Pawlak R, Napiorkowska-Pawlak D, Takada Y, Urano T, Nagai N, Ihara H, Takada A. The differential effect of angiotensin II and angiotensin 1-7 on norepinephrine, epinephrine, and dopamine concentrations in rat hypothalamus: the involvement of angiotensin receptors.
Brain Res Bull 2001;
54:689-94. [PMID:
11403997 DOI:
10.1016/s0361-9230(01)00489-0]
[Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Angiotensin 1-7 has been recently claimed the active member of the angiotensins' family. In the present study we compared the effect of angiotensin II and angiotensin 1-7 on the concentration of dopamine, serotonin, epinephrine, and norepinephrine and some of their metabolites in the rat hypothalamus, where the levels of angiotensins are particularly high. Intracerebroventricular injection of angiotensin II, but not angiotensin 1-7, time-dependently elevated the levels of both epinephrine (p < 0.05) and norepinephrine (p < 0.05) in the hypothalamus and both effects could be prevented by intracerebroventricular injection of either AT(1) (candesartan), AT(2) (PD123319) or AT(1-7) (A-779) receptor antagonist. Neither angiotensin II nor angiotensin 1-7 produced any changes in the level of dopamine, dihydroxyphenylacetic acid, homovanilic acid, serotonin, 5-hydroxyindoleacetic acid, or tryptophan at any time point in comparison with the control groups. However, AT(1) but not AT(2) receptor blockade, unmasked the stimulatory effect of angiotensin 1-7 on dopamine concentration in the hypothalamus. Thus, angiotensin II and its active metabolite angiotensin 1-7 regulate selectively, albeit differentially, adrenergic, noradrenergic and dopaminergic systems in the hypothalamus, the effects that involve AT(1), AT(2) and AT(1-7) angiotensin receptors.
Collapse