1
|
Current and Emerging Medical Therapies in Pituitary Tumors. J Clin Med 2022; 11:jcm11040955. [PMID: 35207228 PMCID: PMC8877616 DOI: 10.3390/jcm11040955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022] Open
Abstract
Pituitary tumors (PT) represent in, the majority of cases, benign tumors for which surgical treatment still remains, except for prolactin-secreting PT, the first-line therapeutic option. Nonetheless, the role played by medical therapies for the management of such tumors, before or after surgery, has evolved considerably, due in part to the recent development of well-tolerated and highly efficient molecules. In this review, our aim was to present a state-of-the-art of the current medical therapies used in the field of PT and the benefits and caveats for each of them, and further specify their positioning in the therapeutic algorithm of each phenotype. Finally, we discuss the future of PT medical therapies, based on the most recent studies published in this field.
Collapse
|
2
|
Abstract
This review focuses on discussing the main changes on the upcoming fourth edition of the WHO Classification of Tumors of the Pituitary Gland emphasizing histopathological and molecular genetics aspects of pituitary neuroendocrine (i.e., pituitary adenomas) and some of the non-neuroendocrine tumors involving the pituitary gland. Instead of a formal review, we introduced the highlights of the new WHO classification by answering select questions relevant to practising pathologists. The revised classification of pituitary adenomas, in addition to hormone immunohistochemistry, recognizes the role of other immunohistochemical markers including but not limited to pituitary transcription factors. Recognizing this novel approach, the fourth edition of the WHO classification has abandoned the concept of "a hormone-producing pituitary adenoma" and adopted a pituitary adenohypophyseal cell lineage designation of the adenomas with subsequent categorization of histological variants according to hormone content and specific histological and immunohistochemical features. This new classification does not require a routine ultrastructural examination of these tumors. The new definition of the Null cell adenoma requires the demonstration of immunonegativity for pituitary transcription factors and adenohypophyseal hormones Moreover, the term of atypical pituitary adenoma is no longer recommended. In addition to the accurate tumor subtyping, assessment of the tumor proliferative potential by mitotic count and Ki-67 index, and other clinical parameters such as tumor invasion, is strongly recommended in individual cases for consideration of clinically aggressive adenomas. This classification also recognizes some subtypes of pituitary neuroendocrine tumors as "high-risk pituitary adenomas" due to the clinical aggressive behavior; these include the sparsely granulated somatotroph adenoma, the lactotroph adenoma in men, the Crooke's cell adenoma, the silent corticotroph adenoma, and the newly introduced plurihormonal Pit-1-positive adenoma (previously known as silent subtype III pituitary adenoma). An additional novel aspect of the new WHO classification was also the definition of the spectrum of thyroid transcription factor-1 expressing pituitary tumors of the posterior lobe as representing a morphological spectrum of a single nosological entity. These tumors include the pituicytoma, the spindle cell oncocytoma, the granular cell tumor of the neurohypophysis, and the sellar ependymoma.
Collapse
Affiliation(s)
- Ozgur Mete
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th Floor, Toronto, ON, M5G 2C4, Canada.
- Endocrine Oncology Site Group, Princess Margaret Cancer Centre, Toronto, ON, Canada.
| | - M Beatriz Lopes
- Department of Pathology and Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
3
|
Rostomyan L, Potorac I, Beckers P, Daly AF, Beckers A. AIP mutations and gigantism. ANNALES D'ENDOCRINOLOGIE 2017; 78:123-130. [DOI: 10.1016/j.ando.2017.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Jedidi H, Rostomyan L, Potorac L, Depierreux-Lahaye F, Petrossians P, Beckers A. Advances in diagnosis and management of familial pituitary adenomas. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2016. [DOI: 10.2217/ije-2016-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Familial pituitary adenomas account for approximately 5–8% of all pituitary adenomas. Besides the adenomas occurring as part of syndromic entities that group several endocrine or nonendocrine disorders (multiple endocrine neoplasia type 1 or 4, Carney complex and McCune–Albright syndrome), 2–3% of familial pituitary adenomas fit into the familial isolated pituitary adenomas (FIPA) syndrome, an autosomal dominant condition with incomplete penetrance. About 20% of FIPA cases are due to mutations in the AIP gene and have distinct clinical characteristics. Recent findings have isolated a new non-AIP FIPA syndrome called X-linked acrogigantism, resulting from a microduplication that always includes the GPR101 gene. These new advances in the field of pituitary disease are opening up a new challenging domain to both clinicians and researchers. This review will focus on these recent findings and their contribution to the diagnosis and the management of familial pituitary adenomas.
