1
|
Viruel J, Conejero M, Hidalgo O, Pokorny L, Powell RF, Forest F, Kantar MB, Soto Gomez M, Graham SW, Gravendeel B, Wilkin P, Leitch IJ. A Target Capture-Based Method to Estimate Ploidy From Herbarium Specimens. FRONTIERS IN PLANT SCIENCE 2019; 10:937. [PMID: 31396248 PMCID: PMC6667659 DOI: 10.3389/fpls.2019.00937] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/04/2019] [Indexed: 05/24/2023]
Abstract
Whole genome duplication (WGD) events are common in many plant lineages, but the ploidy status and possible occurrence of intraspecific ploidy variation are unknown for most species. Standard methods for ploidy determination are chromosome counting and flow cytometry approaches. While flow cytometry approaches typically use fresh tissue, an increasing number of studies have shown that recently dried specimens can be used to yield ploidy data. Recent studies have started to explore whether high-throughput sequencing (HTS) data can be used to assess ploidy levels by analyzing allelic frequencies from single copy nuclear genes. Here, we compare different approaches using a range of yam (Dioscorea) tissues of varying ages, drying methods and quality, including herbarium tissue. Our aims were to: (1) explore the limits of flow cytometry in estimating ploidy level from dried samples, including herbarium vouchers collected between 1831 and 2011, and (2) optimize a HTS-based method to estimate ploidy by considering allelic frequencies from nuclear genes obtained using a target-capture method. We show that, although flow cytometry can be used to estimate ploidy levels from herbarium specimens collected up to fifteen years ago, success rate is low (5.9%). We validated our HTS-based estimates of ploidy using 260 genes by benchmarking with dried samples of species of known ploidy (Dioscorea alata, D. communis, and D. sylvatica). Subsequently, we successfully applied the method to the 85 herbarium samples analyzed with flow cytometry, and successfully provided results for 91.7% of them, comprising species across the phylogenetic tree of Dioscorea. We also explored the limits of using this HTS-based approach for identifying high ploidy levels in herbarium material and the effects of heterozygosity and sequence coverage. Overall, we demonstrated that ploidy diversity within and between species may be ascertained from historical collections, allowing the determination of polyploidization events from samples collected up to two centuries ago. This approach has the potential to provide insights into the drivers and dynamics of ploidy level changes during plant evolution and crop domestication.
Collapse
Affiliation(s)
- Juan Viruel
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Oriane Hidalgo
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Laboratori de Botànica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Michael B. Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawai’i at Mânoa, Honolulu, HI, United States
| | - Marybel Soto Gomez
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, BC, Canada
| | - Sean W. Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, BC, Canada
| | - Barbara Gravendeel
- Naturalis Biodiversity Center, Endless Forms, Leiden, Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Science and Technology Faculty, University of Applied Sciences Leiden, Leiden, Netherlands
| | - Paul Wilkin
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | |
Collapse
|
2
|
Taga M, Tanaka K, Kato S, Kubo Y. Cytological analyses of the karyotypes and chromosomes of three Colletotrichum species, C. orbiculare, C. graminicola and C. higginsianum. Fungal Genet Biol 2015; 82:238-50. [DOI: 10.1016/j.fgb.2015.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 01/03/2023]
|
3
|
Merita K, Kattukunnel JJ, Yadav SR, Bhat KV, Rao SR. Comparative analysis of heterochromatin distribution in wild and cultivated Abelmoschus species based on fluorescent staining methods. PROTOPLASMA 2015; 252:657-664. [PMID: 25300590 DOI: 10.1007/s00709-014-0712-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/27/2014] [Indexed: 06/04/2023]
Abstract
A comparative analysis of fluorochrome-binding pattern in nine taxa of Abelmoschus had shown that the type, amount and distribution pattern of heterochromatin were characteristic for each taxa. The fluorescent chromosome-binding sites obtained by chromomycin A3 (CMA) and 4',6-diamidino-2-phenylindole (DAPI) staining in all the nine species showed constitutive heterochromatin CMA(+), DAPI(+) and CMA(+)/DAPI(+). Large amount of heterozygosity was observed with regard to heterochromatin distribution pattern in all the taxa studied. The CMA(+)-binding sites are comparatively less than DAPI(+)-binding sites which is clearly evident as AT-rich regions are more than GC-rich regions in all the nine taxa analysed in Abelmoschus. These CMA(+) and DAPI(+)-binding sites apparently rise with the increased in chromosome numbers of the different species. This pattern of heterochromatin heterogeneity seems to be a general characteristic feature. Therefore, the differential pattern of distribution of GC- and AT-rich sequences might have played an important role in diversification of the genus Abelmoschus. Polyploidy is an important factor in the evolution of Abelmoschus and the sole reason for range in chromosome numbers in this genus. It may be noted that, though often, but not always, the increase of DNA is caused by an increase in the amount of heterochromatin, i.e. increase of non-coding sections indicating restructuring of the heterochromatin. Thus, cumulative small and direct numerical changes might have played a role in the speciation of Abelmoschus.
