1
|
Budhathoki D, Deore B, Finn MG, Sanhueza CA. A Ferrier glycosylation/ cis-dihydroxylation strategy to synthesize Leishmania spp. lipophosphoglycan-associated βGal(1,4)Man disaccharide. RSC Adv 2022; 12:28207-28216. [PMID: 36320230 PMCID: PMC9530798 DOI: 10.1039/d2ra05158c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
The Galβ(1→4)Man disaccharide, found in the cell surface lipophosphoglycan (LPG) of Leishmania species, has been synthesized by a Ferrier glycosylation/cis-dihydroxylation strategy. This stereoselective method proved efficient for synthesizing the target saccharide in good yield. In addition, we prepared two clickable O-glycoside and phospho-glycoside versions of Galβ(1→4)Man to enable conjugation to protein carriers for further immunological and antibody-binding studies.
Collapse
Affiliation(s)
- Dipesh Budhathoki
- Department of Pharmaceutical Sciences, St. John's University8000 Utopia ParkwayQueensNY 11439USA
| | - Bhavesh Deore
- Department of Pharmaceutical Sciences, St. John's University8000 Utopia ParkwayQueensNY 11439USA
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology901 Atlantic DriveAtlantaGA 30306USA
| | - Carlos A. Sanhueza
- Department of Pharmaceutical Sciences, St. John's University8000 Utopia ParkwayQueensNY 11439USA,School of Chemistry and Biochemistry, Georgia Institute of Technology901 Atlantic DriveAtlantaGA 30306USA
| |
Collapse
|
2
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Mohammed ASA, Tian W, Zhang Y, Peng P, Wang F, Li T. Leishmania lipophosphoglycan components: A potent target for synthetic neoglycoproteins as a vaccine candidate for leishmaniasis. Carbohydr Polym 2020; 237:116120. [PMID: 32241437 DOI: 10.1016/j.carbpol.2020.116120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 11/27/2022]
Abstract
Leishmania is an obligate intracellular pathogen that invades phagocytic host cells. Due to its high morbidity and mortality rates, leishmaniasis attracts significant attention. The disease, which is caused by Leishmania parasites, is distributed worldwide, particularly among developing communities, and causes fatal complications if not treated expediently. Unfortunately, the existing treatments are not preventive and do not impede Leishmania infection. Many drugs available for leishmaniasis are becoming less effective due to emerging resistance in some Leishmania species. Other drugs have drawbacks such as low cost-effectiveness, toxicity, and side effects. The World Health Organization (WHO) considers leishmaniasis to be a major public health problem and suggests that the best prevention is to develop a vaccine for this dangerous disease. In this review, we focus on the unique components of lipophosphoglycan (LPG), a component of the Leishmania cell wall, particularly [Galp(1 → 4)-β-[Manp-(1 → 2)-α-Manp-(1 → 2)-α]-Manp] in the cryptic tetrasaccharide cap, and on synthetic approaches as a potent candidate for a leishmaniasis vaccine.
Collapse
Affiliation(s)
- Aiman Saleh A Mohammed
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China; National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China
| | - Weilu Tian
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Youqin Zhang
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China
| | - Peng Peng
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China; National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China.
| | - Tianlu Li
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China; National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
Cabezas Y, Legentil L, Robert-Gangneux F, Daligault F, Belaz S, Nugier-Chauvin C, Tranchimand S, Tellier C, Gangneux JP, Ferrières V. Leishmania cell wall as a potent target for antiparasitic drugs. A focus on the glycoconjugates. Org Biomol Chem 2016; 13:8393-404. [PMID: 26130402 DOI: 10.1039/c5ob00563a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although leishmaniasis has been studied for over a century, the fight against cutaneous, mucocutaneous and visceral forms of the disease remains a hot topic. This review refers to the parasitic cell wall and more particularly to the constitutive glycoconjugates. The structures of the main glycolipids and glycoproteins, which are species-dependent, are described. The focus is on the disturbance of the lipid membrane by existing drugs and possible new ones, in order to develop future therapeutic agents.
