.J.P., B.J.B., F.R.J., R.S.V.H.)
| | - Richard S. Vander Heide
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA (A.J.P., B.J.B., F.R.J., R.S.V.H.)
- Correspondence to: Richard S. Vander Heide, MD, PhD, Department of Pathology, 1901 Perdido Street, New Orleans, LA 70112. E‐mail:
| |
Collapse
|
20
|
Simkhovich BZ, Przyklenk K, Kloner RA. Role of Protein Kinase C in Ischemic “Conditioning”. J Cardiovasc Pharmacol Ther 2013; 18:525-32. [DOI: 10.1177/1074248413494814] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since the discovery of ischemic preconditioning (IPC) 26 years ago, numerous studies attempted to determine the mechanism of this powerful form of cardioprotection. One of the first proposed pathways of IPC suggested that the preconditioning stimulus activated phospholipase C via G-protein, and diacylglycerol released from phospholipid moieties activated protein kinase C (PKC) by translocating it from the cytosol to the sarcolemmal membranes. The major protective isoform of PKC was found to be the PKC-∊. Despite some contradictions and controversies, today even the most skeptical opponents acknowledge that PKC plays a significant role in the mechanism of IPC. During recent years, both the role and the place of PKC-∊ in the mechanism of IPC have been revised. The current review presents the evolution of the “PKC theory” and summarizes the most recent data regarding the role of PKC in IPC. In addition to classical IPC, PKC appears to play a role in the mechanisms of newer conditioning protocols, that is, remote IPC and ischemic postconditioning.
Collapse
Affiliation(s)
- Boris Z. Simkhovich
- Heart Institute, Good Samaritan Hospital, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Karin Przyklenk
- Department of Physiology, Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Emergency Medicine, Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert A. Kloner
- Heart Institute, Good Samaritan Hospital, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Duicu OM, Angoulvant D, Muntean DM. Cardioprotection against myocardial reperfusion injury: successes, failures, and perspectives. Can J Physiol Pharmacol 2013; 91:657-62. [PMID: 23889135 DOI: 10.1139/cjpp-2013-0048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The past few decades have witnessed an enormous number of research strategies aimed at protecting the heart against myocardial ischemia-reperfusion injury. Several randomized clinical trials are nowadays in progress testing whether promising therapeutic strategies aimed at preventing lethal reperfusion injury can be translated from bench to bedside. Many of these interventions, either pharmacological or mechanical, are targeting mitochondria as the final effectors of cardioprotection. Despite encouraging pre-clinical studies and small proof of concept clinical trials, there are still several limitations that may jeopardize the efficacy of cardioprotective strategies. These limitations include clinical setting, patient profile, drug administration, and methods for evaluating treatment efficacy. Identifying potential mechanistic and methodological pitfalls in the field may improve future translational research.
Collapse
Affiliation(s)
- Oana M Duicu
- Department of Pathophysiology, Victor Babeş University of Medicine and Pharmacy Timisoara, Romania
| | | | | |
Collapse
|
22
|
Surendra H, Diaz RJ, Harvey K, Tropak M, Callahan J, Hinek A, Hossain T, Redington A, Wilson GJ. Interaction of δ and κ opioid receptors with adenosine A1 receptors mediates cardioprotection by remote ischemic preconditioning. J Mol Cell Cardiol 2013; 60:142-50. [PMID: 23608604 DOI: 10.1016/j.yjmcc.2013.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/03/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
Abstract
Multiple initiatives are underway to harness the clinical benefits of remote ischemic preconditioning (rIPC) based on applying non-invasive, brief, intermittent limb ischemia/reperfusion using an external occluder. However, little is known about how rIPC induces protection in cardiomyocytes, particularly through G-protein coupled receptors. In these studies, we determined the role of opioid and adenosine receptors and their functional interactions in rIPC cardioprotection. In freshly isolated cardiomyocytes subjected to 45-min simulated ischemia followed by 60-min simulated reperfusion, we examined the ability of plasma dialysate (derived from blood obtained from rabbits remotely preconditioned by application of brief cycles of hind limb ischemia/reperfusion, rIPC dialysate) to protect cells against necrosis. rIPC dialysate and selective activation of either δ-opioid receptors or κ-opioid receptors significantly reduced the % of dead cells after simulated ischemia and simulated reperfusion. Inhibition of adenosine A1 receptors, but not adenosine A3 receptors, blocked the protection by rIPC dialysate, δ-opioid receptor and κ-opioid receptor activation. In HEK293 cells expressing either hemagglutinin A-tagged δ-opioid receptors or hemagglutinin A-tagged κ-opioid receptors, selective immunoprecipitation of adenosine A1 receptors pulled down both δ-opioid and κ-opioid receptors. This molecular association of adenosine A1 receptors with δ-opioid and κ-opioid receptors was confirmed by reverse pull-down assays. These findings strongly suggest that rIPC cardioprotection requires the activation of δ-opioid and κ-opioid receptors and relies on these receptors functionally interacting with adenosine A1 receptors.
