1
|
Varela K, Brown JA, Lipton B, Dunn J, Stanek D, Behravesh CB, Chapman H, Conger TH, Vanover T, Edling T, Holzbauer S, Lennox AM, Lindquist S, Loerzel S, Mehlenbacher S, Mitchell M, Murphy M, Olsen CW, Yager CM. A Review of Zoonotic Disease Threats to Pet Owners: A Compendium of Measures to Prevent Zoonotic Diseases Associated with Non-Traditional Pets: Rodents and Other Small Mammals, Reptiles, Amphibians, Backyard Poultry, and Other Selected Animals. Vector Borne Zoonotic Dis 2022; 22:303-360. [PMID: 35724316 PMCID: PMC9248330 DOI: 10.1089/vbz.2022.0022] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Kate Varela
- One Health Office, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jennifer A. Brown
- National Association of State Public Health Veterinarians
- Indiana Department of Health
| | - Beth Lipton
- National Association of State Public Health Veterinarians
- Seattle & King County Public Health
| | - John Dunn
- National Association of State Public Health Veterinarians
- Tennessee Department of Health
| | - Danielle Stanek
- National Association of State Public Health Veterinarians
- Florida Department of Health
| | | | - Helena Chapman
- Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine
- American Association for the Advancement of Science at NASA Applied Sciences
| | - Terry H. Conger
- U.S. Department of Agriculture Animal (USDA) and Plant Health Inspection Service (APHIS) Veterinary Services
| | | | | | - Stacy Holzbauer
- Minnesota Department of Health
- CDC Preparedness and Response Career Epidemiology Field Officer Program
| | | | | | | | | | - Mark Mitchell
- Louisiana State University School of Veterinary Medicine, Veterinary Clinical Sciences
| | - Michael Murphy
- Food and Drug Administration Center for Veterinary Medicine
| | - Christopher W. Olsen
- AVMA Council on Public Health
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine
| | | |
Collapse
|
2
|
An Unusual Case of Meningitis in an Adolescent. Pediatr Infect Dis J 2021; 40:864-865. [PMID: 33538541 DOI: 10.1097/inf.0000000000003090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Affiliation(s)
- Geren S Stone
- From the Departments of Medicine (G.S.S., N.J.), Radiology (M.G.), and Pathology (M.M.S.), Massachusetts General Hospital, and the Departments of Medicine (G.S.S., N.J.), Radiology (M.G.), and Pathology (M.M.S.), Harvard Medical School - both in Boston
| | - McKinley Glover
- From the Departments of Medicine (G.S.S., N.J.), Radiology (M.G.), and Pathology (M.M.S.), Massachusetts General Hospital, and the Departments of Medicine (G.S.S., N.J.), Radiology (M.G.), and Pathology (M.M.S.), Harvard Medical School - both in Boston
| | - Nikolaus Jilg
- From the Departments of Medicine (G.S.S., N.J.), Radiology (M.G.), and Pathology (M.M.S.), Massachusetts General Hospital, and the Departments of Medicine (G.S.S., N.J.), Radiology (M.G.), and Pathology (M.M.S.), Harvard Medical School - both in Boston
| | - Maroun M Sfeir
- From the Departments of Medicine (G.S.S., N.J.), Radiology (M.G.), and Pathology (M.M.S.), Massachusetts General Hospital, and the Departments of Medicine (G.S.S., N.J.), Radiology (M.G.), and Pathology (M.M.S.), Harvard Medical School - both in Boston
| |
Collapse
|
4
|
Tagliapietra V, Rosà R, Rossi C, Rosso F, Hauffe HC, Tommasini M, Versini W, Cristallo AF, Rizzoli A. Emerging Rodent-Borne Viral Zoonoses in Trento, Italy. ECOHEALTH 2018; 15:695-704. [PMID: 29796719 DOI: 10.1007/s10393-018-1335-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 02/27/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Rodent-borne hanta- and arenaviruses are an emerging public health threat in Europe; however, their circulation in human populations is usually underestimated since most infections are asymptomatic. Compared to other European countries, Italy is considered 'low risk' for these viruses, yet in the Province of Trento, two pathogenic hantaviruses (Puumala and Dobrava-Belgrade virus) and one arenavirus (Lymphocytic Choriomeningitis Virus) are known to circulate in rodent reservoirs. In this paper, we performed a follow-up serological screening in humans to detect variation in the prevalence of these three viruses compared to previous analyses carried out in 2002. We also used a statistical model to link seropositivity to risk factors such as occupational exposure, cutting firewood, hunting, collecting mushrooms, having a garden and owning a woodshed, a dog or a companion rodent. We demonstrate a significant increase in the seroprevalence of all three target viruses between 2002 and 2015, but no risk factors that we considered were significantly correlated with this increase. We conclude that the general exposure of residents in the Alps to these viruses has probably increased during the last decade. These results provide an early warning to public health authorities, and we suggest more detailed diagnostic and clinical investigations on suspected cases.