Collapse
Affiliation(s)
- Yari Cabezas
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Forestier CL, Gao Q, Boons GJ. Leishmania lipophosphoglycan: how to establish structure-activity relationships for this highly complex and multifunctional glycoconjugate? Front Cell Infect Microbiol 2015; 4:193. [PMID: 25653924 PMCID: PMC4301024 DOI: 10.3389/fcimb.2014.00193] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 01/09/2023] Open
Abstract
A key feature of many pathogenic microorganisms is the presence of a dense glycocalyx at their surface, composed of lipid-anchored glycoproteins and non-protein-bound polysaccharides. These surface glycolipids are important virulence factors for bacterial, fungal and protozoan pathogens. The highly complex glycoconjugate lipophosphoglycan (LPG) is one of the dominant surface macromolecules of the promastigote stage of all Leishmania parasitic species. LPG plays critical pleiotropic roles in parasite survival and infectivity in both the sandfly vector and the mammalian host. Here, we review the composition of the Leishmania glycocalyx, the chemical structure of LPG and what is currently known about its effects in the mammalian host, specifically. We will then discuss the current approaches employed to elucidate LPG functions. Finally, we will provide a viewpoint on future directions that this area of investigation could take to unravel in detail the biological activity of the specific molecular elements composing the structurally complex LPG.
Collapse
Affiliation(s)
| | - Qi Gao
- Complex Carbohydrate Research Center, Department of Chemistry, University of Georgia Athens, GA, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, Department of Chemistry, University of Georgia Athens, GA, USA
| |
Collapse
|
6
|
Huang YL, Wu CY. Carbohydrate-based vaccines: challenges and opportunities. Expert Rev Vaccines 2014; 9:1257-74. [DOI: 10.1586/erv.10.120] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Hsu CH, Hung SC, Wu CY, Wong CH. Toward automated oligosaccharide synthesis. Angew Chem Int Ed Engl 2011; 50:11872-923. [PMID: 22127846 DOI: 10.1002/anie.201100125] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Indexed: 12/16/2022]
Abstract
Carbohydrates have been shown to play important roles in biological processes. The pace of development in carbohydrate research is, however, relatively slow due to the problems associated with the complexity of carbohydrate structures and the lack of general synthetic methods and tools available for the study of this class of biomolecules. Recent advances in synthesis have demonstrated that many of these problems can be circumvented. In this Review, we describe the methods developed to tackle the problems of carbohydrate-mediated biological processes, with particular focus on the issue related to the development of the automated synthesis of oligosaccharides. Further applications of carbohydrate microarrays and vaccines to human diseases are also highlighted.
Collapse
Affiliation(s)
- Che-Hsiung Hsu
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
8
|
Hsu CH, Hung SC, Wu CY, Wong CH. Auf dem Weg zur automatisierten Oligosaccharid- Synthese. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100125] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Morelli L, Poletti L, Lay L. Carbohydrates and Immunology: Synthetic Oligosaccharide Antigens for Vaccine Formulation. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100296] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Laura Morelli
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Laura Poletti
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Luigi Lay
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
10
|
Nikolaev AV, Sizova OV. Synthetic neoglycoconjugates of cell-surface phosphoglycans of Leishmania as potential anti-parasite carbohydrate vaccines. BIOCHEMISTRY. BIOKHIMIIA 2011; 76:761-73. [PMID: 21999537 PMCID: PMC5496670 DOI: 10.1134/s0006297911070066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/17/2011] [Indexed: 11/23/2022]
Abstract
Leishmania are a genus of sandfly-transmitted protozoan parasites that cause a spectrum of debilitating and often fatal diseases in humans throughout the tropics and subtropics. During the parasite life cycle, Leishmania survive and proliferate in highly hostile environments. Their survival strategies involve the formation of an elaborate and dense cell-surface glycocalyx composed of diverse stage-specific glycoconjugates that form a protective barrier. Phosphoglycans constitute the variable structural and functional domain of major cell-surface lipophosphoglycan and secreted proteophosphoglycans. In this paper, we discuss structural aspects of various phosphoglycans from Leishmania with the major emphasis on the chemical preparation of neoglycoconjugates (neoglycoproteins and neoglycolipids) based on Leishmania lipophosphoglycan structures as well as the immunological evaluation for some of them as potential anti-leishmaniasis vaccines.