Collapse
Affiliation(s)
- Keisham Merita
- Plant Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Permanent Campus, Mawkynroh, Umnsing, Shillong, 793 022, Meghalaya, India
| | | | | | | | | |
Collapse
|
4
|
Barros e Silva AE, Guerra M. The meaning of DAPI bands observed after C-banding and FISH procedures. Biotech Histochem 2010. [DOI: 10.3109/10520290903149596] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
She CW, Liu JY, Song YC. CPD staining: an effective technique for detection of NORs and other GC-rich chromosomal regions in plants. Biotech Histochem 2009; 81:13-21. [PMID: 16760123 DOI: 10.1080/10520290600661414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Mitotic chromosome spreads of 16 plant species belonging to six families were analyzed using an improved combined PI and DAPI (CPD) staining procedure. Fluorescence in situ hybridization (FISH) with 45S rDNA probe was conducted sequentially on the same spreads to evaluate the efficiency and sensitivity of the technique. Fluorochrome staining with chromomycin A3 (CMA)-DAPI also was conducted to clarify the properties of the sequences involved in the CPD banded regions. Our results revealed that all of the NORs (rDNA sites) in the species tested were efficiently shown as red bands by CPD staining, and the number and position of the bands corresponded precisely to those of the 45S rDNA FISH signals, indicating that the detection sensitivity of CPD staining is similar to that of FISH. In 10 of the species tested including Aegilops squarrosa, Allium sativum, Oryza sativum ssp. indica, Oryza officinalis, Pisum sativum, Secale cereale, Setaria italica, Sorghum vulgare, Vicia faba and Zea mays, CPD bands were exhibited exclusively in their NORs, while in other six species including Hordeum vulgare, Allium cepa, Psophocarpus tetragonolobus, Arabidopsis thaliana, Brassica oleracea var. capitata and Lycopersicon esculentum, CPD bands appeared in chromosomal regions other than their NORs. The CPD bands were in accordance with the CMA bands in all species tested, indicating GC-rich sequences in the CPD bands and that the improved CPD staining procedure is specific for GC-rich regions in plant genomes. Our investigation not only elucidated the banding mechanisms of CPD, but also demonstrated that the CPD staining technique, which may be preferable to CMA staining, is an effective tool for detecting NORs and other GC-rich chromosomal regions in plants.
Collapse
Affiliation(s)
- C W She
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | |
Collapse
|
6
|
Brasileiro-Vidal AC, Melo-Oliveira MB, Carvalheira GMG, Guerra M. Different chromatin fractions of tomato (Solanum lycopersicum L.) and related species. Micron 2009; 40:851-9. [PMID: 19646883 DOI: 10.1016/j.micron.2009.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 06/12/2009] [Accepted: 06/12/2009] [Indexed: 11/17/2022]
Abstract
Conventional chromosome staining has suggested that more than 75% of the tomato chromosomes are constituted by heterochromatin. In order to determine whether more deeply stained proximal regions are classic heterochromatin, the distributions of C-bands and chromomycin A(3) (CMA) bands, and the prophase condensation patterns, were analysed in tomato. In this and most other species of the tomato clade, the 5S and 45S rDNA sites were also localised. In tomato, CMA banding was similar to C-banding. After conventional staining, all species displayed large condensed heteropycnotic regions that did not correspond to C-bands or CMA bands. Analyses of the CMA banded karyotypes revealed a low heterochromatin content. Around 12-17% of the chromatin of tomato was CMA(+) and 1/4 to 1/5 of this heterochromatin corresponded to 45S rDNA. In other species, the CMA(+) heterochromatin showed extensive variation (8-35%), but was never near the values found in the literature for tomato. These data suggest the existence of three principal fractions of chromatin in tomato and related species: the late condensed euchromatin corresponding to the terminal regions of the chromosomes, the precocious condensed euchromatin that occupies the major part of the chromosomes and the constitutive heterochromatin that represents those regions revealed by C-bands.
