1
|
Ramos-Martínez IE, Ramos-Martínez E, Segura-Velázquez RÁ, Saavedra-Montañez M, Cervantes-Torres JB, Cerbón M, Papy-Garcia D, Zenteno E, Sánchez-Betancourt JI. Heparan Sulfate and Sialic Acid in Viral Attachment: Two Sides of the Same Coin? Int J Mol Sci 2022; 23:ijms23179842. [PMID: 36077240 PMCID: PMC9456526 DOI: 10.3390/ijms23179842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/11/2022] Open
Abstract
Sialic acids and heparan sulfates make up the outermost part of the cell membrane and the extracellular matrix. Both structures are characterized by being negatively charged, serving as receptors for various pathogens, and are highly expressed in the respiratory and digestive tracts. Numerous viruses use heparan sulfates as receptors to infect cells; in this group are HSV, HPV, and SARS-CoV-2. Other viruses require the cell to express sialic acids, as is the case in influenza A viruses and adenoviruses. This review aims to present, in a general way, the participation of glycoconjugates in viral entry, and therapeutic strategies focused on inhibiting the interaction between the virus and the glycoconjugates. Interestingly, there are few studies that suggest the participation of both glycoconjugates in the viruses addressed here. Considering the biological redundancy that exists between heparan sulfates and sialic acids, we propose that it is important to jointly evaluate and design strategies that contemplate inhibiting the interactions of both glycoconjugates. This approach will allow identifying new receptors and lead to a deeper understanding of interspecies transmission.
Collapse
Affiliation(s)
- Ivan Emmanuel Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Edgar Ramos-Martínez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - René Álvaro Segura-Velázquez
- Unidad de Investigación, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Manuel Saavedra-Montañez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Jacquelynne Brenda Cervantes-Torres
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Dulce Papy-Garcia
- Glycobiology, Cell Growth ant Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), F-94010 Créteil, France
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Ivan Sánchez-Betancourt
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence:
| |
Collapse
|
2
|
Adam L, Müller E, Ludwig K, Klenk S, Lauster D, Liese S, Herrmann A, Hackenberger CPR. Design and Functional Analysis of Heterobifunctional Multivalent Phage Capsid Inhibitors Blocking the Entry of Influenza Virus. Bioconjug Chem 2022; 33:1269-1278. [PMID: 35759354 PMCID: PMC9305970 DOI: 10.1021/acs.bioconjchem.2c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Multiple conjugation
of virus-binding ligands to multivalent carriers
is a prominent strategy to construct highly affine virus binders for
the inhibition of viral entry into host cells. In a previous study,
we introduced rationally designed sialic acid conjugates of bacteriophages
(Qβ) that match the triangular binding site geometry on hemagglutinin
spike proteins of influenza A virions, resulting in effective infection
inhibition in vitro and in vivo.
In this work, we demonstrate that even partially sialylated Qβ
conjugates retain the inhibitory effect despite reduced activity.
These observations not only support the importance of trivalent binding
events in preserving high affinity, as supported by computational
modeling, but also allow us to construct heterobifunctional modalities.
Capsids carrying two different sialic acid ligand–linker structures
showed higher viral inhibition than their monofunctional counterparts.
Furthermore, capsids carrying a fluorescent dye in addition to sialic
acid ligands were used to track their interaction with cells. These
findings support exploring broader applications as multivalent inhibitors
in the future.