Collapse
Affiliation(s)
- Haroun Jedidi
- Neurology Department, CHU of Liège, 1 Avenue de l'hopital, 4000 Liège, Belgium
| | - Liliya Rostomyan
- Endocrinology Department, CHU of Liège, 1 Avenue de l'hopital, 4000 Liège, Belgium
| | - lulia Potorac
- Endocrinology Department, CHU of Liège, 1 Avenue de l'hopital, 4000 Liège, Belgium
| | | | - Patrick Petrossians
- Endocrinology Department, CHU of Liège, 1 Avenue de l'hopital, 4000 Liège, Belgium
| | - Albert Beckers
- Endocrinology Department, CHU of Liège, 1 Avenue de l'hopital, 4000 Liège, Belgium
| |
Collapse
|
5
|
Pituitary gigantism: Causes and clinical characteristics. ANNALES D'ENDOCRINOLOGIE 2015; 76:643-9. [PMID: 26585365 DOI: 10.1016/j.ando.2015.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/06/2015] [Indexed: 11/21/2022]
Abstract
Acromegaly and pituitary gigantism are very rare conditions resulting from excessive secretion of growth hormone (GH), usually by a pituitary adenoma. Pituitary gigantism occurs when GH excess overlaps with the period of rapid linear growth during childhood and adolescence. Until recently, its etiology and clinical characteristics have been poorly understood. Genetic and genomic causes have been identified in recent years that explain about half of cases of pituitary gigantism. We describe these recent discoveries and focus on some important settings in which gigantism can occur, including familial isolated pituitary adenomas (FIPA) and the newly described X-linked acrogigantism (X-LAG) syndrome.
Collapse
|
6
|
Daly AF, Beckers A. Familial isolated pituitary adenomas (FIPA) and mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocrinol Metab Clin North Am 2015; 44:19-25. [PMID: 25732638 DOI: 10.1016/j.ecl.2014.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The most frequent conditions that are associated with inherited/familial pituitary adenomas are familial isolated pituitary adenoma (FIPA) and multiple endocrine neoplasia type 1 (MEN1), which together account for up to 5% of pituitary adenomas. One important genetic cause of FIPA are inactivating mutations or deletions in the aryl hydrocarbon receptor interacting protein (AIP) gene. FIPA is the most frequent clinical presentation of AIP mutations. This article traces the current state of knowledge regarding the clinical features of FIPA and the particular genetic, pathologic, and clinical characteristics of pituitary adenomas due to AIP mutations.
Collapse
Affiliation(s)
- Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Liège 4000, Belgium
| | - Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Liège 4000, Belgium.
| |
Collapse
|
7
|
Abstract
Endocrine tumors may present as sporadic events or as part of familial endocrine syndromes. Familial endocrine syndromes (or inherited tumor/neoplasm syndromes) are characterized by multiple tumors in multiple organs. Some morphologic findings in endocrine tumor histopathology may prompt the possibility of familial endocrine syndromes, and these recognized histologic features may lead to further molecular genetic evaluation of the patient and family members. Subsequent evaluation for these syndromes in asymptomatic patients and family members may then be performed by genetic screening.
Collapse
Affiliation(s)
- Peter M Sadow
- Pathology Service, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | | | - Vania Nosé
- Pathology Service, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Fracassi F, Zagnoli L, Rosenberg D, Furlanello T, Caldin M. Spontaneous acromegaly: A retrospective case control study in German shepherd dogs. Vet J 2014; 202:69-75. [DOI: 10.1016/j.tvjl.2014.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/01/2014] [Accepted: 06/06/2014] [Indexed: 11/28/2022]
|
9
|
Beckers A, Aaltonen LA, Daly AF, Karhu A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev 2013; 34:239-77. [PMID: 23371967 PMCID: PMC3610678 DOI: 10.1210/er.2012-1013] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pituitary adenomas are one of the most frequent intracranial tumors and occur with a prevalence of approximately 1:1000 in the developed world. Pituitary adenomas have a serious disease burden, and their management involves neurosurgery, biological therapies, and radiotherapy. Early diagnosis of pituitary tumors while they are smaller may help increase cure rates. Few genetic predictors of pituitary adenoma development exist. Recent years have seen two separate, complimentary advances in inherited pituitary tumor research. The clinical condition of familial isolated pituitary adenomas (FIPA) has been described, which encompasses the familial occurrence of isolated pituitary adenomas outside of the setting of syndromic conditions like multiple endocrine neoplasia type 1 and Carney complex. FIPA families comprise approximately 2% of pituitary adenomas and represent a clinical entity with homogeneous or heterogeneous pituitary adenoma types occurring within the same kindred. The aryl hydrocarbon receptor interacting protein (AIP) gene has been identified as causing a pituitary adenoma predisposition of variable penetrance that accounts for 20% of FIPA families. Germline AIP mutations have been shown to associate with the occurrence of large pituitary adenomas that occur at a young age, predominantly in children/adolescents and young adults. AIP mutations are usually associated with somatotropinomas, but prolactinomas, nonfunctioning pituitary adenomas, Cushing disease, and other infrequent clinical adenoma types can also occur. Gigantism is a particular feature of AIP mutations and occurs in more than one third of affected somatotropinoma patients. Study of pituitary adenoma patients with AIP mutations has demonstrated that these cases raise clinical challenges to successful treatment. Extensive research on the biology of AIP and new advances in mouse Aip knockout models demonstrate multiple pathways by which AIP may contribute to tumorigenesis. This review assesses the current clinical and therapeutic characteristics of more than 200 FIPA families and addresses research findings among AIP mutation-bearing patients in different populations with pituitary adenomas.