Collapse
Affiliation(s)
- Valentina Tagliapietra
- Department of Biodiversity and Molecular Ecology, Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele all'Adige, TN, Italy.
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele all'Adige, TN, Italy
| | - Chiara Rossi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele all'Adige, TN, Italy
| | - Fausta Rosso
- Department of Biodiversity and Molecular Ecology, Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele all'Adige, TN, Italy
| | - Heidi Christine Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele all'Adige, TN, Italy
| | | | - Walter Versini
- Azienda Provinciale per i Servizi Sanitari di Trento, Trento, Italy
| | | | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele all'Adige, TN, Italy
| |
Collapse
|
5
|
Ly H. Differential Immune Responses to New World and Old World Mammalian Arenaviruses. Int J Mol Sci 2017; 18:E1040. [PMID: 28498311 PMCID: PMC5454952 DOI: 10.3390/ijms18051040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 12/17/2022] Open
Abstract
Some New World (NW) and Old World (OW) mammalian arenaviruses are emerging, zoonotic viruses that can cause lethal hemorrhagic fever (HF) infections in humans. While these are closely related RNA viruses, the infected hosts appear to mount different types of immune responses against them. Lassa virus (LASV) infection, for example, results in suppressed immune function in progressive disease stage, whereas patients infected with Junín virus (JUNV) develop overt pro-inflammatory cytokine production. These viruses have also evolved different molecular strategies to evade host immune recognition and activation. This paper summarizes current progress in understanding the differential immune responses to pathogenic arenaviruses and how the information can be exploited toward the development of vaccines against them.
Collapse
Affiliation(s)
- Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, 1988 Fitch Ave., Ste 295, Saint Paul, MN 55108, USA.
| |
Collapse
|
6
|
Abstract
Report of the Working Group on Hygiene of the Gesellschaft für Versuchstierkunde–Society for Laboratory Animal Science (GV-SOLAS) GV-SOLAS Working Group on Hygiene: Werner Nicklas (Chairman), Felix R. Homberger, Brunhilde Illgen-Wilcke, Karin Jacobi, Volker Kraft, Ivo Kunstyr, Michael Mähler, Herbert Meyer & Gabi Pohlmeyer-Esch
Collapse
|
7
|
Reperant LA, Brown IH, Haenen OL, de Jong MD, Osterhaus ADME, Papa A, Rimstad E, Valarcher JF, Kuiken T. Companion Animals as a Source of Viruses for Human Beings and Food Production Animals. J Comp Pathol 2016; 155:S41-53. [PMID: 27522300 DOI: 10.1016/j.jcpa.2016.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 01/12/2023]
Abstract
Companion animals comprise a wide variety of species, including dogs, cats, horses, ferrets, guinea pigs, reptiles, birds and ornamental fish, as well as food production animal species, such as domestic pigs, kept as companion animals. Despite their prominent place in human society, little is known about the role of companion animals as sources of viruses for people and food production animals. Therefore, we reviewed the literature for accounts of infections of companion animals by zoonotic viruses and viruses of food production animals, and prioritized these viruses in terms of human health and economic importance. In total, 138 virus species reportedly capable of infecting companion animals were of concern for human and food production animal health: 59 of these viruses were infectious for human beings, 135 were infectious for food production mammals and birds, and 22 were infectious for food production fishes. Viruses of highest concern for human health included hantaviruses, Tahyna virus, rabies virus, West Nile virus, tick-borne encephalitis virus, Crimean-Congo haemorrhagic fever virus, Aichi virus, European bat lyssavirus, hepatitis E virus, cowpox virus, G5 rotavirus, influenza A virus and lymphocytic choriomeningitis virus. Viruses of highest concern for food production mammals and birds included bluetongue virus, African swine fever virus, foot-and-mouth disease virus, lumpy skin disease virus, Rift Valley fever virus, porcine circovirus, classical swine fever virus, equine herpesvirus 9, peste des petits ruminants virus and equine infectious anaemia virus. Viruses of highest concern for food production fishes included cyprinid herpesvirus 3 (koi herpesvirus), viral haemorrhagic septicaemia virus and infectious pancreatic necrosis virus. Of particular concern as sources of zoonotic or food production animal viruses were domestic carnivores, rodents and food production animals kept as companion animals. The current list of viruses provides an objective basis for more in-depth analysis of the risk of companion animals as sources of viruses for human and food production animal health.