Collapse
Affiliation(s)
- A V Nikolaev
- College of Life Sciences, Division of Biological Chemistry and Drug Discovery, University of Dundee, UK.
| | | |
Collapse
|
11
|
Abstract
Recent technological advances in glycobiology and glycochemistry are paving the way for a new era in carbohydrate vaccine design. This is enabling greater efficiency in the identification, synthesis and evaluation of unique glycan epitopes found on a plethora of pathogens and malignant cells. Here, we review the progress being made in addressing challenges posed by targeting the surface carbohydrates of bacteria, protozoa, helminths, viruses, fungi and cancer cells for vaccine purposes.
Collapse
|
12
|
Nikolaev AV, Botvinko IV, Ross AJ. Natural phosphoglycans containing glycosyl phosphate units: structural diversity and chemical synthesis. Carbohydr Res 2007; 342:297-344. [PMID: 17092493 DOI: 10.1016/j.carres.2006.10.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/30/2006] [Accepted: 10/04/2006] [Indexed: 11/22/2022]
Abstract
An anomeric phosphodiester linkage formed by a glycosyl phosphate unit and a hydroxyl group of another monosaccharide is found in many glycopolymers of the outer membrane in bacteria (e.g., capsular polysaccharides and lipopolysaccharides), yeasts and protozoa. The polymers (phosphoglycans) composed of glycosyl phosphate (or oligoglycosyl phosphate) repeating units could be chemically classified as poly(glycosyl phosphates). Their importance as immunologically active components of the cell wall and/or capsule of numerous microorganisms upholds the need to develop routes for the chemical preparation of these biopolymers. In this paper, we (1) present a review of the primary structures (known to date) of natural phosphoglycans from various sources, which contain glycosyl phosphate units, and (2) discuss different approaches and recent achievements in the synthesis of glycosyl phosphosaccharides and poly(glycosyl phosphates).
Collapse
Affiliation(s)
- Andrei V Nikolaev
- College of Life Sciences, Division of Biological Chemistry and Molecular Microbiology, University of Dundee, Dundee DD1 5EH, UK.
| | | | | |
Collapse
|
13
|
El-Aneed A, Banoub J, Koen-Alonso M, Boullanger P, Lafont D. Establishment of mass spectrometric fingerprints of novel synthetic cholesteryl neoglycolipids: the presence of a unique C-glycoside species during electrospray ionization and during collision-induced dissociation tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:294-310. [PMID: 17088074 DOI: 10.1016/j.jasms.2006.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 09/25/2006] [Accepted: 09/28/2006] [Indexed: 05/12/2023]
Abstract
In this study we evaluated the fragmentation pattern of 16 novel amphiphilic neoglycolipid cholesteryl derivatives that can be efficiently used to increase cationic liposomal stability and to enhance gene transfer ability. These neoglycolipids bear different sugar moieties, such as D-glucosamine, N-acetyl-D-glucosamine, N-trideuterioacetyl-D-glucosamine, N-acetyllactosamine, L-fucose, N-allyloxycarbonyl-D-glucosamine, and some of their per-O-acetylated derivatives. Regardless of the structure of the tested neoglycolipid, QqToF-MS analysis using electrospray ionization (ESI) source showed abundant protonated [M+H]+ species. We also identified by both QqToF-MS and low-energy collision tandem mass spectrometry (CID-MS/MS) of the [M+H]+ ion, the presence of specific common fingerprint fragment ions: [Cholestene]+, sugar [oxonium]+, [(Sugar-spacer-OH)+H]+, [oxonium-H2O]+, and [(Cholesterol-spacer-OH)+H]+. In addition, we observed a unique ion that could not be rationally explained by the expected fragmentation of these amphiphilic molecules. The structure of this ion was tentatively proposed with that of a C-glycoside species formed by a chemical reaction between the sugar portion and the cholesterol. MS/MS analysis of this unique [C-glycoside]+ confirmed the validity of the proposed structure of this ion. The presence of an amino group at position C-2 and free hydroxyl groups of the sugar motif is crucial for the formation of a "reactive" sugar oxonium ion that can form the [C-glycoside]+ species. In summary, we precisely established the fragmentation patterns of the tested series of neoglycolipid cholesteryl derivatives and authenticated their structure as well; moreover, we speculated on the formation of a C-glycoside with the ESI source under atmospheric pressure and in the collision cell during MS/MS analysis.