Collapse
Affiliation(s)
- Harinee Surendra
- Division of Cell Biology, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Korzick DH, Lancaster TS. Age-related differences in cardiac ischemia-reperfusion injury: effects of estrogen deficiency. Pflugers Arch 2013; 465:669-85. [PMID: 23525672 DOI: 10.1007/s00424-013-1255-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 01/17/2023]
Abstract
Despite conflicting evidence for the efficacy of hormone replacement therapy in cardioprotection of postmenopausal women, numerous studies have demonstrated reductions in ischemia/reperfusion (I/R) injury following chronic or acute exogenous estradiol (E2) administration in adult male and female, gonad-intact and gonadectomized animals. It has become clear that ovariectomized adult animals may not accurately represent the combined effects of age and E2 deficiency on reductions in ischemic tolerance seen in the postmenopausal female. E2 is known to regulate the transcription of several cardioprotective genes. Acute, non-genomic E2 signaling can also activate many of the same signaling pathways recruited in cardioprotection. Alterations in cardioprotective gene expression or cardioprotective signal transduction are therefore likely to result within the context of aging and E2 deficiency and may help explain the reduced ischemic tolerance and loss of cardioprotection in the senescent female heart. Quantification of the mitochondrial proteome as it adapts to advancing age and E2 deficiency may also represent a key experimental approach to uncover proteins associated with disruptions in cardiac signaling contributing to age-associated declines in ischemic tolerance. These alterations have important ramifications for understanding the increased morbidity and mortality due to ischemic cardiovascular disease seen in postmenopausal females. Functional perturbations that occur in mitochondrial respiration and Ca(2+) sensitivity with age-associated E2 deficiency may also allow for the identification of alternative therapeutic targets for reducing I/R injury and treatment of the leading cause of death in postmenopausal women.
Collapse
Affiliation(s)
- Donna H Korzick
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
24
|
|
25
|
Zhou W, Ko Y, Benharash P, Yamakawa K, Patel S, Ajijola OA, Mahajan A. Cardioprotection of electroacupuncture against myocardial ischemia-reperfusion injury by modulation of cardiac norepinephrine release. Am J Physiol Heart Circ Physiol 2012; 302:H1818-25. [PMID: 22367505 DOI: 10.1152/ajpheart.00030.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Augmentation of cardiac sympathetic tone during myocardial ischemia has been shown to increase myocardial O(2) demand and infarct size as well as induce arrhythmias. We have previously demonstrated that electroacupuncture (EA) inhibits the visceral sympathoexcitatory cardiovascular reflex. The purpose of this study was to determine the effects of EA on left ventricular (LV) function, O(2) demand, infarct size, arrhythmogenesis, and in vivo cardiac norepinephrine (NE) release in a myocardial ischemia-reperfusion model. Anesthetized rabbits (n = 36) underwent 30 min of left anterior descending coronary artery occlusion followed by 90 min of reperfusion. We evaluated myocardial O(2) demand, infarct size, ventricular arrhythmias, and myocardial NE release using microdialysis under the following experimental conditions: 1) untreated, 2) EA at P5-6 acupoints, 3) sham acupuncture, 4) EA with pretreatment with naloxone (a nonselective opioid receptor antagonist), 5) EA with pretreatment with chelerythrine (a nonselective PKC inhibitor), and 6) EA with pretreatment with both naloxone and chelerythrine. Compared with the untreated and sham acupuncture groups, EA resulted in decreased O(2) demand, myocardial NE concentration, and infarct size. Furthermore, the degree of ST segment elevation and severity of LV dysfunction and ventricular arrhythmias were all significantly decreased (P < 0.05). The cardioprotective effects of EA were partially blocked by pretreatment with naloxone or chelerythrine alone and completely blocked by pretreatment with both naloxone and chelerythrine. These results suggest that the cardioprotective effects of EA against myocardial ischemia-reperfusion are mediated through inhibition of the cardiac sympathetic nervous system as well as opioid and PKC-dependent pathways.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Anesthesiology, David Geffen School Medicine, University of California, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Kim JM, Jang YH, Kim J. Morphine and remifentanil-induced cardioprotection: its experimental and clinical outcomes. Korean J Anesthesiol 2011; 61:358-66. [PMID: 22148082 PMCID: PMC3229012 DOI: 10.4097/kjae.2011.61.5.358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 01/05/2023] Open
Abstract
During the past few decades, a large number of animal studies demonstrated that commonly used opioids could provide cardioprotection against ischemia-reperfusion (I/R) injury. Opioid-induced preconditioning or postconditioning mimics ischemic preconditioning (I-Pre) or ischemic postconditioning (I-Post). Both δ- and κ-opioid receptors (OPRs) play a crucial role in opioid-induced cardioprotection (OIC). Down stream signaling effectors of OIC include ATP-sensitive potassium (KATP) channels, protein kinase C (PKC), tyrosine kinase, phosphatidylinositol-3-kinase (PI3-kinase), extracellular signal regulated kinase1/2 (ERK1/2), glycogen synthase kinase-3β (GSK-3β), and mitochondrial permeability transition pore (MPTP), among others. Recently, various reports also suggest that opioids could provide cardioprotection in humans. This review will discuss OIC using mostly morphine and remifentanil which are widely used during cardiac anesthesia in addition to the clinical implications of OIC.