Collapse
Affiliation(s)
- Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium.
| | | | | | | |
Collapse
|
10
|
Abstract
Familial GH-secreting tumors are seen in association with three separate hereditary clinical syndromes: multiple endocrine neoplasia type 1, Carney complex, and familial isolated pituitary adenomas.
Collapse
Affiliation(s)
- Wouter W de Herder
- Department of Internal Medicine, Sector of Endocrinology, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
11
|
Vasilev V, Daly A, Naves L, Zacharieva S, Beckers A. Clinical and genetic aspects of familial isolated pituitary adenomas. Clinics (Sao Paulo) 2012; 67 Suppl 1:37-41. [PMID: 22584704 PMCID: PMC3328818 DOI: 10.6061/clinics/2012(sup01)08] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pituitary adenomas represent a group of functionally diverse neoplasms with relatively high prevalence in the general population. Most occur sporadically, but inherited genetic predisposing factors are increasingly recognized. Familial isolated pituitary adenoma is a recently defined clinical entity, and is characterized by hereditary presentation of pituitary adenomas in the absence of clinical and genetic features of syndromic disease such as multiple endocrine neoplasia type 1 and Carney complex. Familial isolated pituitary adenoma is inherited in an autosomal dominant manner and accounted for approximately 2-3% of pituitary tumors in some series. Germline mutations in the aryl-hydrocarbon interacting protein gene are identified in around 25% of familial isolated pituitary adenoma kindreds. Pituitary adenomas with mutations of the aryl-hydrocarbon interacting protein gene are predominantly somatotropinomas and prolactinomas, but non-functioning adenomas, Cushing disease, and thyrotropinoma may also occur. These tumors may present as macroadenomas in young patients and are often relatively difficult to control. Furthermore, recent evidence indicates that aryl-hydrocarbon interacting protein gene mutations occur in >10% of patients with sporadic macroadenomas that occur before 30 years of age, and in >20% of children with macroadenomas. Genetic screening for aryl-hydrocarbon interacting protein gene mutations is warranted in selected high-risk patients who may benefit from early recognition and follow-up.
Collapse
Affiliation(s)
- Vladimir Vasilev
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Belgium
| | | | | | | | | |
Collapse
|
12
|
Jaffrain-Rea ML, Daly AF, Angelini M, Petrossians P, Bours V, Beckers A. Genetic susceptibility in pituitary adenomas: from pathogenesis to clinical implications. Expert Rev Endocrinol Metab 2011; 6:195-214. [PMID: 30290451 DOI: 10.1586/eem.10.87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pituitary adenomas usually present sporadically, with a multifactorial pathogenesis including somatic mutational events in cancer-related genes. Genetic predisposition implies the presence of germline DNA alterations with a range of impacts on pituitary cell biology, translating into a variable penetrance of the disease. Genetic causes must be considered in the presence of specific clinical settings, such as familial occurrence of pituitary adenoma, with or without extrapituitary diseases, and may also be suspected in young patients (<30 years of age) with macroadenomas. We review the clinical implications of genetic predisposition, with special attention on multiple endocrine neoplasia type 1, Carney complex and familial isolated pituitary adenoma. Genetic screening in selected patients with an apparently sporadic disease is also discussed.