Collapse
Affiliation(s)
- Anas El-Aneed
- Biochemistry Department, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | | | | | | |
Collapse
|
14
|
Rogers ME, Sizova OV, Ferguson MAJ, Nikolaev AV, Bates PA. Synthetic glycovaccine protects against the bite of leishmania-infected sand flies. J Infect Dis 2006; 194:512-8. [PMID: 16845636 PMCID: PMC2839923 DOI: 10.1086/505584] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 03/22/2006] [Indexed: 01/21/2023] Open
Abstract
Leishmaniasis is a vectorborne disease transmitted to human and other mammalian hosts by sand fly bite. In the present study, we show that immunization with Leishmania mexicana promastigote secretory gel (PSG) or with a chemically defined synthetic glycovaccine containing the glycans found in L. mexicana PSG can provide significant protection against challenge by the bite of infected sand flies. Only the glycan from L. mexicana was protective; those from other species did not protect against L. mexicana infection. Furthermore, neither PSG nor the glycovaccine protected against artificial needle challenge, which is traditionally used in antileishmanial vaccine development. Conversely, an antigen preparation that was effective against needle challenge offered no protection against sand fly bite. These findings provide a new target for Leishmania vaccine development and demonstrate the critical role that the vector plays in the evaluation of candidate vaccines for leishmaniasis and other vectorborne diseases.
Collapse
Affiliation(s)
- Matthew E Rogers
- Liverpool School of Tropical Medicine, University of Liverpool, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Abstract
In the past decades, a gradual increase in the resistance to antibiotics has been observed, leading to a serious thread for successful treatment of bacterial infections. This feature in addition to difficulties in developing adequate drugs against (tropical) diseases caused by parasites has stimulated the interest in vaccines to prevent infections. In principle, various types of cell surface epitopes, characteristic for the invading organism or related to aberrant growth of cells, can be applied to develop vaccines. The progress in establishing the structure of carbohydrate immuno-determinants in conjunction with improvements in carbohydrate synthesis has rendered it feasible to develop new generations of carbohydrate-based vaccines.
Collapse
Affiliation(s)
- Johannes F G Vliegenthart
- Bijvoet Center, Division Bioorganic Chemistry, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands.
| |
Collapse
|
16
|
Higson AP, Ross AJ, Tsvetkov YE, Routier FH, Sizova OV, Ferguson MAJ, Nikolaev AV. Synthetic Fragments of Antigenic Lipophosphoglycans fromLeishmania major andLeishmania mexicana and Their Use for Characterisation of theLeishmania Elongating ?-D-Mannopyranosylphosphate Transferase. Chemistry 2005; 11:2019-30. [PMID: 15685582 DOI: 10.1002/chem.200400563] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The phosphorylated branched heptasaccharides 7 and 8, the octasaccharide 9 and the phosphorylated trisaccharides 5 and 6, which are fragments of the phosphoglycan portion of the surface lipophosphoglycans from Leishmania mexicana (5) or L. major (6-9), were synthesised by using the glycosyl hydrogenphosphonate method for the preparation of phosphodiester bridges. The compounds were tested as acceptor substrates/putative inhibitors for the Leishmania elongating alpha-D-mannosylphosphate transferase.
Collapse
Affiliation(s)
- Adrian P Higson
- Faculty of Life Sciences, Division of Biological Chemistry and Molecular Microbiology, University of Dundee (Carnelley Building), Dundee DD1 4HN, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Nyame AK, Kawar ZS, Cummings RD. Antigenic glycans in parasitic infections: implications for vaccines and diagnostics. Arch Biochem Biophys 2004; 426:182-200. [PMID: 15158669 DOI: 10.1016/j.abb.2004.04.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 04/12/2004] [Indexed: 02/01/2023]
Abstract
Infections by parasitic protozoans and helminths are a major world-wide health concern, but no vaccines exist to the major human parasitic diseases, such as malaria, African trypanosomiasis, amebiasis, leishmaniasis, schistosomiasis, and lymphatic filariasis. Recent studies on a number of parasites indicate that immune responses to parasites in infected animals and humans are directed to glycan determinants within cell surface and secreted glycoconjugates and that glycoconjugates are important in host-parasite interactions. Because of the tremendous success achieved recently in generating carbohydrate-protein conjugate vaccines toward microbial infections, such as Haemophilus influenzae type b, there is renewed interest in defining parasite-derived glycans in the prospect of developing conjugate vaccines and new diagnostics for parasitic infections. Parasite-derived glycans are compelling vaccine targets because they have structural features that distinguish them from mammalian glycans. There have been exciting new developments in techniques for glycan analysis and the methods for synthesizing oligosaccharides by chemical or combined chemo-enzymatic approaches that now make it feasible to generate parasite glycans to test as vaccine candidates. Here, we highlight recent progress made in elucidating the immunogenicity of glycans from some of the major human and animal parasites, the potential for developing conjugate vaccines for parasitic infections, and the possible utilization of these novel glycans in diagnostics.