Collapse
Affiliation(s)
- Jin Mo Kim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Keimyung University, Daegu, Korea
| | | | | |
Collapse
|
27
|
Cohen R, Shainberg A, Hochhauser E, Cheporko Y, Tobar A, Birk E, Pinhas L, Leipziger J, Don J, Porat E. UTP reduces infarct size and improves mice heart function after myocardial infarct via P2Y2 receptor. Biochem Pharmacol 2011; 82:1126-33. [PMID: 21839729 DOI: 10.1016/j.bcp.2011.07.094] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/06/2011] [Accepted: 07/21/2011] [Indexed: 10/18/2022]
Abstract
Pyrimidine nucleotides are signaling molecules, which activate G protein-coupled membrane receptors of the P2Y family. P2Y(2) and P2Y(4) receptors are part of the P2Y family, which is composed of 8 subtypes that have been cloned and functionally defined. We have previously found that uridine-5'-triphosphate (UTP) reduces infarct size and improves cardiac function following myocardial infarct (MI). The aim of the present study was to determine the role of P2Y(2) receptor in cardiac protection following MI using knockout (KO) mice, in vivo and wild type (WT) for controls. In both experimental groups used (WT and P2Y(2)(-/-) receptor KO mice) there were 3 subgroups: sham, MI, and MI+UTP. 24h post MI we performed echocardiography and measured infarct size using triphenyl tetrazolium chloride (TTC) staining on all mice. Fractional shortening (FS) was higher in WT UTP-treated mice than the MI group (44.7±4.08% vs. 33.5±2.7% respectively, p<0.001). However, the FS of P2Y(2)(-/-) receptor KO mice were not affected by UTP treatment (34.7±5.3% vs. 35.9±2.9%). Similar results were obtained with TTC and hematoxylin and eosin stainings. Moreover, troponin T measurements demonstrated reduced myocardial damage in WT mice pretreated with UTP vs. untreated mice (8.8±4.6 vs. 12±3.1 p<0.05). In contrast, P2Y(2)(-/-) receptor KO mice pretreated with UTP did not demonstrate reduced myocardial damage. These results indicate that the P2Y(2) receptor mediates UTP cardioprotection, in vivo.
Collapse
Affiliation(s)
- R Cohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Role of central and peripheral opioid receptors in the cardioprotection of intravenous morphine preconditioning. Ir J Med Sci 2011; 180:881-5. [DOI: 10.1007/s11845-011-0734-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 07/07/2011] [Indexed: 10/17/2022]
|
29
|
The Molecular Mechanism Underlying Morphine-Induced Akt Activation: Roles of Protein Phosphatases and Reactive Oxygen Species. Cell Biochem Biophys 2011; 61:303-11. [DOI: 10.1007/s12013-011-9213-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Opioid receptor agonist Eribis peptide 94 reduces infarct size in different porcine models for myocardial ischaemia and reperfusion. Eur J Pharmacol 2010; 651:146-51. [PMID: 21093430 DOI: 10.1016/j.ejphar.2010.10.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 10/06/2010] [Accepted: 10/29/2010] [Indexed: 12/25/2022]
Abstract
Eribis peptide 94 (EP 94) is a novel enkephalin analog, thought to interact with the μ- and δ-opioid receptors. The purpose of the present study was to examine the cardioprotective potential of EP 94 in two clinically relevant porcine models of myocardial ischaemia and reperfusion, and to investigate if such an effect is associated with an increased expression of endothelial nitric oxide synthase (eNOS). Forty-one anesthetized pigs underwent 40min of coronary occlusion followed by 4h of reperfusion. In Protocol I, balloon occlusion of the left anterior descending artery was performed with concurrent intravenous administration of (A) vehicle (n=7), (B) EP 94 (1ug/kg) after 5, 12, 19 and 26min of ischaemia (n=4) or (C) EP 94 (1ug/kg) after 26, 33, 40min of ischaemia (n=6). In Protocol II, open-chest pigs were administered (D) vehicle (n=6) or (E) 0.2ug/kg/min of EP 94 (n=6) through an intracoronary infusion into the jeopardized myocardium, started after 30min of ischaemia and maintained for 15min. The hearts were stained and the protein content of eNOS measured. EP 94 reduces infarct size when administered both early and late during ischaemia compared with vehicle (infarct size group A 61.6±2%, group B 50.2±3% and group C 49.2±2%, respectively, P<0.05), as well as when infused intracoronary (infarct size group D 82.2±3.9% and group E 61.2±2.5% respectively, P<0.01). Phosphorylated eNOS Ser(1177) in relation to total eNOS was significantly increased in the group administered EP 94, indicating activation of nitric oxide production.
Collapse
|
31
|
Bell RM, Yellon DM. There is More to Life than Revascularization: Therapeutic Targeting of Myocardial Ischemia/Reperfusion Injury. Cardiovasc Ther 2010; 29:e67-79. [DOI: 10.1111/j.1755-5922.2010.00190.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
32
|
Effects of intracerebroventricular application of the delta opioid receptor agonist [D-Ala2, D-Leu5] enkephalin on neurological recovery following asphyxial cardiac arrest in rats. Neuroscience 2010; 168:531-42. [PMID: 20167252 DOI: 10.1016/j.neuroscience.2010.02.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/22/2010] [Accepted: 02/11/2010] [Indexed: 11/23/2022]
Abstract
The delta opioid receptor (DOR) agonist [D-Ala2, D-Leu5] enkephalin (DADLE) has been implicated as a novel neuroprotective agent in the CNS. The current study was designed to evaluate the effects of intracerebroventricular (ICV) application of DADLE on neurological outcomes following asphyxial cardiac arrest (CA) in rats. Male Sprague-Dawley rats were randomly assigned to four groups: Sham group, CA group, DADLE group (DADLE+CA), and Naltrindole group (Naltrindole and DADLE+CA). All drugs were administered into the left cerebroventricle 30 min before CA. CA was induced by 8-min asphyxiation and the animals were resuscitated with a standardized method. DOR protein expression in the hippocampus was significantly increased in the CA group at 1 h after restoration of spontaneous circulation (ROSC) compared with the Sham group. As time progressed, expression of DOR proteins decreased gradually in the CA group. Treatment with DADLE alone or co-administration with Naltrindole reversed the down-regulation of DOR proteins in the hippocampus induced by CA at 24 h after ROSC. Compared with the CA group, the DADLE group had persistently better neurological functional recovery, as assessed by neurological deficit score (NDS) and Morris water maze trials. The number of surviving hippocampal CA1 neurons in the DADLE group was significantly higher than those in the CA group. However, administration of Naltrindole abolished most of the neuroprotective effects of DADLE. We conclude that ICV administration of DADLE 30 min before asphyxial CA has significant protective effects in attenuating hippocampal CA1 neuronal damage and neurological impairments, and that DADLE executes its effects mainly through DOR.