Collapse
Affiliation(s)
- Marie-Lise Jaffrain-Rea
- a University of L'Aquila, via Vetoio, Coppito 2, 67100 L'Aquila, Italy
- b Neuromed Institute, via Atinense, 86077 Pozzilli, Italy
- c Fondazione 'Carlo Ferri' per la prevenzione e la diagnosi precoce dei tumori, via Edmondo Riva, 00015 Monterotondo, Italy
| | - Adrian F Daly
- d University of Liège, CHU of Liège, Domaine du Sart-Tilman, 4000 Liège, Belgium
| | | | - Patrick Petrossians
- d University of Liège, CHU of Liège, Domaine du Sart-Tilman, 4000 Liège, Belgium
| | - Vincent Bours
- d University of Liège, CHU of Liège, Domaine du Sart-Tilman, 4000 Liège, Belgium
| | - Albert Beckers
- d University of Liège, CHU of Liège, Domaine du Sart-Tilman, 4000 Liège, Belgium
- e
| |
Collapse
|
13
|
Vandeva S, Vasilev V, Vroonen L, Naves L, Jaffrain-Rea ML, Daly AF, Zacharieva S, Beckers A. Familial pituitary adenomas. ANNALES D'ENDOCRINOLOGIE 2010; 71:479-85. [PMID: 20961530 DOI: 10.1016/j.ando.2010.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 12/31/2022]
Abstract
Pituitary adenomas are benign intracranial neoplasms that present a major clinical concern because of hormonal overproduction or compression symptoms of adjacent structures. Most arise in a sporadic setting with a small percentage developing as a part of familial syndromes such as multiple endocrine neoplasia type 1 (MEN1), Carney complex (CNC), and the recently described familial isolated pituitary adenomas (FIPA) and MEN-4. While the genetic alterations responsible for the formation of sporadic adenomas remain largely unknown, considerable advances have been made in defining culprit genes in these familial syndromes. Mutations in MEN1 and PRKAR1A genes are found in the majority of MEN1 and CNC patients, respectively. About 15% of FIPA kindreds present with mutations of the aryl hydrocarbon receptor-interacting protein (AIP) gene. Mutations in the CDKN1B gene, encoding p27(Kip)¹ were identified in MEN4 cases. Familial tumours appear to differ from their sporadic counterparts not only in genetic basis but also in clinical characteristics. Evidence suggests that, especially in MEN1 and FIPA, they are more aggressive and affect patients at younger age, therefore justifying the importance of early diagnosis. In this review, we summarize the genetic and clinical characteristics of these familial pituitary adenomas.
Collapse
Affiliation(s)
- S Vandeva
- Department of Endocrinology, University of Liège, CHU de Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The majority of patients with acromegaly harbor a functioning growth hormone (GH) pituitary adenoma. Growth hormone–secreting adenomas correspond to about 20% of all pituitary adenomas. From the histopathological point of view, a variety of adenomas may present with clinical signs and symptoms of GH hypersecretion including pure GH cell adenomas (densely and sparsely granulated GH adenomas), mixed GH and prolactin cell adenomas, and monomorphous adenomas with primitive cells able to secrete GH and prolactin including the acidophilic stem cell adenoma and the mammosomatotroph cell adenoma. In this article, the author reviews the main pathological features of the GH-secreting adenomas and some of the molecular genetics mechanisms involved in their pathogenesis.
Collapse
|
15
|
Xekouki P, Azevedo M, Stratakis CA. Anterior pituitary adenomas: inherited syndromes, novel genes and molecular pathways. Expert Rev Endocrinol Metab 2010; 5:697-709. [PMID: 21264206 PMCID: PMC3024595 DOI: 10.1586/eem.10.47] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pituitary adenomas are common tumors. Although rarely malignant, pituitary adenomas cause significant morbidity due to mass effects and/or hormonal hypo- and/or hyper-secretion. Molecular understanding of pituitary adenoma formation is essential for the development of medical therapies and the treatment of post-operative recurrences. In general, mutations in genes involved in genetic syndromes associated with pituitary tumors are not a common finding in sporadic lesions. By contrast, multiple endocrine neoplasia type 1 (MEN-1) and aryl hydrocarbon receptor-interacting protein (AIP) mutations may be more frequent among specific subgroups of patients, such as children and young adults, with growth hormone-producing adenomas. In this article, we present the most recent data on the molecular pathogenesis of pituitary adenomas and discuss some of the most recent findings from our laboratory. Guidelines for genetic screening and clinical counseling of patients with pituitary tumors are provided.