Collapse
Affiliation(s)
- L A Reperant
- Department of Viroscience, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - I H Brown
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey, UK
| | - O L Haenen
- National Reference Laboratory for Fish, Shellfish and Crustacean Diseases, Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - M D de Jong
- Department of Medical Microbiology, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - A D M E Osterhaus
- Department of Viroscience, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - A Papa
- Department of Microbiology, Medical School Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - E Rimstad
- Department of Food Safety and Infection Biology, University of Life Sciences, Oslo, Norway
| | - J-F Valarcher
- Department of Virology, Immunology, and Parasitology, National Veterinary Institute, Uppsala, Sweden
| | - T Kuiken
- Department of Viroscience, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Basavaraju SV, Kuehnert MJ, Zaki SR, Sejvar JJ. Encephalitis caused by pathogens transmitted through organ transplants, United States, 2002-2013. Emerg Infect Dis 2015; 20:1443-51. [PMID: 25148201 PMCID: PMC4178385 DOI: 10.3201/eid2009.131332] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Donor-derived infectious encephalitis among transplant recipients is rare and may not be recognized by clinicians. The cause of encephalitis among solid organ transplant recipients may be multifactorial; the disease can result from infectious or noninfectious etiologies. During 2002–2013, the US Centers for Disease Control and Prevention investigated several encephalitis clusters among transplant recipients. Cases were caused by infections from transplant-transmitted pathogens: West Nile virus, rabies virus, lymphocytic choriomeningitis virus, and Balamuthia mandrillaris amebae. In many of the clusters, identification of the cause was complicated by delayed diagnosis due to the rarity of the disease, geographic distance separating transplant recipients, and lack of prompt recognition and reporting systems. Establishment of surveillance systems to detect illness among organ recipients, including communication among transplant center physicians, organ procurement organizations, and public health authorities, may enable the rapid discovery and investigation of infectious encephalitis clusters. These transplant-transmitted pathogen clusters highlight the need for greater awareness among clinicians, pathologists, and public health workers, of emerging infectious agents causing encephalitis among organ recipients.
Collapse
|
9
|
Human hemorrhagic Fever causing arenaviruses: molecular mechanisms contributing to virus virulence and disease pathogenesis. Pathogens 2015; 4:283-306. [PMID: 26011826 PMCID: PMC4493475 DOI: 10.3390/pathogens4020283] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 12/22/2022] Open
Abstract
Arenaviruses include multiple human pathogens ranging from the low-risk lymphocytic choriomeningitis virus (LCMV) to highly virulent hemorrhagic fever (HF) causing viruses such as Lassa (LASV), Junin (JUNV), Machupo (MACV), Lujo (LUJV), Sabia (SABV), Guanarito (GTOV), and Chapare (CHPV), for which there are limited preventative and therapeutic measures. Why some arenaviruses can cause virulent human infections while others cannot, even though they are isolated from the same rodent hosts, is an enigma. Recent studies have revealed several potential pathogenic mechanisms of arenaviruses, including factors that increase viral replication capacity and suppress host innate immunity, which leads to high viremia and generalized immune suppression as the hallmarks of severe and lethal arenaviral HF diseases. This review summarizes current knowledge of the roles of each of the four viral proteins and some known cellular factors in the pathogenesis of arenaviral HF as well as of some human primary cell-culture and animal models that lend themselves to studying arenavirus-induced HF disease pathogenesis. Knowledge gained from these studies can be applied towards the development of novel therapeutics and vaccines against these deadly human pathogens.
Collapse
|
10
|
Abstract
Human risks of acquiring a zoonotic disease from animals used in biomedical research have declined over the last decade because higher quality research animals have defined microbiologic profiles. Even with diminished risks, the potential for exposure to infectious agents still exists, especially from larger species such as nonhuman primates, which may be obtained from the wild, and from livestock, dogs, ferrets, and cats, which are generally not raised in barrier facilities and are not subject to the intensive health monitoring performed routinely on laboratory rodents and rabbits. Additionally, when laboratory animals are used as models for infectious disease studies, exposure to microbial pathogens presents a threat to human health. Also, with the recognition of emerging diseases, some of which are zoonotic, constant vigilance and surveillance of laboratory animals for zoonotic diseases are still required.
Collapse
Affiliation(s)
- James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Glen Otto
- Animal Resources Ctr University Texas Austin, Austin, TX, USA
| | - Lesley A. Colby
- Department of comparative Medicine University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Cho TA, Mckendall RR. Clinical approach to the syndromes of viral encephalitis, myelitis, and meningitis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:89-121. [PMID: 25015482 DOI: 10.1016/b978-0-444-53488-0.00004-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Tracey A Cho
- Department of Neurology, Harvard Medical School and Neuro-ID Program, Massachusetts General Hospital, Boston, MA, USA
| | - Robert R Mckendall
- Departments of Neurology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
12
|
McLay L, Ansari A, Liang Y, Ly H. Targeting virulence mechanisms for the prevention and therapy of arenaviral hemorrhagic fever. Antiviral Res 2012; 97:81-92. [PMID: 23261843 DOI: 10.1016/j.antiviral.2012.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 11/28/2012] [Accepted: 12/07/2012] [Indexed: 11/28/2022]
Abstract
A number of arenaviruses are pathogenic for humans, but they differ significantly in virulence. Lassa virus, found in West Africa, causes severe hemorrhagic fever (HF), while the other principal Old World arenavirus, lymphocytic choriomeningitis virus, causes mild illness in persons with normal immune function, and poses a threat only to immunocompromised individuals. The New World agents, including Junin, Machupo and Sabia virus, are highly pathogenic for humans. Arenaviral HF is characterized by high viremia and general immune suppression, the mechanism of which is unknown. Studies using viral reverse genetics, cell-based assays, animal models and human genome-wide association analysis have revealed potential mechanisms by which arenaviruses cause severe disease in humans. Each of the four viral gene products (GPC, L polymerase, NP, and Z matrix protein) and several host-cell factors (e.g., α-dystroglycan) are responsible for mediating viral entry, genome replication, and the inhibition of apoptosis, translation and interferon-beta (IFNβ) production. This review summarizes current knowledge of the role of each viral protein and host factor in the pathogenesis of arenaviral HF. Insights from recent studies are being exploited for the development of novel therapies.