Collapse
|
33
|
Dong JW, Vallejo JG, Tzeng HP, Thomas JA, Mann DL. Innate immunity mediates myocardial preconditioning through Toll-like receptor 2 and TIRAP-dependent signaling pathways. Am J Physiol Heart Circ Physiol 2010; 298:H1079-87. [PMID: 20061547 DOI: 10.1152/ajpheart.00306.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent studies have implicated Toll-like receptor 2 (TLR2) and TLR4 signaling in delimiting liver and brain injury following ischemia-reperfusion (I/R). To determine whether TLR2 and TLR4 conferred cytoprotection in the heart, we subjected hearts of wild-type (WT) mice and mice deficient in TLR2 (TLR2D), TLR4 (TLR4D), and TIR domain-containing adapter protein (TIRAP-D) to ischemic preconditioning (IPC). Langendorff-perfused hearts were subjected to 30 min ischemia and 60 min reperfusion with or without IPC. IPC resulted in a significant increase (P < 0.05) in the percent recovery of left ventricular developed pressure (%LVDP) in WT mouse hearts (54.4 +/- 2.7% of baseline), whereas there was no significant increase in %LVDP (P > 0.05) in TIRAP-D mouse hearts (43.8 +/- 1.9%) after I/R injury. IPC also resulted in a significant (P < 0.05) decrease in I/R-induced creatine kinase release and Evans blue dye uptake in WT but not TIRAP-D hearts. Interestingly, IPC resulted in a significant (P < 0.05) increase in %LVDP in TLR4-deficient hearts (52.7 +/- 3%) but not in TLR2D hearts (39.3 +/- 1.5%). Pretreatment with a specific TLR2 ligand (Pam3CSK) protected WT hearts against I/R-induced left ventricular dysfunction. The loss of IPC-induced cardioprotection in TIRAP-D mouse hearts was accompanied by a decreased translocation of protein kinase C-epsilon and decreased phosphorylation of GSK-3beta. Taken together, these data suggest that the cardioprotective effect of IPC is mediated, at least in part, through a TLR2-TIRAP-dependent pathway, suggesting that the modulation of this pathway represents a viable target for reducing I/R injury.
Collapse
Affiliation(s)
- Jian-Wen Dong
- Department of Medicine, Winters Center for Heart Failure Research, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | | | | | | | | |
Collapse
|
34
|
Xi J, Tian W, Zhang L, Jin Y, Xu Z. Morphine prevents the mitochondrial permeability transition pore opening through NO/cGMP/PKG/Zn2+/GSK-3beta signal pathway in cardiomyocytes. Am J Physiol Heart Circ Physiol 2009; 298:H601-7. [PMID: 19966058 DOI: 10.1152/ajpheart.00453.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to test whether morphine prevents the mitochondrial permeability transition pore (mPTP) opening through Zn(2+) and glycogen synthase kinase 3beta (GSK-3beta). Fluorescence dyes including Newport Green Dichlorofluorescein (DCF), 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM), and tetramethylrhodamine ethyl ester (TMRE) were used to image free Zn(2+), nitric oxide (NO), and mitochondrial membrane potential (DeltaPsi(m)), respectively. Fluorescence images were obtained with confocal microscopy. Cardiomyocytes treated with morphine for 10 min showed a significant increase in Newport Green DCF fluorescence intensity, an effect that was reversed by the NO synthase inhibitor N (G)-nitro-L-arginine methyl ester (L-NAME), indicating that morphine mobilizes Zn(2+) via NO. Morphine rapidly produced NO. ODQ and NS2028, the inhibitors of guanylyl cyclase, prevented Zn(2+) release by morphine, implying that cGMP is involved in the action of morphine. The effect of morphine on Zn(2+) release was also abolished by KT5823, a specific inhibitor of protein kinase G (PKG). Morphine prevented oxidant-induced loss of DeltaPsi(m), indicating that morphine can modulate the mPTP opening. The effect of morphine on the mPTP was reversed by KT5823 and the Zn(2+) chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN). The action of morphine on the mPTP was lost in cells transfected with the constitutively active GSK-3beta mutant, suggesting that morphine may prevent the mPTP opening by inactivating GSK-3beta. In support, morphine significantly enhanced phosphorylation of GSK-3beta at Ser(9), and this was blocked by TPEN. GSK-3beta small interfering RNA prevented the pore opening in the control cardiomyocytes but failed to enhance the effect of morphine on the mPTP opening. In conclusion, morphine mobilizes intracellular Zn(2+) through the NO/cGMP/PKG signaling pathway and prevents the mPTP opening by inactivating GSK-3beta through Zn(2+).
