1
|
Fuentes P, Torres MJ, Arancibia R, Aulestia F, Vergara M, Carrión F, Osses N, Altamirano C. Dynamic Culture of Mesenchymal Stromal/Stem Cell Spheroids and Secretion of Paracrine Factors. Front Bioeng Biotechnol 2022; 10:916229. [PMID: 36046670 PMCID: PMC9421039 DOI: 10.3389/fbioe.2022.916229] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, conditioned medium (CM) obtained from the culture of mesenchymal stromal/stem cells (MSCs) has been shown to effectively promote tissue repair and modulate the immune response in vitro and in different animal models, with potential for application in regenerative medicine. Using CM offers multiple advantages over the implantation of MSCs themselves: 1) simpler storage, transport, and preservation requirements, 2) avoidance of the inherent risks of cell transplantation, and 3) potential application as a ready-to-go biologic product. For these reasons, a large amount of MSCs research has focused on the characterization of the obtained CM, including soluble trophic factors and vesicles, preconditioning strategies for enhancing paracrine secretion, such as hypoxia, a three-dimensional (3D) environment, and biochemical stimuli, and potential clinical applications. In vitro preconditioning strategies can increase the viability, proliferation, and paracrine properties of MSCs and therefore improve the therapeutic potential of the cells and their derived products. Specifically, dynamic cultivation conditions, such as fluid flow and 3D aggregate culture, substantially impact cellular behaviour. Increased levels of growth factors and cytokines were observed in 3D cultures of MSC grown on orbital or rotatory shaking platforms, in stirred systems, such as spinner flasks or stirred tank reactors, and in microgravity bioreactors. However, only a few studies have established dynamic culture conditions and protocols for 3D aggregate cultivation of MSCs as a scalable and reproducible strategy for CM production. This review summarizes significant advances into the upstream processing, mainly the dynamic generation and cultivation of MSC aggregates, for de CM manufacture and focuses on the standardization of the soluble factor production.
Collapse
Affiliation(s)
- Paloma Fuentes
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María José Torres
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Rodrigo Arancibia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Francisco Aulestia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Mauricio Vergara
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Flavio Carrión
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Nelson Osses
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- CREAS, Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
- *Correspondence: Claudia Altamirano,
| |
Collapse
|
2
|
Arifin MA, Mel M, Swan SY, Samsudin N, Hashim YZHY, Salleh HM. Optimization of ultraviolet/ozone (UVO 3) process conditions for the preparation of gelatin coated polystyrene (PS) microcarriers. Prep Biochem Biotechnol 2021; 52:181-196. [PMID: 34010098 DOI: 10.1080/10826068.2021.1923031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to develop gelatin coated polystyrene (PS) microcarriers with good cell adhesion and proliferation properties. PS microspheres, prepared using oil-in water (o/w) solvent evaporation method, were loaded with oxygen containing functional groups using an ultraviolet/ozone (UVO3) system. Using water-soluble carbodiimide chemistry, gelatin was subsequently immobilized on UVO3 treated PS microspheres. The amount of immobilized gelatin was found to be directly proportional to the surface carboxyl (COOH) concentration on PS microspheres. Face Centered Central Composite Design (FCCD) was employed to optimize the process conditions of UVO3 treatment to maximize the surface COOH concentration on PS microspheres for allowing higher gelatin immobilization. Statistical results revealed that, the optimized process conditions were ozone flow rate of ∼64,603 ppm, exposure time of ∼60 minutes and sample amount of 5.05 g. Under these conditions, the surface COOH concentration on PS microspheres was ∼1,505 nmol/g with the corresponding amount of immobilized gelatin was ∼2,725 µg/g. Characterization analyses strongly suggest that the optimized UVO3 treatment and successive gelatin immobilization have successfully improved surface wettability and dispersion stability of PS microspheres. Moreover, gelatin coated PS microcarriers were also proven as able to support the growth of CHO-K1 cells in high cell density culture.