Collapse
Affiliation(s)
- A Kwame Nyame
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Biomedical Research Center, Room 417, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
18
|
Synthesis of potential bisubstrate inhibitors of Leishmania elongating α-d-mannosyl phosphate transferase. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2003.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Gandolfi-Donadío L, Gallo-Rodriguez C, de Lederkremer RM. Syntheses of beta-d-Galf-(1-->6)-beta-d-Galf-(1-->5)-d-Galf and beta-d-Galf-(1-->5)-beta-d-Galf-(1-->6)-d-Galf, trisaccharide units in the galactan of Mycobacterium tuberculosis. J Org Chem 2003; 68:6928-34. [PMID: 12946132 DOI: 10.1021/jo034365o] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The galactofuran is a crucial constituent of the cell wall of mycobacteria. An efficient synthesis of the two trisaccharide units of the galactan is described. The strategy relies on the use of substituted d-galactono-1,4-lactones as precursors for the internal and the reducing galactofuranoses. Dec-9-enyl beta-d-Galf-(1-->6)-beta-d-Galf-(1-->5)-beta-d-Galf (2) and dec-9-enyl beta-d-Galf-(1-->5)-beta-d-Galf-(1-->6)-beta-d-Galf (9) so far reported as convenient substrates for the galactofuranosyl transferase, and possibly useful for immunological studies, were obtained by the trichloroacetimidate method of glycosylation.
Collapse
Affiliation(s)
- Lucía Gandolfi-Donadío
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
| | | | | |
Collapse
|
20
|
Ruhela D, Vishwakarma RA. Iterative synthesis of Leishmania phosphoglycans by solution, solid-phase, and polycondensation approaches without involving any glycosylation. J Org Chem 2003; 68:4446-56. [PMID: 12762750 DOI: 10.1021/jo0341867] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general strategy (solution, solid-phase, and polycondensation) for the synthesis of antigenic phosphoglycans (PG) of the protozoan parasite Leishmania is presented. Phosphoglycans constitute the variable structural and functional domain of major cell-surface lipophosphoglycan (LPG) and secreted proteophosphoglycan (PPG), the molecules involved in infectivity and survival of the Leishmania parasite inside human macrophages. We have shown that the chemically labile, anomerically phosphodiester-linked phosphoglycan repeats can be assembled in an iterative and efficient manner from a single key intermediate, without involving any glycosylation steps. Furthermore, the phosphoglycan chain can be extended toward either the nonreducing (6'-OH) or the reducing (1-OH) end. We also describe a new and efficient solid-phase methodology to construct phosphoglycans based on design and application of a novel cis-allylphosphoryl solid-phase linker that enabled the selective cleavage of the first anomeric-phosphodiester linkage without affecting any of the other internal anomeric-phosphodiester groups of the growing PG chain on the solid support. The strategy to construct larger phosphoglycans in a one-pot synthesis by polycondensation of a single key intermediate is also described, enabling CD spectrometric measurements to show the helical nature of phosphoglycans. Our versatile synthetic approach provides easy access to Leishmania phosphoglycans and the opportunity to address key immunological, biochemical, and biophysical questions pertaining to the phosphoglycan family (LPG and PPG) unique to the parasite.
Collapse
Affiliation(s)
- Dipali Ruhela
- Bio-organic Chemistry Laboratory, National Institute of Immunology, JNU Complex, New Delhi 110067, India
| | | |
Collapse
|
21
|
|