Collapse
Affiliation(s)
- Jinkun Xi
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
There are numerous sedatives and analgesics used in critical care medicine today; these medications are used on critically ill patients, many of whom have heart disease, including coronary artery disease or congestive heart failure. The purpose of this review is to recognize the effects of these medications on the heart. Studies that evaluated the effects of sedatives and analgesics on normal individuals or on those with heart disease were reviewed. Current choices for sustained sedation in the critically ill include the benzodiazepines, morphine, propofol, and etomidate. Each of these medications has their particular advantages and disadvantages. Benzodiazepines provide the greatest amnesia and cardiovascular safety but they can cause significant hypotension in the hemodynamically unstable patient. Morphine provides analgesia and cardioprotective activity after ischemia, although the large observational study CRUSADE showed increased mortality rate in those patients with non-ST segment elevation myocardial infarction who received morphine. Propofol is the most easily titratable drug with cardioprotective features, but its use must be accompanied with great attention to possible development of propofol infusion syndrome, which is a deadly disease, especially in patients with head injury and those with septic shock receiving vasopressors. Etomidate has a rapid onset effect and short period of action with great hemodynamic stability even in patients with shock and hypovolemia, but the incidence of adrenal insufficiency during infusion, not bolus doses, may cause deterioration in the circulatory stability. In conclusion, the sedatives and analgesics mentioned here have characteristics that give them a cardiovascular safety profile useful in critically ill patients. However, use of these drugs on an individual basis is dependent on each agent's safety and efficacy.
Collapse
|
36
|
Wang X, Wei M, Kuukasjärvi P, Laurikka J, Rinne T, Moilanen E, Tarkka M. The anti-inflammatory effect of bradykinin preconditioning in coronary artery bypass grafting (bradykinin and preconditioning). SCAND CARDIOVASC J 2009; 43:72-9. [DOI: 10.1080/14017430802180449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xin Wang
- Division of Cardiothoracic Surgery, Tampere University Hospital, Tampere, Finland
- Department of Cardiac Surgery, FuWai Cardiovascular Disease Hospital, PUMC, China
| | - Minxin Wei
- Division of Cardiothoracic Surgery, Tampere University Hospital, Tampere, Finland
| | - Pekka Kuukasjärvi
- Division of Cardiothoracic Surgery, Tampere University Hospital, Tampere, Finland
| | - Jari Laurikka
- Division of Cardiothoracic Surgery, Tampere University Hospital, Tampere, Finland
| | - Timo Rinne
- Department of Anaesthesia and Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacological Research Group, University of Tampere, Medical School and Tampere University Hospital, Tampere, Finland
| | - Matti Tarkka
- Division of Cardiothoracic Surgery, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
37
|
Lishmanov YB, Maslov LN, Barzakh EI, Krylatov AV, Oltgen PR, Browne SA, Govindashvami M. Effects of activation of μ-, κ1-, δ1-, δ2-, and ORL1-receptors on heart resistance to the pathogenic action of delayed ischemia and reperfusion. BIOL BULL+ 2009. [DOI: 10.1134/s1062359009040062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Sadat U. Signaling pathways of cardioprotective ischemic preconditioning. Int J Surg 2009; 7:490-8. [PMID: 19540944 DOI: 10.1016/j.ijsu.2009.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 12/26/2022]
Abstract
BACKGROUND Ischemia/reperfusion (I/R) injury is a major contributory factor to cardiac dysfunction and infarct size that determines patient prognosis after acute myocardial infarction. During the last 20 years, since the appearance of the first publication on ischemic preconditioning (IP), our knowledge of this phenomenon has increased exponentially. RESULTS AND CONCLUSION Basic scientific experiments and preliminary clinical trials in humans suggest that IP confers resistance to subsequent sustained ischemic insults not only in the regional tissue but also in distant organs (remote ischemic preconditioning), which may provide a simple, cost-effective means of reducing the risk of perioperative myocardial ischemia. The mechanism may be humoral, neural, or a combination of both, and involves adenosine, bradykinin, protein kinases and K(ATP) channels, although the precise end-effector remains unclear. This review describes different signaling pathways involved in acute ischemic preconditioning in detail.
Collapse
Affiliation(s)
- Umar Sadat
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
39
|
Yu Z, Wang ZH, Yang HT. Calcium/calmodulin-dependent protein kinase II mediates cardioprotection of intermittent hypoxia against ischemic-reperfusion-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol 2009; 297:H735-42. [PMID: 19525372 DOI: 10.1152/ajpheart.01164.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intermittent high-altitude (IHA) hypoxia-induced cardioprotection against ischemia-reperfusion (I/R) injury is associated with the preservation of sarcoplasmic reticulum (SR) function. Although Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and phosphatase are known to modulate the function of cardiac SR under physiological conditions, the status of SR CaMKII and phosphatase during I/R in the hearts from IHA hypoxic rats is unknown. In the present study, we determined SR and cytosolic CaMKII activity during preischemia and I/R (30 min/30 min) in perfused hearts from normoxic and IHA hypoxic rats. The left ventricular contractile recovery, SR CaMKII activity as well as phosphorylation of phospholamban at Thr(17), and Ca(2+)/CaM-dependent SR Ca(2+)-uptake activity were depressed in the I/R hearts from normoxic rats, whereas these changes were prevented in the hearts from IHA hypoxic rats. Such beneficial effects of IHA hypoxia were lost by treating the hearts with a specific CaMKII inhibitor, KN-93. I/R also depressed cytosolic CaMKII and SR phosphatase activity, but these alterations remained unchanged in IHA hypoxic group. Furthermore, we found that the autophosphorylation at Thr(287), which confers Ca(2+)/CaM-independent activity, was not altered by I/R in both groups. These findings indicate that preservation of SR CaMKII activity plays an important role in the IHA hypoxia-induced cardioprotection against I/R injury via maintaining SR Ca(2+)-uptake activity.