Collapse
Affiliation(s)
- Mohd Azmir Arifin
- Faculty of Chemical and Process Engineering Technology, Lebuhraya Tun Razak, Universiti Malaysia Pahang, Kuantan, Malaysia
| | - Maizirwan Mel
- Department of Biotechnology Engineering, International Islamic University Malaysia Kulliyyah of Engineering, Kuala Lumpur, Malaysia
| | - Sia Yiik Swan
- Faculty of Chemical and Process Engineering Technology, Lebuhraya Tun Razak, Universiti Malaysia Pahang, Kuantan, Malaysia
| | - Nurhusna Samsudin
- International Institute for Halal Research and Training, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Yumi Zuhanis Has-Yun Hashim
- International Institute for Halal Research and Training, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Hamzah Mohd Salleh
- International Institute for Halal Research and Training, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Ryu DY, Kwon SC, Kim JY, Hur W. Maintenance of viability and proliferation of 3T3 cell aggregates incorporating fibroin microspheres into cultures. Cytotechnology 2020; 72:579-587. [PMID: 32797335 DOI: 10.1007/s10616-020-00408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 06/26/2020] [Indexed: 11/28/2022] Open
Abstract
This study investigated whether micron-sized microspheres can be used as dispersed scaffolds where anchorage-dependent cells can proliferate and survive in suspension culture. Aggregates of murine 3T3 cells in a non-adherent plate cultured remained viable for more than 2 weeks by the presence of 0.5 mg/ml fibroin microspheres. A nucleoside incorporation assay confirmed the proliferation of 3T3 cells in the aggregates only when cultured with microspheres. Under these conditions, the glucose consumption rate of 3T3 cells increased to 66.5 nmol day-1 cell-1. Histological analysis demonstrated that the intercellular space of cell aggregates was larger in cultures supplemented with 0.5 mg/ml microspheres than in non-supplemented cultures. The cell aggregates with microspheres also exhibited a reduced arrest in G1 phase. Transmission electron microscopy verified the presence of microspheres in the space between cells in aggregates. Fibroin microspheres maintained the viability and proliferability of 3T3 cells cultured under non-adherent conditions and thus can be used to develop viable suspensions of anchorage-dependent cells.
Collapse
Affiliation(s)
- Da Yeong Ryu
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Se Chang Kwon
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Ji Young Kim
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Won Hur
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, 200-701, South Korea.
| |
Collapse
|
4
|
Abstract
Anchorage-dependent cells are of great interest for various biotechnological applications. (i) They represent a formidable production means of viruses for vaccination purposes at very large scales (in 1000-6000 l reactors) using microcarriers, and in the last decade many more novel viral vaccines have been developed using this production technology. (ii) With the advent of stem cells and their use/potential use in clinics for cell therapy and regenerative medicine purposes, the development of novel culture devices and technologies for adherent cells has accelerated greatly with a view to the large-scale expansion of these cells. Presently, the really scalable systems--microcarrier/microcarrier-clump cultures using stirred-tank reactors--for the expansion of stem cells are still in their infancy. Only laboratory scale reactors of maximally 2.5 l working volume have been evaluated because thorough knowledge and basic understanding of critical issues with respect to cell expansion while retaining pluripotency and differentiation potential, and the impact of the culture environment on stem cell fate, etc., are still lacking and require further studies. This article gives an overview on critical issues common to all cell culture systems for adherent cells as well as specifics for different types of stem cells in view of small- and large-scale cell expansion and production processes.