Collapse
Affiliation(s)
- A C Brasileiro-Vidal
- Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n Cidade, 50670-901 Recife, PE, Brazil.
| | | | | | | |
Collapse
|
7
|
Diao Y, Miao Y, Lin X, Liao C, Guo F, Hu Z. Comparative analysis of five varieties in Perilla frutescens (L.) Britton by 45S rDNA FISH and 5S rDNA sequences. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409040085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Ali HB, El-Khodary SE, El-Ashry ZM, Osman SA. rDNA Loci and DAPI Bands Reflect the Phylogenetic Distance between Vicia Species. CYTOLOGIA 2009. [DOI: 10.1508/cytologia.74.467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- H. B. Ali
- Department of Genetics and Cytology, National Research Center
| | | | - Z. M. El-Ashry
- Department of Genetics and Cytology, National Research Center
| | - S. A. Osman
- Department of Genetics and Cytology, National Research Center
| |
Collapse
|
9
|
Islam-Faridi MN, Nelson CD, Kubisiak TL. Reference karyotype and cytomolecular map for loblolly pine (Pinus taeda L.). Genome 2007; 50:241-51. [PMID: 17546089 DOI: 10.1139/g06-153] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A reference karyotype is presented for loblolly pine (Pinus taeda L., subgenus Pinus, section Pinus, subsection Australes), based on fluorescent in situ hybridization (FISH), using 18S-28S rDNA, 5S rDNA, and an Arabidopsis-type telomere repeat sequence (A-type TRS). Well separated somatic chromosomes were prepared from colchicine-treated root meristems, using an enzymatic digestion technique. Statistical analyses performed on chromosome-arm lengths, centromeric indices, and interstitial rDNA and telomeric positions were based on observations from 6 well-separated metaphase cells from each of 3 unrelated trees. Statistically, 7 of the 12 loblolly pine chromosomes could be distinguished by their relative lengths. Centromeric indices were unable to distinguish additional chromosomes. However, the position and relative strength of the rDNA and telomeric sites made it possible to uniquely identify all of the chromosomes, providing a reference karyotype for use in comparative genome analyses. A dichotomous key was developed to aid in the identification of loblolly pine chromosomes and their comparison to chromosomes of other Pinus spp. A cytomolecular map was developed using the interstitial 18S-28S rDNA and A-type TRS signals. A total of 54 bins were assigned, ranging from 3 to 5 bins per chromosome. This is the first report of a chromosome-anchored physical map for a conifer that includes a dichotomous key for accurate and consistent identification of the P. taeda chromosomes.
Collapse
Affiliation(s)
- M Nurul Islam-Faridi
- Forest Tree Molecular Cytogenetics Laboratory, Southern Institute of Forest Genetics, Southern Research Station, USDA Forest Service, Texas A&M University, 2585-TAMU, College Station, TX 77843-2585, USA.