Collapse
Affiliation(s)
- Zhuo Yu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Ruijin Hospital, Shanghai, China
| | | | | |
Collapse
|
40
|
SINGH G, ROHILLA A, SINGH M, BALAKUMAR P. Possible Role of JAK-2 in Attenuated Cardioprotective Effect of Ischemic Preconditioning in Hyperhomocysteinemic Rat Hearts. YAKUGAKU ZASSHI 2009; 129:523-35. [DOI: 10.1248/yakushi.129.523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Gurfateh SINGH
- Cardiovascular Pharmacology Division, ISF College of Pharmacy
| | - Ankur ROHILLA
- Cardiovascular Pharmacology Division, ISF College of Pharmacy
| | - Manjeet SINGH
- Cardiovascular Pharmacology Division, ISF College of Pharmacy
| | | |
Collapse
|
41
|
Lasukova OV, Maslov LN, Ermakov SY, Crawford D, Barth F, Krylatov AV, Hanus LO. Role of cannabinoid receptors in regulation of cardiac tolerance to ischemia and reperfusion. BIOL BULL+ 2008. [DOI: 10.1134/s1062359008040134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Drabek T, Han F, Garman RH, Stezoski J, Tisherman SA, Stezoski SW, Morhard RC, Kochanek PM. Assessment of the delta opioid agonist DADLE in a rat model of lethal hemorrhage treated by emergency preservation and resuscitation. Resuscitation 2008; 77:220-8. [PMID: 18207625 DOI: 10.1016/j.resuscitation.2007.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 11/03/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
|
43
|
Eberlin KR, McCormack MC, Nguyen JT, Tatlidede HS, Randolph MA, Austen WG. Ischemic preconditioning of skeletal muscle mitigates remote injury and mortality. J Surg Res 2008; 148:24-30. [PMID: 18570927 DOI: 10.1016/j.jss.2008.01.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/02/2008] [Accepted: 01/10/2008] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ischemic preconditioning (IPC) mitigates ischemia-reperfusion (I/R) injury in experimental models. However, the clinical significance of this protection has been unclear and a mortality reduction has not been previously reported in noncardiac models. This study examined the local and remote protection afforded by skeletal muscle IPC and sought to determine the significance of this protection on mortality. METHODS Mice subjected to 2 h hindlimb ischemia/24 h reperfusion (standard I/R injury) were compared with those undergoing a regimen of two 20-min cycles of IPC followed by standard I/R injury. Local injury was assessed via gastrocnemius histology, and remote injury was evaluated via intestinal histology and pulmonary neutrophil infiltration (n = 7). Mortality was compared in parallel groups for 1 week (n = 6). Groups were analyzed using an unpaired Student's t-test for gastrocnemius and pulmonary injury, and a Mann-Whitney rank sum test for intestinal injury. Mortality differences were interpreted through a hazard ratio. RESULTS Significant protection was observed in preconditioned animals. There was a 35% local injury reduction in skeletal muscle (71.2% versus 46.0%, P < 0.01), a 50% reduction in remote intestinal injury (2.3 versus 1.1, P < 0.01), and a 43% reduction in remote pulmonary injury (14.9 versus 8.5, P < 0.01) compared with standard injury controls. Preconditioned animals were also significantly protected from mortality, demonstrating a 66.7% survival at 1 wk compared with 0% survival after standard injury alone (hazard ratio 0.20, 95% CI: 0.02-0.59). CONCLUSIONS We have developed a murine model of IPC that demonstrates local and remote protection against I/R injury, and exhibits significant mortality reduction. This model demonstrates the powerful effect of IPC on local and remote tissues and will facilitate further study of potential mechanisms and therapies.
Collapse
Affiliation(s)
- Kyle R Eberlin
- Plastic Surgery Research Laboratory, Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
44
|
Horiuchi T, Kawaguchi M, Kurita N, Inoue S, Sakamoto T, Nakamura M, Konishi N, Furuya H. Effects of delta-opioid agonist SNC80 on white matter injury following spinal cord ischemia in normothermic and mildly hypothermic rats. J Anesth 2008; 22:32-7. [PMID: 18306011 DOI: 10.1007/s00540-007-0576-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 09/03/2007] [Indexed: 11/29/2022]
Abstract
PURPOSE Although the delta-opioid agonist SNC80 has been shown to attenuate hind-limb motor function and gray matter injury in normothermic rats subjected to spinal cord ischemia (SCI), its effects on white matter injury remain undetermined. In the present study, we investigated whether SNC80 could attenuate white matter injury in normothermic and mildly hypothermic rats. METHODS Forty rats were randomly allocated to one of following five groups: vehicle or SNC80 with 10 min of SCI at 38 degrees C (V-38-10m or SNC-38-10m, respectively), vehicle or SNC80 with 22 min of SCI at 35 degrees C (V-35-22m or SNC-35-22m, respectively), or sham. SNC80 or vehicle was intrathecally administered 15 min before SCI. Forty-eight hours after reperfusion, the white matter injury was evaluated by the extent of vacuolation. RESULTS The percent area of vacuolation in the ventral white matter was significantly lower in the SNC-38-10m and SNC-35-22m groups compared with that in the V-38-10m and V-35-22m groups, respectively (P < 0.05). CONCLUSION The results indicate that intrathecal treatment with the delta-opioid agonist SNC80 can attenuate the ventral white matter injury following SCI in rats under normothermic and mildly hypothermic conditions.