Collapse
Affiliation(s)
- Lisa McLay
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, United States
| | | | | | | |
Collapse
|
13
|
Irwin NR, Bayerlová M, Missa O, Martínková N. Complex patterns of host switching in New World arenaviruses. Mol Ecol 2012; 21:4137-50. [PMID: 22693963 DOI: 10.1111/j.1365-294x.2012.05663.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We empirically tested the long-standing hypothesis of codivergence of New World arenaviruses (NWA) with their hosts. We constructed phylogenies for NWA and all known hosts and used them in reconciliation analyses. We also constructed a phylogenetic tree of all Sigmodontinae and Neotominae rodents and tested whether viral-host associations were phylogenetically clustered. We determined host geographical overlap to determine to what extent opportunity to switch hosts was limited by host relatedness or physical proximity. With the exception of viruses from North America, no phylogenetically codivergent pattern between NWA and their hosts was found. We found that different virus clades were clustered differently and that Clade B with members pathogenic to humans was randomly distributed across the rodent phylogeny. Furthermore, viral relatedness within Clade B was significantly explained by the geographic overlap of their hosts' ranges rather than host relatedness, indicating that they are capable of host switching opportunistically. This has important bearings on their potential to become panzootic. Together, these analyses suggest that NWA have not codiverged with their hosts and instead have evolved predominantly via host switching.
Collapse
Affiliation(s)
- Nancy R Irwin
- Department of Biology, University of York, POBOX 373, York, YO10 5DD, UK.
| | | | | | | |
Collapse
|
14
|
Yama IN, Cazaux B, Britton-Davidian J, Moureau G, Thirion L, de Lamballerie X, Dobigny G, Charrel RN. Isolation and characterization of a new strain of lymphocytic choriomeningitis virus from rodents in southwestern France. Vector Borne Zoonotic Dis 2012; 12:893-903. [PMID: 22651393 DOI: 10.1089/vbz.2011.0892] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A total of 821 tissue samples from rodents trapped during field campaigns organized in Europe and Africa were screened for the presence of arenaviruses by molecular methods and cell culture inoculation when feasible. Two Mus musculus domesticus trapped in the southwestern part of France were infected with a potentially new strain of lymphocytic choriomeningitis virus (LCMV), here referred to as LCMV strain HP65-2009, which was isolated and genetically characterized by whole genome sequencing. Genetic and phylogenetic analyses comparing LCMV HP65-2009 with 26 other LCMV strains showed that it represents a novel highly-divergent strain within the group of Mus musculus-associated LCMV.
Collapse
Affiliation(s)
- Ines N Yama
- Unité des Virus Emergents UMR190 Emergence des Pathologies Virales, IRD, Université de la Méditerranée II, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mice deficient in STAT1 but not STAT2 or IRF9 develop a lethal CD4+ T-cell-mediated disease following infection with lymphocytic choriomeningitis virus. J Virol 2012; 86:6932-46. [PMID: 22496215 DOI: 10.1128/jvi.07147-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interferon (IFN) signaling is crucial for antiviral immunity. While type I IFN signaling is mediated by STAT1, STAT2, and IRF9, type II IFN signaling requires only STAT1. Here, we studied the roles of these signaling factors in the host response to systemic infection with lymphocytic choriomeningitis virus (LCMV). In wild-type (WT) mice and mice lacking either STAT2 or IRF9, LCMV infection was nonlethal, and the virus either was cleared (WT) or established persistence (STAT2 knockout [KO] and IRF9 KO). However, in the case of STAT1 KO mice, LCMV infection was lethal and accompanied by severe multiorgan immune pathology, elevated expression of various cytokine genes in tissues, and cytokines in the serum. This lethal phenotype was unaltered by the coabsence of the gamma interferon (IFN-γ) receptor and hence was not dependent on IFN-γ. Equally, the disease was not due to a combined defect in type I and type II IFN signaling, as IRF9 KO mice lacking the IFN-γ receptor survived infection with LCMV. Clearance of LCMV is mediated normally by CD8(+) T cells. However, the depletion of these cells in LCMV-infected STAT1 KO mice was delayed, but did not prevent, lethality. In contrast, depletion of CD4(+) T cells prevented lethality in LCMV-infected STAT1 KO mice and was associated with a reduction in tissue immune pathology. These studies highlight a fundamental difference in the role of STAT1 versus STAT2 and IRF9. While all three factors are required to limit viral replication and spread, only STAT1 has the unique function of preventing the emergence of a lethal antiviral CD4(+) T-cell response.