Collapse
Affiliation(s)
- Lutz Adam
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Street 2, 12489 Berlin, Germany
| | - Eva Müller
- Institut für translationale HIV Forschung, Universitätsklinikum Essen, Virchowstree 171, 45147 Essen, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin 14195, Germany
| | - Simon Klenk
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Street 2, 12489 Berlin, Germany
| | - Daniel Lauster
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Susanne Liese
- Max-Planck Institute for the Physics of Complex Systems, Nöthnitzer Street 38, Dresden 01187, Germany.,Institut für Physik, Universität Augsburg, Augsburg 86159, Germany
| | - Andreas Herrmann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Street 2, 12489 Berlin, Germany
| |
Collapse
|
3
|
Edible Bird’s Nest: Physicochemical Properties, Production, and Application of Bioactive Extracts and Glycopeptides. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1696359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Feng F, Sakoda Y, Ohyanagi T, Nagahori N, Shibuya H, Okamastu M, Miura N, Kida H, Nishimura SI. Novel thiosialosides tethered to metal nanoparticles as potent influenza A virus haemagglutinin blockers. Antivir Chem Chemother 2013; 23:59-65. [PMID: 23425865 DOI: 10.3851/imp2553] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2013] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND The purpose of this study was to develop a new class of influenza A virus haemagglutinin (HA) blockers by tethering thiosialoside molecules to metal nanoparticles and producing glycoclusters that enhance the affinity of HA binding by N-acetylneuraminic acid. METHODS Oxygen of the glycoside bond of sialoside was replaced with sulfur to prevent hydrolytic digestion of the N-acetylneuraminic acid residue by viral neuraminidase. Two novel thiosialosides, α-2-S-[p-(N-levulinyl)aminophenyl]-5-N-acetylneuraminic acid (Neu5Ac-S-Lev) and α-2-S-[m-(N-levulinyl)aminobenzyl]-5-N-acetylneuraminic acid (Neu5Ac-S-CH2-Lev), were tethered onto the surface of metal nanoparticles via an aminooxy functionalized thiol linker in a glycoblotting reaction. Gold (Au) and silver (Ag) nanoparticles were coated simultaneously with 11-mercaptoundecyl phosphorylcholine to reduce non-specific adsorption of proteins. Phosphorylcholine self-assembled monolayer-coated metals displaying clustered Neu5Ac (Neu5Ac-PCSAM-Au and Neu5Ac-PCSAM-Ag) were subjected to haemagglutination inhibition (HI) assays using the influenza A virus strain A/PR/8/1934 (H1N1). RESULTS Glyconanoparticles with thiosialosides had potent HI activities. In particular, Neu5Ac-PCSAM-Au with a diameter of 20 nm corresponding to 9.8 μM monosaccharide Neu5Ac was the most potent HA inhibitor. The versatility of this strategy was demonstrated by similar submicromolar HI activities of Neu5Ac-PCSAM-Ag with diameters of 50 nm and 150 nm. CONCLUSIONS Glycosylated metal nanoparticles were designed and synthesized as potent influenza A virus HA blockers. This study may contribute to the acceleration of the discovery of a new class of nanoparticle anti-influenza drugs.
Collapse
Affiliation(s)
- Fei Feng
- Division of Drug Discovery Research, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sriwilaijaroen N, Wilairat P, Hiramatsu H, Takahashi T, Suzuki T, Ito M, Ito Y, Tashiro M, Suzuki Y. Mechanisms of the action of povidone-iodine against human and avian influenza A viruses: its effects on hemagglutination and sialidase activities. Virol J 2009; 6:124. [PMID: 19678928 PMCID: PMC2739848 DOI: 10.1186/1743-422x-6-124] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/13/2009] [Indexed: 11/23/2022] Open
Abstract
Background Influenza virus infection causes significant morbidity and mortality and has marked social and economic impacts throughout the world. The influenza surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), act cooperatively to support efficient influenza A virus replication and provide the most important targets for anti-influenza chemotherapy. In this study, povidone-iodine (PVP-I), which has a broad-spectrum microbicidal property, was examined for its inhibitory effects against influenza virus infection in MDCK cells and the mechanisms of PVP-I action on HA and NA were revealed. Results Results obtained using a novel fluorescence- and chromogenic-based plaque inhibition assay showed that 1.56 mg/ml PVP-I inhibited infections in MDCK cells of human (8 strains) and avian (5 strains) influenza A viruses, including H1N1, H3N2, H5N3 and H9N2, from 23.0–97.5%. A sialidase inhibition assay revealed that PVP-I inhibited N1, N2 and N3 neuraminidases with IC50 values of 9.5–212.1 μg/ml by a mixed-type inhibition mechanism. Receptor binding inhibition and hemagglutinin inhibition assays indicated that PVP-I affected viral hemagglutinin rather than host-specific sialic acid receptors. Conclusion Mechanisms of reduction of viral growth in MDCK cells by PVP-I involve blockade of viral attachment to cellular receptors and inhibition of viral release and spread from infected cells. Therefore, PVP-I is useful to prevent infection and limit spread of human and avian influenza viruses.