Collapse
Affiliation(s)
- Toshinori Horiuchi
- Department of Anesthesiology, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zatta AJ, Kin H, Yoshishige D, Jiang R, Wang N, Reeves JG, Mykytenko J, Guyton RA, Zhao ZQ, Caffrey JL, Vinten-Johansen J. Evidence that cardioprotection by postconditioning involves preservation of myocardial opioid content and selective opioid receptor activation. Am J Physiol Heart Circ Physiol 2008; 294:H1444-51. [PMID: 18203844 DOI: 10.1152/ajpheart.01279.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Opioids introduced at reperfusion (R) following ischemia (I) reduce infarct size much like postconditioning, suggesting the hypothesis that postconditioning increases cardiac opioids and activates local opioid receptors. Anesthetized male rats subjected to 30 min regional I and 3 h R were postconditioned with three cycles of 10 s R and 10 s reocclusion at onset of R. Naloxone (NL), its peripherally restricted analog naloxone methiodide, delta-opioid receptor (DOR) antagonist naltrindole (NTI), kappa-opioid receptor antagonist norbinaltorphimine (NorBNI), and mu-opioid receptor (MOR) antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) were administered intravenously 5 min before R. The area at risk (AAR) was comparable among groups, and postconditioning reduced infarct size from 57 +/- 2 to 42 +/- 2% (P < 0.05). None of the antagonists alone altered infarct size. All antagonists abrogated postconditioning protection at higher doses. However, blockade of infarct sparing by postconditioning was lost, since tested doses of NL, NTI, NorBNI, and CTAP were lowered. The efficacy of NorBNI declined first at 3.4 micromol/kg, followed sequentially by NTI (1.1), NL (0.37), and CTAP (0.09), suggesting likely MOR and perhaps DOR participation. Representative small, intermediate, and large enkephalins in the AAR were quantified (fmol/mg protein; mean +/- SE). I/R reduced proenkephalin (58 +/- 9 vs. 33 +/- 4; P < 0.05) and sum total of measured enkephalins, including proenkephalin, peptide B, methionine-enkephalin, and methionine-enkephalin-arginine-phenylalanine (139 +/- 17 vs. 104 +/- 7; P < 0.05) compared with shams. Postconditioning increased total enkephalins (89 +/- 8 vs. 135 +/- 5; P < 0.05) largely by increasing proenkephalin (33 +/- 4 vs. 96 +/- 7; P < 0.05). Thus the infarct-sparing effect of postconditioning appeared to involve endogenously activated MORs and possibly DORs, and preservation of enkephalin precursor synthesis in the AAR.
Collapse
Affiliation(s)
- Amanda J Zatta
- Department of Cardiothoracic Surgery, Carlyle Fraser Heart Center/Crawford Long Hospital, Emory University School of Medicine, Atlanta, Georgia 30308-2225, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pateliya BB, Singh N, Jaggi AS. Possible Role of Opioids and KATP Channels in Neuroprotective Effect of Postconditioning in Mice. Biol Pharm Bull 2008; 31:1755-60. [DOI: 10.1248/bpb.31.1755] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University
| | | |
Collapse
|
47
|
Abstract
Adenosine, a purine nucleoside, is ubiquitous in the body, and is a critical component of ATP. Its concentration jumps 100-fold during periods of oxygen depletion and ischemia. There are four adenosine receptors: A(1) and A(3) coupled to G(i/o) and the high-affinity A(2A) and low-affinity A(2B) coupled to G(s). Adenosine is one of three autacoids released by ischemic tissue which are important triggers of ischemic preconditioning (IPC). It is the A(1) and to some extent A(3) receptors which participate in the intracellular signaling that triggers cardioprotection. Unlike bradykinin and opioids, the other two autacoids, adenosine is not dependent on opening of mitochondrial K(ATP) channels or release of reactive oxygen species (ROS), but rather activates phospholipase C and/or protein kinase C (PKC) directly. Another signaling cascade at reperfusion involves activated PKC which initiates binding to and activation of an A(2) adenosine receptor that we believe is the A(2B). Although the latter is the low-affinity receptor, its interaction with PKC increases its affinity and makes it responsive to the accumulated tissue adenosine. A(2B) agonists, but not adenosine or A(1) agonists, infused at reperfusion can initiate this second signaling cascade and mimic preconditioning's protection. The same A(2B) receptors are critical for postconditioning's protection. Thus adenosine is both an important trigger and a mediator of cardioprotection.
Collapse
|
48
|
Abstract
Ischemic preconditioning renders the heart resistant to infarction from ischemia/reperfusion. Over the past two decades a great deal has been learned about preconditioning's mechanism. Adenosine, bradykinin, and opioids act in parallel to trigger the preconditioned state and do so by activating PKC. While adenosine couples directly to PKC through the phospholipases, bradykinin and opioids do so through a complex pathway that includes in order: phosphatidylinositol 3-kinase (PI3-kinase), Akt, nitric oxide synthase, guanylyl cyclase, PKG, opening of mitochondrial K(ATP) channels, and activation of PKC by redox signaling. There are even differences between the opioid and bradykinin coupling as the former activates PI3-kinase through transactivation of the epidermal growth factor receptor while the latter has an unknown coupling mechanism. Protection stems from inhibition of formation of mitochondrial permeability transition pores early in reperfusion through activation of the survival kinases, Akt and ERK. These kinases are activated as a result of PKC somehow promoting signaling from adenosine A(2) receptors early in reperfusion. The survival kinases are thought to inhibit pore formation by phosphorylating GSK-3beta. The reperfused heart requires the support of the protective signals for only about an hour after which the ischemic injury is repaired and the signals are no longer needed.