Collapse
|
5
|
Ayyildiz-Tamis D, Avcı K, Deliloglu-Gurhan SI. Comparative investigation of the use of various commercial microcarriers as a substrate for culturing mammalian cells. In Vitro Cell Dev Biol Anim 2013; 50:221-31. [PMID: 24357035 DOI: 10.1007/s11626-013-9717-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/27/2013] [Indexed: 11/24/2022]
Abstract
Microcarriers provide large adhesion area allowing high cell densities in bioreactor systems. This study focused on the investigation of cell adhesion and cell growth characteristics of both anchorage-dependent CHO-K1 and anchorage-independent Ag8 myeloma cell lines cultivated on four different microcarriers (Biosilon®, Microhex®, Cytodex 3®, Cytoline 2®) by considering the cell kinetics and physiological data. Experiments were performed in both static and agitated cell culture systems by using 24-well tissue culture plates and then 50-ml spinner flasks. In agitated cultures, the highest specific growth rates (0.026 h for CHO-K1 and 0.061 h for Ag8 cell line) were obtained with Cytodex 3® and Cytoline 2® microcarriers for CHO-K1 and Ag8 cell line, respectively. Metabolic characteristics showed some variation among the cultures with the four microcarriers. The most significant being the higher production of lactate with microcarriers with CHO-K1 cells relative to the Ag8 cells. SEM analyses revealed the differences in the morphology of the cells along with microcarriers. On Cytodex 3® and Cytoline 2®, CHO-K1 cells attached to the substratum through long, slender filopodia, whereas the cells showed a flat morphology by covering the substratum on the Biosilon® and Microhex®. Ag8 cells maintained their spherical shapes throughout the culture for all types of microcarriers. In an attempt to scale-up, productions were carried out in 50-ml spinner flasks. Cytodex 3® (for CHO-K1 cells) and Cytoline 2® (for Ag8 cells) were evaluated. The results demonstrate that high yield of biomass could be achieved through the immobilization of the cells in each culture system. And cell cultures on microcarriers, especially on Cytodex 3® and Cytoline 2®, represented a good potential as microcarriers for larger scale cultures of CHO-K1 and Ag8, respectively. Moreover, owing to the fact that the cell lines and culture media are specific, outcomes will be applicable for other clones derived from the same host cell lines.
Collapse
Affiliation(s)
- Duygu Ayyildiz-Tamis
- Engineering Faculty, Department of Bioengineering, Ege University, Izmir, 35100, Bornova, Turkey,
| | | | | |
Collapse
|
6
|
Feng J, Chong M, Chan J, Zhang Z, Teoh SH, Thian ES. A scalable approach to obtain mesenchymal stem cells with osteogenic potency on apatite microcarriers. J Biomater Appl 2013; 29:93-103. [PMID: 24327350 DOI: 10.1177/0885328213515734] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bone tissue engineering, which relies on the interactions between stem cells and suitable scaffold materials, represents a highly desirable alternative to currently used allograft or autograft strategies for the treatment of bone defects caused by injury or disease, with one of the major challenges being to generate sufficient quantities of stem cells to bring about the intended therapeutic effect. However, conventional cell culture to achieve sufficient cell numbers faces limitations of low efficiency and diminished efficacy of stem cells due to repeated passaging. Furthermore, current microcarriers available may not be suitable for therapeutic implantation. Here, the authors featured an apatite-based microcarrier intended for bone tissue engineering applications. These apatite microcarriers have a diameter of ∼230 µm, and exhibited porous and rough surface morphology. Peaks obtained from X-ray diffractometry (XRD) corresponded to hydroxyapatite (HA) with high crystallinity. Fourier transform infrared spectrophotometry (FTIR) showed that no residues of alginate remained, and all bands observed belong to phosphate and hydroxyl groups of HA. To evaluate the cytocompatibility of these microcarriers, in vitro proliferation studies were conducted and compared with conventional monolayer as well as Cytodex 3. The authors found that human foetal mesenchymal stem cells (hfMSCs) cultured on apatite microcarriers exhibited comparable growth characteristics, achieving 1.4-fold higher live cells than Cytodex 3 over a 9-day culture period. As these microcarriers were hypothesised to offer enhanced osteogenic potency over conventional monolayer culture, alkaline phosphatase (ALP), type I collagen and osteocalcin expression of hfMSCs cultured on the apatite microcarriers were evaluated over a 12-day period. ALP expression for hfMSCs seeded on apatite microcarriers was 2.7-fold higher than that of adherent monolayer culture (p < 0.001). Additionally, type I collagen and osteocalcin expression were 1.8- and 1.5-fold higher than that of adherent monolayer culture on day 12, respectively (p < 0.001).