Collapse
Affiliation(s)
- Paraskevi Xekouki
- SEGEN, PDEGEN & Pediatric Endocrinology Program, NICHD, NIH, Building 10, CRC (East Laboratories), Room 1-3330, 10 Center Drive, MSC1103, Bethesda, MD 20892, USA
| | - Monalisa Azevedo
- SEGEN, PDEGEN & Pediatric Endocrinology Program, NICHD, NIH, Building 10, CRC (East Laboratories), Room 1-3330, 10 Center Drive, MSC1103, Bethesda, MD 20892, USA
| | - Constantine A Stratakis
- SEGEN, PDEGEN & Pediatric Endocrinology Program, NICHD, NIH, Building 10, CRC (East Laboratories), Room 1-3330, 10 Center Drive, MSC1103, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Vandeva S, Jaffrain-Rea ML, Daly AF, Tichomirowa M, Zacharieva S, Beckers A. The genetics of pituitary adenomas. Best Pract Res Clin Endocrinol Metab 2010; 24:461-76. [PMID: 20833337 DOI: 10.1016/j.beem.2010.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pituitary adenomas are one of the most frequent intracranial tumors with a prevalence of clinically-apparent tumors close to 1:1000 of the general population. They are clinically significant because of hormone overproduction and/or tumor mass effects in addition to the need for neurosurgery, medical therapies and radiotherapy. The majority of pituitary adenomas have a sporadic origin with recognized genetic mutations seldom being found; somatotropinomas are an exception, presenting frequent somatic GNAS mutations. In this and other phenotypes, tumorigenesis could possibly be explained by altered function of genes implicated in cell cycle regulation, growth factors or their receptors, cell-signaling pathways, specific hormonal factors or other molecules with still unclear mechanisms of action. Genetic changes, such as allelic loss or gene amplification, and epigenetic changes, usually by promoter methylation, have been implicated in abnormal gene expression, but alternative mechanisms may be present. Familial cases of pituitary adenomas represent 5% of all pituitary tumors. MEN1 mutations cause multiple endocrine neoplasia type 1 (MEN1), while the Carney complex (CNC) is characterized by mutations in the protein kinase A regulatory subunit-1alpha (PRKAR1A) gene or changes in a locus at 2p16. Recently, a MEN1-like condition, MEN4, was found to be related to mutations in the CDKN1B gene. The clinical entity of familial isolated pituitary adenomas (FIPA) is characterized by genetic defects in the aryl hydrocarbon receptor interacting protein (AIP) gene in about 15% of all kindreds and 50% of homogenous somatotropinoma families. Identification of familial cases of pituitary adenomas is important as these tumors may be more aggressive than their sporadic counterparts.
Collapse
Affiliation(s)
- Silvia Vandeva
- Department of Endocrinology, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
According to data derived from autopsy and radiological imaging series, pituitary tumours occur very commonly in the general population; however, most of these tumours are incidental findings with no obvious clinical impact. The historical data on the prevalence of pituitary adenomas in the clinical setting are scant and point to such tumours being relatively rare. Recent studies have shown that the prevalence of clinically relevant pituitary adenomas is 3-5 times higher than previously reported, which adds impetus to research into the aetiology of these tumours. Although the majority of pituitary adenomas are sporadic, approximately 5% of all cases occur in a familial setting and over half of these are due to Multiple Endocrine Neoplasia Type 1 (MEN-1) and Carney's Complex (CNC) disorders. Since the late 1990 s, we have described non-MEN1/CNC familial pituitary tumours that include all tumour phenotypes as a condition termed Familial Isolated Pituitary Adenomas (FIPAs). The clinical characteristics of the FIPAs vary from those sporadic pituitary adenomas, as patients with FIPAs have a younger age at diagnosis and larger tumours. About 15% of the FIPA patients have mutations in the aryl hydrocarbon receptor-interacting protein gene (AIP), which indicates that the FIPA may have a diverse genetic pathophysiology.
Collapse
Affiliation(s)
- Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium
| | | | | |
Collapse
|
18
|
Abstract
The majority of pituitary adenomas occur sporadically, however, about 5% of all cases occur in a familial setting, of which over half are due to multiple endocrine neoplasia type 1 (MEN-1) and Carney's complex (CNC). Since the late 1990s we have described non-MEN1/CNC familial pituitary tumours that include all tumour phenotypes, a condition named familial isolated pituitary adenomas (FIPA). The clinical characteristics of FIPA vary from those of sporadic pituitary adenomas, as patients with FIPA have a younger age at diagnosis and larger tumours. About 15% of FIPA patients have mutations in the aryl hydrocarbon receptor interacting protein gene (AIP), which indicates that FIPA may have a diverse genetic pathophysiology. This review describes the clinical features of familial pituitary adenomas like MEN1, the MEN 1-like syndrome MEN-4, CNC, FIPA, the tumour pathologies found in this setting and the genetic/molecular data that have been recently reported.
Collapse
Affiliation(s)
- M A Tichomirowa
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, Liège 4000, Belgium
| | | | | |
Collapse
|
19
|
|
20
|
Horvath A, Stratakis CA. Clinical and molecular genetics of acromegaly: MEN1, Carney complex, McCune-Albright syndrome, familial acromegaly and genetic defects in sporadic tumors. Rev Endocr Metab Disord 2008; 9:1-11. [PMID: 18200440 DOI: 10.1007/s11154-007-9066-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pituitary tumors are among the most common neoplasms in man; they account for approximately 15% of all primary intracranial lesions (Jagannathan et al., Neurosurg Focus, 19:E4, 2005). Although almost never malignant and rarely clinically expressed, pituitary tumors may cause significant morbidity in affected patients. First, given the critical location of the gland, large tumors may lead to mass effects, and, second, proliferation of hormone-secreting pituitary cells leads to endocrine syndromes. Acromegaly results from oversecretion of growth hormone (GH) by the proliferating somatotrophs. Despite the significant efforts made over the last decade, still little is known about the genetic causes of common pituitary tumors and even less is applied from this knowledge therapeutically. In this review, we present an update on the genetic syndromes associated with pituitary adenomas and discuss the related genetic defects. We next review findings on sporadic, non-genetic, pituitary tumors with an emphasis on pathways and animal models of pituitary disease. In conclusion, we attempt to present an overall, integrative approach to the human molecular genetics of both familiar and sporadic pituitary tumors.