Collapse
Affiliation(s)
- James M Downey
- Department of Physiology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | | | |
Collapse
|
49
|
Iwata M, Inoue S, Kawaguchi M, Nakamura M, Konishi N, Furuya H. Effects of delta-opioid receptor stimulation and inhibition on hippocampal survival in a rat model of forebrain ischaemia. Br J Anaesth 2007; 99:538-46. [PMID: 17704092 DOI: 10.1093/bja/aem220] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND It has been reported that delta-opioid (DOP) receptor agonists may be neuroprotective in the central nervous system. However, the DOP agonist [d-Ala(2), d-Leu(5)]enkephalin (DADLE) does not produce neuroprotection in severe forebrain ischaemia. The aim of this study was to examine the effects of DADLE on hippocampal neurone survival against less severe forebrain ischaemia. METHODS Intraperitoneal injection of DADLE (0 or 16 mg kg(-1)) in male Sprague-Dawley rats was performed 30 min before ischaemia. Severe (10 min), moderate (8 min), or mild (6 min) forebrain ischaemia was produced by bilateral carotid occlusion combined with hypotension (35 mm Hg) under isoflurane (1.5%) anaesthesia. Naltrindole (10 mg kg(-1)) (DOP antagonist) was administered 30 min before DADLE in order to confirm DOP receptor activation in the neuroprotective efficacy of DADLE. Naltrindole alone was also administered 30 min before ischaemia to examine endogenous DOP agonism as a self-protecting mechanism against ischaemia. All animals were evaluated neurologically and histologically after a 1 week recovery period. RESULTS DADLE improved neurone survival in hippocampal CA3 and dentate gyrus (DG) sectors. CA1 neurones were not protected against moderate and mild ischaemia. Naltrindole abolished DADLE neuroprotection in the CA3 and DG after both moderate and mild ischaemia. Interestingly, regardless of co-administration of DADLE, naltrindole significantly worsened neuronal injury in the CA1 region after mild ischaemia. CONCLUSIONS These results suggest that DADLE provides limited neuroprotection to relatively ischaemia-resistant regions but not to selectively vulnerable regions. This was probably mediated by DOP stimulation. Pre-ischaemic treatment with a DOP antagonist, regardless of co-administration of DADLE, worsened neuronal damage at the selectively vulnerable regions only after mild forebrain ischaemia. These data suggest that DOP activation with endogenous DOP ligand may be involved in self-protecting ischaemia-sensitive regions of the brain.
Collapse
MESH Headings
- Animals
- Brain Ischemia/pathology
- Brain Ischemia/prevention & control
- Cell Survival/drug effects
- Drug Evaluation, Preclinical
- Enkephalin, Leucine-2-Alanine/pharmacology
- Enkephalin, Leucine-2-Alanine/therapeutic use
- Hippocampus/drug effects
- Hippocampus/pathology
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Neurons/drug effects
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Prosencephalon/blood supply
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/physiology
Collapse
Affiliation(s)
- M Iwata
- Department of Anesthesiology, Nara Medical University, 840 Shijo-cho Kashihara, Nara, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Cheng L, Ma S, Wei LX, Guo HT, Huang LY, Bi H, Fan R, Li J, Liu YL, Wang YM, Sun X, Zhang QY, Yu SQ, Yi DH, Ma XL, Pei JM. Cardioprotective and antiarrhythmic effect of U50,488H in ischemia/reperfusion rat heart. Heart Vessels 2007; 22:335-44. [PMID: 17879026 DOI: 10.1007/s00380-007-0983-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 02/24/2007] [Indexed: 11/29/2022]
Abstract
The objective of this study was to investigate the protective effect of U50,488H, a selective kappa-opioid receptor agonist, in the ischemia/reperfusion (I/R) rat and to delineate the underlying mechanism. Rat heart I/R injury was induced by occluding the left anterior descending coronary artery for 45 min and restoring perfusion for 120 min. U50,488H or vehicle was intravenously injected before ischemia. Electrocardiogram, heart rate (HR), arterial blood pressure (ABP), left ventricular pressure (LVP), systolic function (+dp/dtmax), and diastolic function (-dp/dtmax) were monitored in the course of the experiment. Myocardial infarction size was evaluated. Plasma concentrations of cardiac troponin T (cTnT), creatine kinase (CK), and lactate dehydrogenase (LDH) were measured. Single rat ventricular myocyte was obtained by enzymatic dissociation method. The potassium currents (IK) of isolated ventricular myocytes were recorded with the whole-cell configuration of the patch-clamp technique. Compared with the sham control group, no significant change was found in HR, while ABP, LVP and +/-dp/dtmax were significantly reduced in the I/R group. Administration of U50,488H significantly lowered HR in both control and I/R groups. Compared with the vehicle-treated I/R group, administration of U50,488H had no significant effect on I/R-induced reduction in ABP, LVP, and +/-dp/dtmax. However, this treatment significantly reduced the myocardial infarction size, and markedly decreased the contents of plasma cTnT, CK and LDH. During ischemia and reperfusion, the incidence of ventricular arrhythmia in U50,488H-treated rats was significantly reduced. These effects were independent of the bradycardia induced by U50,488H, as the reducing infarct size and antiarrhythmic effect of U50,488H were still observed in animals in which heart rate was kept constant by electrical pacing. U50,488H and BRL-52537 still produced an antiarrhythmic effect when the rat heart was subjected to a shorter ischemic period of 10 min occlusion of coronary artery, which produced no infarction. IK of the myocytes were inhibited by U50,488H in a dose-dependent manner in normal and hypoxic rat ventricular myocytes. However, the effects of U50,488H on IK did not show any significant difference in normal and hypoxic myocytes. The above-described effects of U50,488H were totally blocked by nor-Binaltorphimine, a selective kappa-opioid receptor antagonist. The results suggest that kappa-opioid agonist U50,488H exerts its direct cardioprotective and antiarrhythmic effects against I/R via kappa-opioid receptor, which participates in the regulation of potassium channels in normal and hypoxic ventricular myocytes.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Cardiac Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|