Collapse
|
16
|
Abstract
Viral infections of laboratory mice have considerable impact on research results, and prevention of such infections is therefore of crucial importance. This chapter covers infections of mice with the following viruses: herpesviruses, mousepox virus, murine adenoviruses, polyomaviruses, parvoviruses, lactate dehydrogenase-elevating virus, lymphocytic choriomeningitis virus, mammalian orthoreovirus serotype 3, murine hepatitis virus, murine norovirus, murine pneumonia virus, murine rotavirus, Sendai virus, and Theiler’s murine encephalomyelitis virus. For each virus, there is a description of the agent, epizootiology, clinical symptoms, pathology, methods of diagnosis and control, and its impact on research.
Collapse
|
17
|
Hannachi N, Freymuth F, Luton D, Herlicoviez M, Oury JF, Boukadida J, Lebon P. Infection par le virus de la chorioméningite lymphocytaire et fœtopathies. ACTA ACUST UNITED AC 2011; 59:e85-7. [DOI: 10.1016/j.patbio.2009.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
|
18
|
Lymphocytic choriomeningitis in a pet store worker in Romania. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1749. [PMID: 18784339 DOI: 10.1128/cvi.00275-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Kang SS, McGavern DB. Lymphocytic choriomeningitis infection of the central nervous system. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:4529-43. [PMID: 18508527 PMCID: PMC5279998 DOI: 10.2741/3021] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Viral infection of the central nervous system (CNS) can result in a multitude of responses including pathology, persistence or immune clearance. Lymphocytic choriomeningitis virus (LCMV) is a powerful model system to explore these potential outcomes of CNS infection due to the diversity of responses that can be achieved after viral inoculation. Several factors including tropism, timing, dose and variant of LCMV in combination with the development or suppression of the corresponding immune response dictates whether lethal meningitis, chronic infection or clearance of LCMV in the CNS will occur. Importantly, the functionality and positioning of the LCMV-specific CD8+ T cell response are critical in directing the subsequent outcome of CNS LCMV infection. Although a basic understanding of LCMV and immune interactions in the brain exists, the molecular machinery that shapes the balance between pathogenesis and clearance in the LCMV-infected CNS remains to be elucidated. This review covers the various outcomes of LCMV infection in the CNS and what is currently known about the impact of the virus itself versus the immune response in the development of disease or clearance.
Collapse
Affiliation(s)
- Silvia S. Kang
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
| | - Dorian B. McGavern
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
- Harold L. Dorris Neurological Research Institute, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
20
|
Amman BR, Pavlin BI, Albariño CG, Comer JA, Erickson BR, Oliver JB, Sealy TK, Vincent MJ, Nichol ST, Paddock CD, Tumpey AJ, Wagoner KD, Glauer RD, Smith KA, Winpisinger KA, Parsely MS, Wyrick P, Hannafin CH, Bandy U, Zaki S, Rollin PE, Ksiazek TG. Pet rodents and fatal lymphocytic choriomeningitis in transplant patients. Emerg Infect Dis 2008; 13:719-25. [PMID: 17553250 PMCID: PMC2738461 DOI: 10.3201/eid1305.061269] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A unique strain of this virus was traced back to hamsters from an Ohio rodent distribution facility. In April 2005, 4 transplant recipients became ill after receiving organs infected with lymphocytic choriomeningitis virus (LCMV); 3 subsequently died. All organs came from a donor who had been exposed to a hamster infected with LCMV. The hamster was traced back through a Rhode Island pet store to a distribution center in Ohio, and more LCMV-infected hamsters were discovered in both. Rodents from the Ohio facility and its parent facility in Arkansas were tested for the same LCMV strain as the 1 involved in the transplant-associated deaths. Phylogenetic analysis of virus sequences linked the rodents from the Ohio facility to the Rhode Island pet store, the index hamster, and the transplant recipients. This report details the animal traceback and the supporting laboratory investigations.
