1
|
Ihling N, Munkler LP, Paul R, Berg C, Reichenbächer B, Kadisch M, Lang D, Büchs J. Non-invasive and time-resolved measurement of the respiration activity of Chinese hamster ovary cells enables prediction of key culture parameters in shake flasks. Biotechnol J 2022; 17:e2100677. [PMID: 35377965 DOI: 10.1002/biot.202100677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Shake flasks are frequently used for mammalian cell suspension cultures. For process development and routine culture monitoring, information on culture behaviour is needed early on. MAIN METHODS AND MAJOR RESULTS Here, cell-specific oxygen uptake rates (qO2 ) of two CHO cell lines were determined from shake flask experiments by simultaneous measurement of oxygen transfer rates (OTR) and viable cell concentrations (VCC). For cell line one, qO2 decreased from 2.38∙10-10 mmol cell-1 h-1 to 1.02∙10-10 mmol cell-1 h-1 during batch growth. For cell line two, qO2 was constant (1.90∙10-10 mmol h-1 ). Determined qO2 values were used to calculate the VCC from OTR data. Cumulated oxygen consumption and glucose consumption were correlated for both cell lines and enabled calculation of glucose concentrations from OTR data. IgG producing cell line one had an oxygen demand of ∼15 mmoloxygen gglucose -1 , cell line two consumed ∼5 mmoloxygen gglucose -1 . The established correlations for determination of VCC and glucose were successfully transferred to subsequent cultivations for both cell lines. Combined measurement of the OTR and the carbon dioxide transfer rate enabled quantitative determination of the lactate concentration (production and consumption) without sampling. CONCLUSIONS AND IMPLICATIONS Taken together, non-invasive measurement of the respiration activity enabled time-resolved determination of key culture parameters for increased process understanding in shake flasks. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nina Ihling
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen, D-52074, Germany
| | - Lara Pauline Munkler
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen, D-52074, Germany
| | - Richard Paul
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen, D-52074, Germany
| | - Christoph Berg
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen, D-52074, Germany
| | | | - Marvin Kadisch
- Rentschler Biopharma SE, Erwin-Rentschler-Str. 21, Laupheim, 88471, Germany
| | - Dietmar Lang
- Rentschler Biopharma SE, Erwin-Rentschler-Str. 21, Laupheim, 88471, Germany
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen, D-52074, Germany
| |
Collapse
|
2
|
Zeh N, Schlossbauer P, Raab N, Klingler F, Handrick R, Otte K. Cell line development for continuous high cell density biomanufacturing: Exploiting hypoxia for improved productivity. Metab Eng Commun 2021; 13:e00181. [PMID: 34401326 PMCID: PMC8348152 DOI: 10.1016/j.mec.2021.e00181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023] Open
Abstract
Oxygen deficiency (hypoxia) induces adverse effects during biotherapeutic protein production leading to reduced productivity and cell growth. Hypoxic conditions occur during classical batch fermentations using high cell densities or perfusion processes. Here we present an effort to create novel engineered Chinese hamster ovary (CHO) cell lines by exploiting encountered hypoxic bioprocess conditions to reinforce cellular production capacities. After verifying the conservation of the hypoxia-responsive pathway in CHO cell lines by analyzing oxygen sensing proteins HIF1a, HIF1β and VDL, hypoxia-response-elements (HREs) were functionally analyzed and used to create hypoxia-responsive expression vectors. Subsequently engineered hypoxia sensitive CHO cell lines significantly induced protein expression (SEAP) during adverse oxygen limitation encountered during batch fermentations as well as high cell density perfusion processes (2.7 fold). We also exploited this novel cell system to establish a highly effective oxygen shift as innovative bioprocessing strategy using hypoxia induction to improve production titers. Thus, substantial improvements can be made to optimize CHO cell productivity for novel bioprocessing challenges as oxygen limitation, providing an avenue to establish better cell systems by exploiting adverse process conditions for optimized biotherapeutic production.