Collapse
Affiliation(s)
- Anelia Horvath
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1103, USA
| | | |
Collapse
|
21
|
Villa C, Magri F, Morbini P, Falchetti A, Scagnelli P, Lovati E, Locatelli D, Canevari FR, Necchi V, Gabellieri E, Guabello G, Chiovato L, Solcia E. Silent familial isolated pituitary adenomas: histopathological and clinical case report. Endocr Pathol 2008; 19:40-6. [PMID: 18317953 DOI: 10.1007/s12022-008-9018-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Familial isolated pituitary adenoma (FIPA) is a rare condition independent of Carney Complex or MEN1. An international multicenter study recently described 28 nonfunctioning pituitary adenomas in 26 families with only two homogeneous nonsecreting phenotype families consistent of silent GH and silent gonadotroph adenomas, respectively. We present the clinical, genetic, and morphological analysis of two silent pituitary adenomas occurring in a man and his daughter, and discuss the differential diagnosis associated with their histological, immunohistochemical, and ultrastructural features. The patients developed invasive nonsecreting macroadenomas manifesting only with compressive symptoms. Genetic analysis in the father showed no MEN-1 germ-line mutation. Tissue samples obtained after paraseptal trans-sphenoidal surgery were studied by immunohistochemistry for adenohypophyseal hormones, low molecular weight cytokeratins (CAM 5.2), proliferation markers, and anterior pituitary transcription factors (Pit-1 and SF-1) and by electron microscopy for secretory granules. The clinical, histological, and immunohistochemical features of the lesions posed a differential diagnosis between a null cell adenoma and a silent corticotroph adenoma (Type II); on the basis of immunohistochemical stains for cytokeratin and adenohypophysis cell lineage markers, tumor behavior and ultrastructural studies we concluded for the second. The reported cases represent an as yet undescribed example of homogeneous family with silent corticotroph adenomas (Type II). Our observations support the trend for more aggressive behavior in nonsecreting FIPAs as compared with sporadic adenomas.
Collapse
Affiliation(s)
- C Villa
- Department of Human and Hereditary Pathology, S. Matteo IRCCS Foundation, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were recently shown to cause susceptibility to pituitary adenoma predisposition. The purpose of this review is to briefly recapitulate the current knowledge on hereditary susceptibility to pituitary adenomas and what led to the identification of AIP as a novel predisposition gene. We will then concentrate on the data on AIP mutations and pituitary adenoma predisposition phenotype that have accumulated since the gene was identified. Major future challenges, as well as the possibilities for clinical practice based on this recent finding, will also be discussed.
Collapse
Affiliation(s)
- Pia Vahteristo
- a Department of Medical Genetics, Genome-Scale Biology Research Program, PO Box 63 (Haartmaninkatu 8), FIN-00014 University of Helsinki, Helsinki, Finland.
| | - Auli Karhu
- b Department of Medical Genetics, Genome-Scale Biology Research Program, PO Box 63 (Haartmaninkatu 8), FIN-00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
23
|
Karhu A, Aaltonen LA. Susceptibility to pituitary neoplasia related to MEN-1, CDKN1B and AIP mutations: an update. Hum Mol Genet 2007; 16 Spec No 1:R73-9. [PMID: 17613551 DOI: 10.1093/hmg/ddm036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pituitary tumors are common intracranial neoplasms. Although histologically benign, pituitary tumors can cause significant morbidity due to their critical location, expanding size and oversecretion of pituitary hormone expression. The majority of pituitary tumors are sporadic, but some arise as a component of hereditary syndromes. Our understanding of these genetic conditions has expanded rapidly due to the identification of new predisposing genes. Four specific genes have been identified that predispose to hereditary pituitary neoplasia; MEN1, PRKAR1A, CDKN1B and AIP, of which CDKN1B and AIP have been identified only recently. These genes underlie multiple endocrine neoplasia type 1, Carney complex, MEN1-like phenotype and pituitary adenoma predisposition, respectively. The present study review the current state of knowledge regarding the genes associated to inherited pituitary neoplasia, with a particular focus on the novel pituitary adenoma predisposing genes, CDKN1B and AIP.