Collapse
Affiliation(s)
- Brian R Amman
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vieth S, Drosten C, Lenz O, Vincent M, Omilabu S, Hass M, Becker-Ziaja B, ter Meulen J, Nichol ST, Schmitz H, Günther S. RT-PCR assay for detection of Lassa virus and related Old World arenaviruses targeting the L gene. Trans R Soc Trop Med Hyg 2007; 101:1253-64. [PMID: 17905372 DOI: 10.1016/j.trstmh.2005.03.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 01/03/2005] [Accepted: 03/11/2005] [Indexed: 10/22/2022] Open
Abstract
This study describes an RT-PCR assay targeting the L RNA segment of arenaviruses. Conserved regions were identified in the polymerase domain of the L gene on the basis of published sequences for Lassa virus, lymphocytic choriomeningitis virus (LCMV), Pichinde virus and Tacaribe virus, as well as 15 novel sequences for Lassa virus, LCMV, Ippy virus, Mobala virus and Mopeia virus determined in this study. Using these regions as target sites, a PCR assay for detection of all known Old World arenaviruses was developed and optimized. The concentration that yields 95% positive results in a set of replicate tests (95% detection limit) was determined to be 4290 copies of Lassa virus L RNA per ml of serum, corresponding to 30 copies per reaction. The ability of the assay to detect various Old World arenaviruses was demonstrated with in vitro transcribed RNA, material from infected cell cultures and samples from patients with Lassa fever and monkeys with LCMV-associated callitrichid hepatitis. The L gene PCR assay may be applicable: (i) as a complementary diagnostic test for Lassa virus and LCMV; (ii) to identify unknown Old World arenaviruses suspected as aetiological agents of disease; and (iii) for screening of potential reservoir hosts for unknown Old World arenaviruses.
Collapse
Affiliation(s)
- Simon Vieth
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, D-20359 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Both filoviruses and arenaviruses are enveloped viruses with a single-stranded RNA genome. Most human pathogenic arenaviruses, as well as filoviruses, cause severe hemorrhagic fevers with a high rate of case fatalities. Increasing numbers of outbreaks, the possibility of imported infections and the potential use of these viruses as bioterrorism agents have led to increased interest in these viruses and their biology. Virus-like particles are excellent tools to study the life-cycle of filoviruses and arenaviruses and have demonstrated the potential for use as safe and effective vaccines. This review summarizes the recent advances in the production, study and application of filovirus- and arenavirus-like particles, and provides an outlook on possible future directions for research into these viruses using virus-like particles.
Collapse
Affiliation(s)
- Thomas Hoenen
- Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | | | - Stephan Becker
- Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
23
|
Jamieson DJ, Kourtis AP, Bell M, Rasmussen SA. Lymphocytic choriomeningitis virus: an emerging obstetric pathogen? Am J Obstet Gynecol 2006; 194:1532-6. [PMID: 16731068 DOI: 10.1016/j.ajog.2005.11.040] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 11/18/2005] [Accepted: 11/28/2005] [Indexed: 01/05/2023]
Abstract
A report in May 2005 from the Centers for Disease Control and Prevention describing a cluster of lymphocytic choriomeningitis virus (LCMV) infections among 4 solid organ recipients has increased awareness of and clinical interest in this pathogen. Human infection with LCMV results from direct or indirect contact with rodents. LCMV has particular relevance to obstetrics, as it is likely an under-recognized abortifacient and fetal teratogen. There have been 54 cases of congenital LCMV reported since 1955, with 34 of the cases diagnosed since 1993. Chorioretinitis and hydrocephalus are the predominant characteristics among children diagnosed with congenital LCMV infection. Obstetricians should educate their pregnant patients about the risks of exposure to laboratory, pet, and wild rodents.
Collapse
Affiliation(s)
- Denise J Jamieson
- Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | |
Collapse
|
24
|
Fischer SA, Graham MB, Kuehnert MJ, Kotton CN, Srinivasan A, Marty FM, Comer JA, Guarner J, Paddock CD, DeMeo DL, Shieh WJ, Erickson BR, Bandy U, DeMaria A, Davis JP, Delmonico FL, Pavlin B, Likos A, Vincent MJ, Sealy TK, Goldsmith CS, Jernigan DB, Rollin PE, Packard MM, Patel M, Rowland C, Helfand RF, Nichol ST, Fishman JA, Ksiazek T, Zaki SR. Transmission of lymphocytic choriomeningitis virus by organ transplantation. N Engl J Med 2006; 354:2235-49. [PMID: 16723615 DOI: 10.1056/nejmoa053240] [Citation(s) in RCA: 357] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND In December 2003 and April 2005, signs and symptoms suggestive of infection developed in two groups of recipients of solid-organ transplants. Each cluster was investigated because diagnostic evaluations were unrevealing, and in each a common donor was recognized. METHODS We examined clinical specimens from the two donors and eight recipients, using viral culture, electron microscopy, serologic testing, molecular analysis, and histopathological examination with immunohistochemical staining to identify a cause. Epidemiologic investigations, including interviews, environmental assessments, and medical-record reviews, were performed to characterize clinical courses and to determine the cause of the illnesses. RESULTS Laboratory testing revealed lymphocytic choriomeningitis virus (LCMV) in all the recipients, with a single, unique strain of LCMV identified in each cluster. In both investigations, LCMV could not be detected in the organ donor. In the 2005 cluster, the donor had had contact in her home with a pet hamster infected with an LCMV strain identical to that detected in the organ recipients; no source of LCMV infection was found in the 2003 cluster. The transplant recipients had abdominal pain, altered mental status, thrombocytopenia, elevated aminotransferase levels, coagulopathy, graft dysfunction, and either fever or leukocytosis within three weeks after transplantation. Diarrhea, peri-incisional rash, renal failure, and seizures were variably present. Seven of the eight recipients died, 9 to 76 days after transplantation. One recipient, who received ribavirin and reduced levels of immunosuppressive therapy, survived. CONCLUSIONS We document two clusters of LCMV infection transmitted through organ transplantation.