Collapse
Affiliation(s)
- Nikolas Zeh
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Patrick Schlossbauer
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Nadja Raab
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Florian Klingler
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - René Handrick
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| |
Collapse
|
3
|
Floris P, Dorival-García N, Lewis G, Josland G, Merriman D, Bones J. Real-time characterization of mammalian cell culture bioprocesses by magnetic sector MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5601-5612. [PMID: 33179638 DOI: 10.1039/d0ay01563f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mammalian cell culture processes were characterized upon the analysis of the exhaust-gas composition achieved through the on-line integration of a magnetic sector MS analyser with benchtop bioreactors. The non-invasive configuration of the magnetic sector MS provided continuous evaluation of the bioreactor's exhaust gas filter integrity and facilitated the accurate quantification of O2 and CO2 levels in the off-gas stream which ensured preserved bioreactor sterility prior to cell inoculation and provided evidence of the ongoing cellular respiratory activity throughout the cultures. Real-time determination of process parameters such as the Respiratory Quotient (RQ) allowed for precise pin-pointing of the occurrence of shifts in cellular metabolism which were correlated to depletion of key nutrients in the growth medium, demonstrating the suitability of this technology for tracking cell culture process performance.
Collapse
Affiliation(s)
- Patrick Floris
- Characterisation and Comparability Laboratory, NIBRT-The National Institute for Bioprocessing Research and Training, Fosters avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland.
| | - Noemí Dorival-García
- Characterisation and Comparability Laboratory, NIBRT-The National Institute for Bioprocessing Research and Training, Fosters avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland.
| | - Graham Lewis
- Thermo Fisher Scientific, Ion Path, Road Three, Winsford, CW7 3GA, UK
| | - Graham Josland
- Thermo Fisher Scientific, Ion Path, Road Three, Winsford, CW7 3GA, UK
| | - Daniel Merriman
- Thermo Fisher Scientific, Ion Path, Road Three, Winsford, CW7 3GA, UK
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, NIBRT-The National Institute for Bioprocessing Research and Training, Fosters avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland. and School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Belfield, D04 V1W8, Ireland
| |
Collapse
|
4
|
New developments in online OUR monitoring and its application to animal cell cultures. Appl Microbiol Biotechnol 2019; 103:6903-6917. [PMID: 31309268 DOI: 10.1007/s00253-019-09989-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
The increasing demand for biopharmaceuticals produced in mammalian cells has driven the industry to enhance the productivity of bioprocesses through intensification of culture process. Fed-batch and perfusion culturing strategies are considered the most attractive choices, but the application of these processes requires the availability of reliable online measuring systems for the estimation of cell density and metabolic activity. This manuscript reviews the methods (and the devices used) for monitoring of the oxygen consumption, also known as oxygen uptake rate (OUR), since it is a straightforward parameter to estimate viable cell density and the physiological state of cells. Furthermore, as oxygen plays an important role in the cell metabolism, OUR has also been very useful to estimate nutrient consumption, especially the carbon (glucose and glutamine) and nitrogen (glutamine) sources. Three different methods for the measurement of OUR have been developed up to date, being the dynamic method the golden standard, even though DO and pH perturbations generated in the culture during each measurement. For this, many efforts have been focused in developing non-invasive methods, such as global mass balance or stationary liquid mass balance. The low oxygen consumption rates by the cells and the high accuracy required for oxygen concentration measurement in the gas streams (inlet and outlet) have limited the applicability of the global mass balance methodology in mammalian cell cultures. In contrast, stationary liquid mass balance has successfully been implemented showing very similar OUR profiles compared with those obtained with the dynamic method. The huge amount of studies published in the last years evidence that OUR have become a reliable alternative for the monitoring and control of high cell density culturing strategies with very high productivities.