| | | | | |
Collapse
|
10
|
Clarindo WR, Carvalho CR. A High Quality Chromosome Preparation from Cell Suspension Aggregates Culture of Coffea canephora. CYTOLOGIA 2006. [DOI: 10.1508/cytologia.71.243] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Wellington Ronildo Clarindo
- Laboratory of Cytogenetics and Cytometry, Departamento de Biologia Geral, Universidade Federal de Viçosa, Brazil
| | - Carlos Roberto Carvalho
- Laboratory of Cytogenetics and Cytometry, Departamento de Biologia Geral, Universidade Federal de Viçosa, Brazil
| |
Collapse
|
11
|
Grant WF, Owens ET. Lycopersicon assays of chemical/radiation genotoxicity for the study of environmental mutagens. Mutat Res 2002; 511:207-37. [PMID: 12088718 DOI: 10.1016/s1383-5742(02)00011-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
From a literature survey, 21 chemicals are tabulated that have been evaluated in 39 assays for their clastogenic effects in Lycopersicon. Nineteen of the 21 chemicals are reported as giving a positive reaction (i.e. causing chromosome aberrations). Of these, five are reported positive with a dose response. In addition, 23 assays have been recorded for six types of radiation, all of which reacted positively. The results of 102 assays with 32 chemicals and seven types of radiation tested for the induction of gene mutations are tabulated, as well as 20 chemicals and/or radiation in combined treatments. The Lycopersicon esculentum (2n=24) assay is a very good plant bioassay for assessing chromosome damage both in mitosis and meiosis and for somatic mutations induced by chemicals and radiations. The Lycopersicon bioassay has been shown to be as sensitive and as specific an assay as other plant genotoxicity assays, such as Hordeum vulgare, Vicia faba, Crepis capillaris, Pisum sativum and Allium cepa and should be considered in further studies in assessing clastogenicity. Tests using L. esculentum can be made for a spectrum of mutant phenotypes of which many are identifiable in young seedlings.
Collapse
Affiliation(s)
- William F Grant
- Department of Plant Science, P.O. Box 4000, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Que., Canada H9X 3V9
| | | |
Collapse
|
12
|
Lim KB, Wennekes J, Jong JHD, Jacobsen E, van Tuyl JM. Karyotype analysis of Lilium longiflorumand Lilium rubellumby chromosome banding and fluorescence in situ hybridisation. Genome 2001. [DOI: 10.1139/g01-066] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Detailed karyotypes of Lilium longiflorum and L. rubellum were constructed on the basis of chromosome arm lengths, C-banding, AgNO3staining, and PI-DAPI banding, together with fluorescence in situ hybridisation (FISH) with the 5S and 45S rDNA sequences as probes. The C-banding patterns that were obtained with the standard BSG technique revealed only few minor bands on heterologous positions of the L. longiflorum and L. rubellum chromosomes. FISH of the 5S and 45S rDNA probes on L. longiflorum metaphase complements showed overlapping signals at proximal positions of the short arms of chromosomes 4 and 7, a single 5S rDNA signal on the secondary constriction of chromosome 3, and one 45S rDNA signal adjacent to the 5S rDNA signal on the subdistal part of the long arm of chromosome 3. In L. rubellum, we observed co-localisation of the 5S and 45S rDNA sequences on the short arm of chromosomes 2 and 4 and on the long arms of chromosomes 2 and 3, and two adjacent bands on chromosome 12. Silver staining (Ag-NOR) of the nucleoli and NORs in L. longiflorum and L. rubellum yielded a highly variable number of signals in interphase nuclei and only a few faint silver deposits on the NORs of mitotic metaphase chromosomes. In preparations stained with PI and DAPI, we observed both red- and blue-fluorescing bands at different positions on the L. longiflorum and L. rubellum chromosomes. The red-fluorescing or so-called reverse PI-DAPI bands always coincided with rDNA sites, whereas the blue-fluorescing DAPI bands corresponded to C-bands. Based on these techniques, we could identify most of chromosomes of the L. longiflorum and L. rubellum karyotypes.Key words: fluorescence in situ hybridisation, FISH, 5S rDNA, 45S rDNA, C-banding, reverse PI-DAPI banding.
Collapse
|
13
|
Andras SC, Power JB, Cocking EC, Davey MR. Strategies for signal amplification in nucleic acid detection. Mol Biotechnol 2001; 19:29-44. [PMID: 11697219 DOI: 10.1385/mb:19:1:029] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Many aspects of molecular genetics necessitate the detection of nucleic acid sequences. Current approaches involving target amplification (in situ PCR, Primed in situ Labeling, Self-Sustained Sequence Replication, Strand Displacement Amplification), probe amplification (Ligase Chain Reaction, Padlock Probes, Rolling Circle Amplification) and signal amplification (Tyramide Signal Amplification, Branched DNA Amplification) are summarized in the present review, together with their advantages and limitations.
Collapse
Affiliation(s)
- S C Andras
- Babes-Boylai University, Faculty of Biology and Geology, Ecology and Genetics Department, Str. Clinicilor 5-7, Cluj-Napoca 3400, Romania
| | | | | | | |
Collapse
|