Collapse
|
6
|
Ogata M, Murata T, Murakami K, Suzuki T, Hidari KIPJ, Suzuki Y, Usui T. Chemoenzymatic synthesis of artificial glycopolypeptides containing multivalent sialyloligosaccharides with a γ-polyglutamic acid backbone and their effect on inhibition of infection by influenza viruses. Bioorg Med Chem 2007; 15:1383-93. [PMID: 17129732 DOI: 10.1016/j.bmc.2006.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/03/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
Abstract
Highly water-soluble, artificial glycopolypeptides with a gamma-polyglutamic acid (gamma-PGA) backbone derived from Bacillus subtilis sp. and multivalent sialyloligosaccharide units have been chemoenzymatically synthesized as potential polymeric inhibitors of infection by bird and human influenza viruses. 5-Trifluoroacetamidopentyl beta-N-acetyllactosaminide and 5-trifluoroacetamidopentyl beta-lactoside were enzymatically synthesized from LacNAc and lactose, respectively, by cellulase-mediated condensation with 5-trifluoroacetamido-1-pentanol. After deacetylation, the resulting 5-aminopentyl beta-LacNAc and beta-lactoside glycosides were coupled to the alpha-carboxyl groups of the gamma-PGA side chains. The artificial glycopolypeptides carrying LacNAc and lactose were further converted to Neu5Acalpha2-(3/6)Galbeta1-4Glcbeta and Neu5Acalpha2-(3/6)Galbeta1-4GlcNAcbeta sialyloligosaccharide units by alpha2,3- and alpha2,6-sialyltransferase, respectively. The interaction of these glycopolypeptides with various influenza virus strains has been investigated by three different methods. Glycopolypeptides carrying Neu5Acalpha2,6LacNAc inhibited hemagglutination mediated by influenza A and B viruses, and their relative binding affinities for hemagglutinin were 10(2)- to 10(4)-fold higher than that of the naturally occurring fetuin control. A glycopolypeptide carrying Neu5Acalpha2,6LacNAc inhibited infection by A/Memphis/1/71 (H3N2) 93 times more strongly than fetuin, as assessed by cytopathic effects on virus-infected MDCK cells. The avian virus [A/duck/Hong kong/4/78 (H5N3)] bound strongly to Neu5Acalpha2,3LacNAc/Lac-carrying glycopolypeptides, whereas the human virus [A/Memphis/1/71 (H3N2)] bound to Neu5Acalpha2,6LacNAc in preference to Neu5Acalpha2,6Lac. Taken together, these results indicate that the binding of viruses to terminal sialic acids is markedly affected by the structure of the asialo portion, in this case either LacNAc or lactose, in the sugar chain of glycopolypeptides.
Collapse
Affiliation(s)
- Makoto Ogata
- Science of Biological Resource, The United Graduate School of Agricultural Science, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Guo CT, Takahashi T, Bukawa W, Takahashi N, Yagi H, Kato K, Hidari KIPJ, Miyamoto D, Suzuki T, Suzuki Y. Edible bird's nest extract inhibits influenza virus infection. Antiviral Res 2006; 70:140-6. [PMID: 16581142 PMCID: PMC7114130 DOI: 10.1016/j.antiviral.2006.02.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 01/20/2006] [Accepted: 02/07/2006] [Indexed: 11/18/2022]
Abstract
Edible bird's nest (EBN) is the nest of the swift that is made from its saliva. Although EBN has been widely used for enhancing immunocompetence, its antiviral efficacy has not been studied in detail. We found that EBN extract could strongly inhibit infection with influenza viruses in a host range-independent manner when it was hydrolyzed with Pancreatin F. Western blotting assay showed that the EBN extract bound to influenza virus. Furthermore, EBN extract could neutralize the infection of MDCK cells with influenza viruses and inhibit hemagglutination of influenza viruses to erythrocytes, but it could not inhibit the activity of influenza virus sialidase. Fluorometric HPLC indicated that the major molecular species of sialic acid in EBN is N-acetylneuraminic acid. The results suggest that EBN is a safe and valid natural source for the prevention of influenza viruses.
Collapse
Affiliation(s)
- Chao-Tan Guo
- Department of Biochemistry, University of Shizuoka, School of Pharmaceutical Sciences and COE Program in the 21st century, Suruga-ku, Shizuoka 422-8526, Japan
- Institute of Bioengineering, Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou 310013, PR China
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, University of Shizuoka, School of Pharmaceutical Sciences and COE Program in the 21st century, Suruga-ku, Shizuoka 422-8526, Japan
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Wakoto Bukawa
- Combi Corporation, Functional Foods Div. 5-2-39 Nishibori, Sakura-ku, Saitama-shi, Saitama 338-0832, Japan
| | - Noriko Takahashi
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Hirokazu Yagi
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Koichi Kato
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Kazuya I.-P. Jwa Hidari
- Department of Biochemistry, University of Shizuoka, School of Pharmaceutical Sciences and COE Program in the 21st century, Suruga-ku, Shizuoka 422-8526, Japan
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Daisei Miyamoto
- Department of Biochemistry, University of Shizuoka, School of Pharmaceutical Sciences and COE Program in the 21st century, Suruga-ku, Shizuoka 422-8526, Japan
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Takashi Suzuki
- Department of Biochemistry, University of Shizuoka, School of Pharmaceutical Sciences and COE Program in the 21st century, Suruga-ku, Shizuoka 422-8526, Japan
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yasuo Suzuki
- Department of Biochemistry, University of Shizuoka, School of Pharmaceutical Sciences and COE Program in the 21st century, Suruga-ku, Shizuoka 422-8526, Japan
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Corresponding author. Tel.: +81 54 264 5725; fax: +81 54 264 5720.