Collapse
Affiliation(s)
- Staci A Fischer
- Rhode Island Hospital and Brown Medical School, Providence, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kallio-Kokko H, Laakkonen J, Rizzoli A, Tagliapietra V, Cattadori I, Perkins SE, Hudson PJ, Cristofolini A, Versini W, Vapalahti O, Vaheri A, Henttonen H. Hantavirus and arenavirus antibody prevalence in rodents and humans in Trentino, Northern Italy. Epidemiol Infect 2005; 134:830-6. [PMID: 16371172 PMCID: PMC2870443 DOI: 10.1017/s0950268805005431] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2005] [Indexed: 11/06/2022] Open
Abstract
The spatial and temporal distribution of hantavirus and arenavirus antibody-positive wild rodents in Trentino, Italy, was studied using immunofluorescence assays (IFA) in two long-term sites trapped in 2000-2003, and six other sites trapped in 2002. The overall hantavirus seroprevalence in the bank voles, Clethrionomys glareolus (n=229) screened for Puumala virus (PUUV) antibodies was 0.4%, and that for Apodemus flavicollis mice (n=1416) screened for Dobrava virus (DOBV) antibodies was 0.2%. Antibodies against lymphocytic choriomeningitis virus (LCMV) were found in 82 (5.6%) of the 1472 tested rodents; the seroprevalence being 6.1% in A. flavicollis (n=1181), 3.3% in C. glareolus (n=276), and 14.3% in Microtus arvalis (n=7). Of the serum samples of 488 forestry workers studied by IFA, 12 were LCMV-IgG positive (2.5%) and one DOBV-IgG positive (0.2%), however, the latter could not be confirmed DOBV-specific with a neutralization assay. Our results show a widespread distribution but low prevalence of DOBV in Trentino, and demonstrate that the arenavirus antibodies are a common finding in several other rodent species besides the house mouse.
Collapse
Affiliation(s)
- H Kallio-Kokko
- Department of Virology, Haartman Institute, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gegúndez MI, Lledó L. [Infection due to Hantavirus and other rodent-borne viruses]. Enferm Infecc Microbiol Clin 2005; 23:492-500. [PMID: 16185565 DOI: 10.1157/13078828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The term "robovirus" (rodent-borne virus) refers to viruses belonging to the Bunyaviridae (genus Hantavirus) and Arenaviridae families, which are occasionally transmitted to human beings from rodents, their natural hosts. Hantaviruses cause two human diseases: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Arenaviruses produce hemorrhagic fevers or acute central nervous system disease in humans. This article reviews the biology, epidemiology, pathogenesis, clinical features, diagnostic methods, treatment and prevention of hantavirus and, more concisely, arenavirus infections.
Collapse
Affiliation(s)
- María Isabel Gegúndez
- Departamento de Microbiología y Parasitología, Universidad de Alcalá, Madrid, Spain.
| | | |
Collapse
|
27
|
Kallio-Kokko H, Uzcategui N, Vapalahti O, Vaheri A. Viral zoonoses in Europe. FEMS Microbiol Rev 2005; 29:1051-77. [PMID: 16024128 PMCID: PMC7110368 DOI: 10.1016/j.femsre.2005.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 04/11/2005] [Accepted: 04/19/2005] [Indexed: 12/19/2022] Open
Abstract
A number of new virus infections have emerged or re-emerged during the past 15 years. Some viruses are spreading to new areas along with climate and environmental changes. The majority of these infections are transmitted from animals to humans, and thus called zoonoses. Zoonotic viruses are, as compared to human-only viruses, much more difficult to eradicate. Infections by several of these viruses may lead to high mortality and also attract attention because they are potential bio-weapons. This review will focus on zoonotic virus infections occurring in Europe.
Collapse
Affiliation(s)
- Hannimari Kallio-Kokko
- Haartman Institute, Department of Virology, University of Helsinki, POB 21, 00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
28
|
Abstract
Lassa virus is a RNA virus belonging to the family of Arenaviridae. It was discovered as the causative agent of a hemorrhagic fever--Lassa fever--about 30 years ago. Lassa fever is endemic in West Africa and is estimated to affect some 100,000 people annually. Great progress in the understanding of the life cycle of arenaviruses, including Lassa virus, has been made in recent years. New insights have been gained in the pathogenesis and molecular epidemiology of Lassa fever, and state-of the-art technologies for diagnosing this life-threatening disease have been developed. The intention of this review is to summarize in particular the recent literature on Lassa virus and Lassa fever. Several aspects ranging from basic research up to clinical practice and laboratory diagnosis are discussed and linked together.