Collapse
Affiliation(s)
- Auli Karhu
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
24
|
Sonabend AM, Musleh W, Lesniak MS. Oncogenesis and mutagenesis of pituitary tumors. Expert Rev Anticancer Ther 2006; 6 Suppl 9:S3-14. [PMID: 17004855 DOI: 10.1586/14737140.6.9s.s3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although pituitary tumors may be present in up to 10% of the population, the pathophysiology of these lesions is not well characterized. Pituitary tumors are composed of monoclonal cell populations with disrupted control of replication pathways. The oncogenes and tumor suppressor genes that are common in other malignancies (i.e. jun, fos, myc, and p53) are rarely involved in the development of these tumors. However, oncogenes, such as gsp, can be present in up to 40% of hormonally active adenomas. The process of pituitary oncogenesis further appears to involve oncogenes such as cyclin E, cyclin D1, and the pituitary tumor transforming gene (PTTG). Finally, the cAMP signaling cascade plays a significant role in generation of both benign and malignant pituitary tumors. In this review, the biology of pituitary adenomas is explored with a special emphasis on potential targets for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Adam M Sonabend
- The University of Chicago, Division of Neurosurgery, 5841 S. Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | | | | |
Collapse
|
25
|
Daly AF, Jaffrain-Rea ML, Ciccarelli A, Valdes-Socin H, Rohmer V, Tamburrano G, Borson-Chazot C, Estour B, Ciccarelli E, Brue T, Ferolla P, Emy P, Colao A, De Menis E, Lecomte P, Penfornis F, Delemer B, Bertherat J, Wémeau JL, De Herder W, Archambeaud F, Stevenaert A, Calender A, Murat A, Cavagnini F, Beckers A. Clinical characterization of familial isolated pituitary adenomas. J Clin Endocrinol Metab 2006; 91:3316-23. [PMID: 16787992 DOI: 10.1210/jc.2005-2671] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Familial pituitary adenomas occur rarely in the absence of multiple endocrine neoplasia type 1 (MEN1) and Carney complex (CNC). OBJECTIVE Our objective was to characterize the clinical and genealogical features of non-MEN1/CNC familial isolated pituitary adenomas (FIPA). DESIGN AND SETTING We conducted a retrospective study of clinical and genealogical characteristics of FIPA cases and performed a comparison with a sporadic population at 22 university hospitals in Belgium, Italy, France, and The Netherlands. RESULTS Sixty-four FIPA families including 138 affected individuals were identified [55 prolactinomas, 47 somatotropinomas, 28 nonsecreting adenomas (NS), and eight ACTH-secreting tumors]. Cases were MEN1/PRKAR1A-mutation negative. First-degree relationships predominated (75.6%) among affected individuals. A single tumor phenotype occurred in 30 families (homogeneous), and heterogeneous phenotypes occurred in 34 families. FIPA cases were younger at diagnosis than sporadic cases (P = 0.015); tumors were diagnosed earlier in the first vs. the second generation of multigenerational families. Macroadenomas were more frequent in heterogeneous vs. homogeneous FIPA families (P = 0.036). Prolactinomas from heterogeneous families were larger and had more frequent suprasellar extension (P = 0.004) than sporadic cases. Somatotropinomas occurred as isolated familial somatotropinoma cases and within heterogeneous FIPA families; isolated familial somatotropinoma cases represented 18% of FIPA cases and were younger at diagnosis than patients with sporadic somatotropinomas. Familial NS cases were younger at diagnosis (P = 0.03) and had more frequently invasive tumors (P = 0.024) than sporadic cases. CONCLUSIONS Homogeneous and heterogeneous expression of prolactinomas, somatotropinomas, NS, and Cushing's disease can occur within families in the absence of MEN1/CNC. FIPA and sporadic cases have differing clinical characteristics. FIPA may represent a novel endocrine neoplasia classification that requires further genetic characterization.
Collapse
Affiliation(s)
- A F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Domaine Universitaire du Sart Tilman, 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vierimaa O, Georgitsi M, Lehtonen R, Vahteristo P, Kokko A, Raitila A, Tuppurainen K, Ebeling TML, Salmela PI, Paschke R, Gündogdu S, De Menis E, Mäkinen MJ, Launonen V, Karhu A, Aaltonen LA. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 2006; 312:1228-30. [PMID: 16728643 DOI: 10.1126/science.1126100] [Citation(s) in RCA: 375] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pituitary adenomas are common in the general population, and understanding their molecular basis is of great interest. Combining chip-based technologies with genealogy data, we identified germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene in individuals with pituitary adenoma predisposition (PAP). AIP acts in cytoplasmic retention of the latent form of the aryl hydrocarbon receptor and also has other functions. In a population-based series from Northern Finland, two AIP mutations account for 16% of all patients diagnosed with pituitary adenomas secreting growth hormone and for 40% of the subset of patients who were diagnosed when they were younger than 35 years of age. Typically, PAP patients do not display a strong family history of pituitary adenoma; thus, AIP is an example of a low-penetrance tumor susceptibility gene.