Collapse
Affiliation(s)
- Jason Feng
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Mark Chong
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jerry Chan
- Department of Reproductive Medicine, Division of Obstetrics & Gynaecology, KK Women's and Children's Hospital, Singapore, Singapore Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhiyong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9 People's Hospital, Shanghai Jiao Tong University, Xuhui, Shanghai, China
| | - Swee Hin Teoh
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Eng San Thian
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Costa AR, Withers J, Rodrigues ME, McLoughlin N, Henriques M, Oliveira R, Rudd PM, Azeredo J. The impact of microcarrier culture optimization on the glycosylation profile of a monoclonal antibody. SPRINGERPLUS 2013; 2:25. [PMID: 23487430 PMCID: PMC3592997 DOI: 10.1186/2193-1801-2-25] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/23/2013] [Indexed: 11/10/2022]
Abstract
Microcarriers are widely used for the large-scale culture of attachment-dependent cells with increased cell densities and, ultimately, higher product yield. In these processes, the specific culture conditions can affect the quality of the product, which is closely related to its glycosylation pattern. Furthermore, the lack of studies in the area reinforces the need to better understand the effects of microcarrier culture in product glycosylation. Consequently, in this work, the glycosylation profile of a monoclonal antibody (mAb) produced by adherent CHO-K1 cells grown in Cytodex 3 was evaluated under different conditions, and compared to that obtained of typical adherent cultures. It was found that microcarrier cultures result in a glycosylation profile with different characteristics from T-flask cultures, with a general increase in galactosylation and decrease in fucosylation levels, both with a potentially positive impact on mAb activity. Sialylation also varied but without a general tendency. This study then showed that the specific culture conditions used in microcarrier culture influence the mAb glycan profile, and each functional element (galactose, core fucose, sialic acid) is independently affected by these conditions. In particular, great reductions of fucosylation (from 79 to 55%) were obtained when using half volume at inoculation, and notable decreases in sialylation (from 23 to 2%) and glycoform heterogeneity (from 20 to 11 glycoforms) were observed for shake flask culture, potentially associated with the improved cell densities achieved in these culture vessels.
Collapse
Affiliation(s)
- Ana Rita Costa
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Joanne Withers
- NIBRT Dublin-Oxford Glycobiology Laboratory, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co, Dublin, Ireland
| | - Maria Elisa Rodrigues
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Niaobh McLoughlin
- NIBRT Dublin-Oxford Glycobiology Laboratory, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co, Dublin, Ireland
| | - Mariana Henriques
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rosário Oliveira
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pauline M Rudd
- NIBRT Dublin-Oxford Glycobiology Laboratory, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co, Dublin, Ireland
| | - Joana Azeredo
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Pettersson S, Wetterö J, Tengvall P, Kratz G. Cell expansion of human articular chondrocytes on macroporous gelatine scaffolds-impact of microcarrier selection on cell proliferation. Biomed Mater 2011; 6:065001. [PMID: 21959554 DOI: 10.1088/1748-6041/6/6/065001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study investigates human chondrocyte expansion on four macroporous gelatine microcarriers (CultiSpher) differing with respect to two manufacturing processes-the amount of emulsifier used during initial preparation and the gelatine cross-linking medium. Monolayer-expanded articular chondrocytes from three donors were seeded onto the microcarriers and cultured in spinner flask systems for a total of 15 days. Samples were extracted every other day to monitor cell viability and establish cell counts, which were analysed using analysis of variance and piecewise linear regression. Chondrocyte densities increased according to a linear pattern for all microcarriers, indicating an ongoing, though limited, cell proliferation. A strong chondrocyte donor effect was seen during the initial expansion phase. The final cell yield differed significantly between the microcarriers and our results indicate that manufacturing differences affected chondrocyte densities at this point. Remaining cells stained positive for chondrogenic markers SOX-9 and S-100 but extracellular matrix formation was modest to undetectable. In conclusion, the four gelatine microcarriers supported chondrocyte adhesion and proliferation over a two week period. The best yield was observed for microcarriers produced with low emulsifier content and cross-linked in water and acetone. These results add to the identification of optimal biomaterial parameters for specific cellular processes and populations.