Collapse
Affiliation(s)
- Stephan Günther
- Department of Virology, Bernhard-Nocht-Institute of Tropical Medicine, Hamburg, Germany.
| | | |
Collapse
|
29
|
|
30
|
Abstract
The family Arenaviridae includes 23 viral species, of which 5 can cause viral hemorrhagic fevers with a case fatality rate of about 20%. These five viruses are Junin, Machupo, Guanarito, Sabia and Lassa virus, the manipulation of which requires biosafety level 4 facilities. They are included in the Category A Pathogen List established by the Center for Disease Control and Prevention that groups agents with the greatest potential for adverse public health impact and mass casualties whether a situation characterized by a ill-intentioned abuse of natural or engineered arenavirus would be encountered. The aims of this article are to (i) summarize the current situation; (ii) provide information to help anticipating the effects to be expected in such a situation; and to (iii) emphasize the need for fundamental research to allow the development of diagnostic, prevention and therapeutic tools as countermeasures to weaponized arenaviruses.
Collapse
Affiliation(s)
- Rémi N Charrel
- Unité des Virus Emergents, EA 3292, IRD-UR 034, IFR 48, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille 13005, France.
| | | |
Collapse
|
31
|
|
32
|
Humbertclaude V, Tourtet S, Semprino M, Roubertie A, Rivier F, Leboucq N, Astruc J, Echenne B. [Acute myelitis of an unusual cause in a child: the lymphocytic choriomeningitis virus]. Arch Pediatr 2001; 8:282-5. [PMID: 11270252 DOI: 10.1016/s0929-693x(00)00196-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED Acute transverse myelitis is a rare disorder in childhood. It usually occurs as a post-infectious disease, but a precise infectious agent is identified in only 20% of cases. OBSERVATION The diagnosis of acute transverse myelitis was made in a 5.5-year-old girl who initially presented with left Claude-Bernard-Horner syndrome and meningitis. A few days later, motor and sensory tetraparesia with bladder dysfunction was observed. Magnetic resonance imaging showed a diffuse lesion in the medulla, with a hypersignal in the T2 and a hyposignal in the T1 sequences. Serum analysis showed the presence of a viral infection due to the lymphocytic choriomeningitis (LCM) virus. The outcome was marked by complete recovery of the sensorimotor deficit, but a persistence of the left Claude-Bernard-Horner syndrome. CONCLUSION In rare cases, the LCM virus is responsible for myelitis. In the present case, the Claude-Bernard-Horner syndrome was secondary to the cervico-medullary lesion. Recent reports in the literature have been discussed, in particular as regards the use of immunomodulatory therapy, which clearly improves patient prognosis.
Collapse
Affiliation(s)
- V Humbertclaude
- Service de neuropédiatrie, centre hospitalier universitaire Saint-Eloi, avenue Bertin-Sans, 34295 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Valassina M, Meacci F, Valensin PE, Cusi MG. Detection of neurotropic viruses circulating in Tuscany: The incisive role of Toscana virus. J Med Virol 2000. [DOI: 10.1002/(sici)1096-9071(200001)60:1%3c86::aid-jmv14%3e3.0.co;2-n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Valassina M, Meacci F, Valensin PE, Cusi MG. Detection of neurotropic viruses circulating in Tuscany: the incisive role of Toscana virus. J Med Virol 2000; 60:86-90. [PMID: 10568768 DOI: 10.1002/(sici)1096-9071(200001)60:1<86::aid-jmv14>3.0.co;2-n] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Acute meningitis is perhaps the most frequent among central nervous system infections. We report a study considering 277 cases of meningitis hospitalized in the southern Tuscany area (Italy) during the period from 1995 to 1998 investigated by tissue culture and polymerase chain reaction (PCR) methods. The cytochemical analysis of the cerebrospinal fluid samples suggested the diagnosis of aseptic meningitis, recognized as viral meningitis in 104 cases by detection of viral DNA or RNA. The results collected by tissue culture technique, available for 95 clinical samples, reported a positive isolation for only 12 cases. The viruses identified in the neurological infection were Toscana virus (81%), enterovirus (12%), mumps virus (3%), measles virus (1%), and herpes virus type 1 (3%). These data demonstrate the incisive role of the RNA viruses as the cause of meningitis, and overall the relevance of Toscana virus.
Collapse
Affiliation(s)
- M Valassina
- Department of Molecular Biology, Microbiology Section, University of Siena, Siena, Italy.
| | | | | | | |
Collapse
|
35
|
Affiliation(s)
- A Schanen
- Centre Hospitalier Général de Falaise, Service de Médecine, France
| | | | | | | |
Collapse
|