Collapse
|
5
|
A Framework for the Development of Integrated and Computationally Feasible Models of Large-Scale Mammalian Cell Bioreactors. Processes (Basel) 2018. [DOI: 10.3390/pr6070082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
6
|
Farzan P, Ierapetritou MG. Integrated modeling to capture the interaction of physiology and fluid dynamics in biopharmaceutical bioreactors. Comput Chem Eng 2017. [DOI: 10.1016/j.compchemeng.2016.11.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Reducing Recon 2 for steady-state flux analysis of HEK cell culture. J Biotechnol 2014; 184:172-8. [PMID: 24907410 DOI: 10.1016/j.jbiotec.2014.05.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/24/2014] [Accepted: 05/19/2014] [Indexed: 01/05/2023]
Abstract
A representative stoichiometric model is essential to perform metabolic flux analysis (MFA) using experimentally measured consumption (or production) rates as constraints. For Human Embryonic Kidney (HEK) cell culture, there is the opportunity to use an extremely well-curated and annotated human genome-scale model Recon 2 for MFA. Performing MFA using Recon 2 without any modification would have implied that cells have access to all functionality encoded by the genome, which is not realistic. The majority of intracellular fluxes are poorly determined as only extracellular exchange rates are measured. This is compounded by the fact that there is no suitable metabolic objective function to suppress non-specific fluxes. We devised a heuristic to systematically reduce Recon 2 to emphasize flux through core metabolic reactions. This implies that cells would engage these dominant metabolic pathways to grow, and any significant changes in gross metabolic phenotypes would have invoked changes in these pathways. The reduced metabolic model becomes a functionalized version of Recon 2 used for identifying significant metabolic changes in cells by flux analysis.
Collapse
|
8
|
Berrios J, Altamirano C, Osses N, Gonzalez R. Continuous CHO cell cultures with improved recombinant protein productivity by using mannose as carbon source: Metabolic analysis and scale-up simulation. Chem Eng Sci 2011. [DOI: 10.1016/j.ces.2011.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Yang Y, Balcarcel RR. Determination of carbon dioxide production rates for mammalian cells in 24-well plates. Biotechniques 2004; 36:286-90, 292, 294-5. [PMID: 14989093 DOI: 10.2144/04362rr03] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this report, we describe a method for the quantitative determination of carbon dioxide production rates of mammalian cells. Custom-made, reusable, optically clear plugs are used to seal the wells of a 24-well plate. These plugs prevent the loss of CO2 produced by the mammalian cells cultured in bicarbonate-free medium. Measurements of pH, total liquid phase CO2, and viable cell density are used to estimate the average CO2 production rate during a 6-h incubation period. Using this method, four chemicals well-characterized in regards to toxicity, 2,4-dinitrophenol, antimycin A, rotenone, and cyanide, were found to elicit significant changes in CO2 production for given concentrations within 6 h, without inducing a decline in culture viability. Over longer exposure times, similar concentrations caused growth inhibition but not cell death. An assay based on metabolic change corresponding to growth inhibition that is more sensitive than traditional measures of cell death is a feasible complement to existing methods in drug discovery and toxicity testing.
Collapse
|
10
|
Won K, Jeong JC, Lee SB. Computer-aided real-time estimation of reaction conversion for lipase-catalyzed esterification in solvent-free systems. Biotechnol Bioeng 2002; 79:795-803. [PMID: 12209802 DOI: 10.1002/bit.10339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Real-time conversion estimation through macroscopic balancing was investigated for enzymatic esterification reactions in a solvent-free system. In principle, the conversion of ester synthesis can be determined from the amount of water produced by the reaction because water is formed as a by-product in the same molar ratio as the product. In this study, we show that the water production rate, and thereby the reaction conversion, can be estimated on-line from measurements of the relative humidity of the inlet and outlet air and the material balances of water in the system. In order to test the performance of the real-time conversion estimation method, the lipase-catalyzed esterification reaction of n-capric acid and n-decyl alcohol in solvent-free media was conducted while controlling the water activity at various values. When the reaction conversions estimated on-line were compared with those analyzed off-line by gas chromatography, good agreement was obtained: the average mean absolute error was +/- 2.4% of the reaction conversion despite the simplicity of the method. The on-line estimation method presented here requires no expensive or complicated analytical instruments and no sampling of reaction medium. It can be used for monitoring nonaqueous enzymatic reactions where water is produced or consumed during reaction.
Collapse
Affiliation(s)
- Keehoon Won
- Department of Chemical Engineering, Division of Molecular and Life Sciences, and Institute of Environmental and Energy Technology, Pohang University of Science and Technology, San 31, Hyoja-Dong, Korea
| | | | | |
Collapse
|
11
|
Won K, Lee SB. On-line conversion estimation for solvent-free enzymatic esterification systems with water activity control. BIOTECHNOL BIOPROC E 2002. [DOI: 10.1007/bf02935883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|