Collapse
Affiliation(s)
- Sofia Pettersson
- Laboratory for Reconstructive Plastic Surgery, Department of Clinical and Experimental Medicine, Linköping University, Sweden.
| | | | | | | |
Collapse
|
9
|
Landauer K, Dürrschmid M, Klug H, Wiederkum S, Blüml G, Doblhoff-Dier O. Detachment factors for enhanced carrier to carrier transfer of CHO cell lines on macroporous microcarriers. Cytotechnology 2011; 39:37-45. [PMID: 19003302 DOI: 10.1023/a:1022455525323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this publication different detachment factors were tested for enhancing carrier to carrier transfer for scale-up of macroporous microcarrier based bioprocesses. Two Chinese hamster ovary cell lines, CHO-K1 and a genetically engineered CHO-K1 derived cell line (CHO-MPS), producing recombinant human Arylsulfatase B, were examined. The cells were grown on Cytoline 1microcarriers (Amersham Biosciences, Uppsala, Sweden) in protein-free and chemically defined medium respectively. Fully colonised microcarriers were used at passage ratios of approximately 1:10 for carrier to carrier transfer experiments. To accelerate the colonisation of the non-colonised, freshly added microcarriers the detachment reagents trypsin, papain, Accutasetrade mark (PAA, Linz, Austria), heparin and dextransulphate were used. Both cell lines showed good results with trypsin, Accutase and dextransulphate (Amersham Biosciences, Uppsala, Sweden), while papain failed to enhance carrier to carrier transfer in comparison to the non-treated reference. The maximum growth rate of cells on microcarriers with 2% dextransulphate in the medium was 0.25 +/- 0.02d(-1) and 0.27 +/- 0.03d(-1) for the CHO-MPS and CHO-K1, respectively. TheCHO-K1 grew best after detachment with trypsin (mu = 0.36 +/- 0.03d(-1)). This indicates, that one of the key parameters for carrier to carrier transfer is the uniform distribution of cells on the individual carriers during the initial phase. When this distribution can be improved, growth rate increases, resulting in a faster and more stable process.
Collapse
Affiliation(s)
- K Landauer
- Institute of applied Microbiology, Muthgasse 18/Haus B, Wien, 1190, Austria
| | | | | | | | | | | |
Collapse
|
10
|
Storm MP, Orchard CB, Bone HK, Chaudhuri JB, Welham MJ. Three-dimensional culture systems for the expansion of pluripotent embryonic stem cells. Biotechnol Bioeng 2011; 107:683-95. [PMID: 20589846 PMCID: PMC3580883 DOI: 10.1002/bit.22850] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mouse embryonic stem cell (ESC) lines, and more recently human ESC lines, have become valuable tools for studying early mammalian development. Increasing interest in ESCs and their differentiated progeny in drug discovery and as potential therapeutic agents has highlighted the fact that current two-dimensional (2D) static culturing techniques are inadequate for large-scale production. The culture of mammalian cells in three-dimensional (3D) agitated systems has been shown to overcome many of the restrictions of 2D and is therefore likely to be effective for ESC proliferation. Using murine ESCs as our initial model, we investigated the effectiveness of different 3D culture environments for the expansion of pluripotent ESCs. Solohill Collagen, Solohill FACT, and Cultispher-S microcarriers were employed and used in conjunction with stirred bioreactors. Initial seeding parameters, including cell number and agitation conditions, were found to be critical in promoting attachment to microcarriers and minimizing the size of aggregates formed. While all microcarriers supported the growth of undifferentiated mESCs, Cultispher-S out-performed the Solohill microcarriers. When cultured for successive passages on Cultispher-S microcarriers, mESCs maintained their pluripotency, demonstrated by self-renewal, expression of pluripotency markers and the ability to undergo multi-lineage differentiation. When these optimized conditions were applied to unweaned human ESCs, Cultispher-S microcarriers supported the growth of hESCs that retained expression of pluripotency markers including SSEA4, Tra-1–60, NANOG, and OCT-4. Our study highlights the importance of optimization of initial seeding parameters and provides proof-of-concept data demonstrating the utility of microcarriers and bioreactors for the expansion of hESCs. Biotechnol. Bioeng. 2010;107:683–695. © 2010 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael P Storm