| |
Collapse
|
8
|
Suzuki Y. Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull 2005; 28:399-408. [PMID: 15744059 DOI: 10.1248/bpb.28.399] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene pool of influenza A viruses in aquatic birds provides all of the genetic diversity required for human and lower animals. Host range selection of the receptor binding specificity of the influenza virus hemagglutinin occurs during maintenance of the virus in different host cells that express different receptor sialo-sugar chains. In this paper, functional roles of the hemagglutinin and neuraminidase spikes of influenza viruses are described in the relation to 1) host range of influenza viruses, 2) receptor binding specificity of human and other animal influenza viruses, 3) recognition of sialyl sugar chains by Spanish influenza virus hemagglutinin, 4) highly pathogenic and potentially pandemic H5N1, H9N2, and H7N7 avian influenza viruses and molecular mechanism of host range variation of influenza viruses, 5) role of the neuraminidase spike for the host range of influenza viruses, and 6) Development of anti-influenza drugs.
Collapse
Affiliation(s)
- Yasuo Suzuki
- Department of Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka , Japan.
| |
Collapse
|
9
|
Yasutake N, Totani K, Harada Y, Haraguchi S, Murata T, Usui T. Efficient synthesis of glyceroyl beta-lactoside and its derivatives through a condensation reaction by cellulase. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1620:252-8. [PMID: 12595096 DOI: 10.1016/s0304-4165(03)00004-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Condensation reaction between lactose and glycerol was effectively catalyzed by utilizing a commercially available cellulase preparation from Trichoderma reesei. The enzyme induced the formation of 1-O-beta-lactosyl-(R,S)-glycerol (1) and 2-O-beta-lactosyl glycerol (2) in a molar ratio of 7:3 and in a 20% yield based on lactose added. The enzyme also induced the condensation of lactose with 1,3-propanediol to produce O-beta-lactosyl propanediol (3) in a yield of 15%. When various alkanols (N: 2-8) and allyl alcohol were used in the condensation reaction, the corresponding alkyl and allyl beta-lactoside were obtained in the yields of 0.9-3.8% of the desired compounds.
Collapse
Affiliation(s)
- Nozomu Yasutake
- Science of Biological Resource, The United Graduate School of Agricultural Science, Gifu University, Yanagido 1-1, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Guo CT, Sun XL, Kanie O, Shortridge KF, Suzuki T, Miyamoto D, Hidari KIPJ, Wong CH, Suzuki Y. An O-glycoside of sialic acid derivative that inhibits both hemagglutinin and sialidase activities of influenza viruses. Glycobiology 2002; 12:183-90. [PMID: 11971862 DOI: 10.1093/glycob/12.3.183] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The compound Neu5Ac3alphaF-DSPE (4), in which the C-3 position was modified with an axial fluorine atom, inhibited the catalytic hydrolysis of influenza virus sialidase and the binding activity of hemagglutinin. The inhibitory activities to sialidases were independent of virus isolates examined. With the positive results obtained for inhibition of hemagglutination and hemolysis induced by A/Aichi/2/68 virus, the inhibitory effect of Neu5Ac3alphaF-DSPE (4) against MDCK cells was examined, and it was found that 4 inhibits the viral infection with IC50 value of 5.6 microM based on the cytopathic effects. The experimental results indicate that compound 4 not only inhibits the attachment of virus to the cell surface receptor but also disturbs the release of the progeny viruses from infected cells by inhibiting both hemagglutinin and sialidase of the influenza viruses. The study suggested that the compound is a new class of bifunctional drug candidates for the future chemotherapy of influenza.
Collapse
Affiliation(s)
- Chao-Tan Guo
- Department of Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Shizuoka-shi 422-8526, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sun XL, Kanie Y, Guo CT, Kanie O, Suzuki Y, Wong CH. Syntheses of C-3-Modified Sialylglycosides as Selective Inhibitors of Influenza Hemagglutinin and Neuraminidase. European J Org Chem 2000. [DOI: 10.1002/1099-0690(200007)2000:14<2643::aid-ejoc2643>3.0.co;2-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|