- Centre for Regenerative Medicine, Departments of Pharmacy & Pharmacology, University of Bath, Bath, UK
| | | | | | | | | |
Collapse
|
11
|
Pettersson S, Wetterö J, Tengvall P, Kratz G. Human articular chondrocytes on macroporous gelatin microcarriers form structurally stable constructs with blood-derived biological glues in vitro. J Tissue Eng Regen Med 2009; 3:450-60. [PMID: 19444864 DOI: 10.1002/term.179] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biodegradable macroporous gelatin microcarriers fixed with blood-derived biodegradable glue are proposed as a delivery system for human autologous chondrocytes. Cell-seeded microcarriers were embedded in four biological glues-recalcified citrated whole blood, recalcified citrated plasma with or without platelets, and a commercially available fibrin glue-and cultured in an in vitro model under static conditions for 16 weeks. No differences could be verified between the commercial fibrin glue and the blood-derived alternatives. Five further experiments were conducted with recalcified citrated platelet-rich plasma alone as microcarrier sealant, using two different in vitro culture models and chondrocytes from three additional donors. The microcarriers supported chondrocyte adhesion and expansion as well as extracellular matrix (ECM) synthesis. Matrix formation occurred predominantly at sample surfaces under the static conditions. The presence of microcarriers proved essential for the glues to support the structural takeover of ECM proteins produced by the embedded chondrocytes, as exclusion of the microcarriers resulted in unstable structures that dissolved before matrix formation could occur. Immunohistochemical analysis revealed the presence of SOX-9- and S-100-positive chondrocytes as well as the production of aggrecan and collagen type I, but not of the cartilage-specific collagen type II. These results imply that blood-derived glues are indeed potentially applicable for encapsulation of chondrocyte-seeded microcarriers. However, the static in vitro models used in this study proved incapable of supporting cartilage formation throughout the engineered constructs.
Collapse
Affiliation(s)
- Sofia Pettersson
- Laboratory for Reconstructive Plastic Surgery, Department of Clinical and Experimental Medicine, Linköping University, Linköping SE-581 85, Sweden.
| | | | | | | |
Collapse
|
12
|
Rodrigues ME, Costa AR, Henriques M, Azeredo J, Oliveira R. Technological progresses in monoclonal antibody production systems. Biotechnol Prog 2009; 26:332-51. [DOI: 10.1002/btpr.348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Zhang L, Pan J, Li J, Wu W, Yu Y. Studies on the preparation of chitosan microcarriers cross-linked by oxidized lactose and culture of primary hepatocytes. ARTIFICIAL CELLS, BLOOD SUBSTITUTES, AND IMMOBILIZATION BIOTECHNOLOGY 2003; 31:293-301. [PMID: 12906310 DOI: 10.1081/bio-120023159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chitosan microcarriers were prepared using oxidized lactose as a cross-linking agent which was oxidized by sodium periodate. The effect of amount of oxidized lactose on the preparation of chitosan microcarriers was studied and optimized. Rat hepatocytes cultivated on chitosan microcarriers cross-linked by oxidized lactose retained the spherical shape as they have in vivo. Liver-specific functions such as albumin secretion and glucose metabolism were stably maintained for seven days. The metabolic activities of hepatocytes cultured on the oxidized lactose cross-linked chitosan microcarriers were higher than those of hepatocytes on chitosan microcarriers cross-linked by glutaraldehyde and on cytodex 3. The results suggest that oxidized lactose could be an interesting cross-linking agent for chitosan thus reducing the toxic side effects caused by using glutaraldehyde.
Collapse
Affiliation(s)
- Liguo Zhang
- Key Laboratory of Bioactive Materials Ministry of Education, Institute of Molecular Biology, Nankai University, Tianjin, PR China
| | | | | | | | | |
Collapse
|