Collapse
Affiliation(s)
- Outi Vierimaa
- Department of Clinical Genetics, Oulu University Hospital, 90029 Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
BACKGROUND Multimodal therapy for acromegaly affords adequate disease control for many patients; however, there remains a subset of individuals that exhibit treatment-resistant disease. The issue of treatment-resistant pituitary tumor growth remains relatively under-explored. METHODS We assessed the literature for relevant data regarding the surgical, medical and radiotherapeutic treatment of acromegaly in order to identify the factors that were predictive of aggressive or treatment-resistant pituitary tumor behavior in acromegaly and undertook an assessment of the rates of failure to control tumor progression with available treatment modalities. RESULTS Young age at diagnosis, large tumor size, high growth hormone secretion and certain histological markers are predictors of future aggressive tumor behavior in acromegaly. Significant tumor regrowth occurs in less than 10% of cases thought to be cured surgically, whereas failure to control tumor growth is seen in less than 1% of patients receiving radiotherapy. Somatostatin analogs induce a variable degree of tumor shrinkage in acromegaly but up to 2.2% of somatostatin analog-treated tumors continue to grow. Relative to other therapies, limited data are available for pegvisomant, but these indicate that persistent tumor growth occurs in 1.6-2.9% of cases followed up regularly with serial magnetic resonance imaging scans. CONCLUSIONS Treatment-resistant tumor progression occurs in a small minority of patients with acromegaly, regardless of treatment modality. Young patients with large tumors or those with high pre-treatment levels of growth hormone particularly warrant close monitoring for continued tumor progression during treatment for acromegaly.
Collapse
Affiliation(s)
- G M Besser
- Department of Endocrinology, St Bartholomew's Hospital, London, UK.
| | | | | |
Collapse
|
28
|
Donangelo I, Gadelha M. Bases moleculares dos adenomas hipofisários com ênfase nos somatotropinomas. ACTA ACUST UNITED AC 2004; 48:464-79. [PMID: 15761509 DOI: 10.1590/s0004-27302004000400006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Esta revisão descreve as bases moleculares dos adenomas hipofisários com ênfase nos tumores secretores de GH (somatotropinomas). São discutidos os papéis de genes de supressão tumoral (como RB1, MEN-1) e de oncogenes (como gsp, PTTG) na iniciação e progressão destes tumores. A caracterização destes marcadores moleculares pode ajudar na compreensão do comportamento tumoral, auxiliando a conduta terapêutica. Entretanto, apesar dos recentes avanços, ainda não é totalmente conhecida a seqüência de alterações genéticas envolvidas na patogênese destes adenomas.
Collapse
Affiliation(s)
- Ines Donangelo
- Serviço de Endocrinologia, Hospital Universitário Clementino Fraga Filho, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ
| | | |
Collapse
|
29
|
Abstract
The great majority of growth hormone (GH)-secreting pituitary tumors are sporadic, though a few occur with a familial aggregation, either as a component of multiple endocrine neoplasia, type 1 (MEN1) or Carney Complex, or when unassociated with other tumors, as isolated familial somatotropinomas (IFS). This report reviews the clinical and genetic information available from the 46 families reported to date with the latter syndrome. In contrast to sporadic tumors, GH-secreting tumors in IFS occur at an earlier age, especially when all affected family members are from a single generation. The IFS gene is believed to be a tumor suppressor gene, based on the presence of loss of heterozygosity. Although the gene still remains to be identified there is strong evidence for linkage to a locus of less than 10 Mb on chromosome 11q13.1-13.3.
Collapse
Affiliation(s)
- Beatriz Santana Soares
- Section of Endocrinology and Metabolism, University of Illinois at Chicago, IL 60612, USA
| | | |
Collapse
|
30
|
Abstract
Acromegalia é uma doença debilitante e desfigurante que, se não controlada adequadamente, reduz a expectativa de vida do paciente. Complicações cardiovasculares e respiratórias representam as principais causas de morte nos acromegálicos. Atualmente, o diagnóstico é realizado de acordo com as diretrizes do consenso de 2000: ausência de supressão do GH para um valor <1ng/mL e IGF-1 elevado. Avanços em todas as modalidades terapêuticas têm ocorrido, propiciando o controle bioquímico da doença em um número cada vez maior de pacientes. Estudos prévios mostraram que a obtenção de níveis seguros de GH (GH médio <2,5ng/mL) e de IGF-1 normal reduz a taxa de mortalidade para o normal. Em 2002, foram publicadas diretrizes para o manejo da acromegalia, o qual envolve, muitas vezes, uma abordagem multidisciplinar. Neste artigo, fazemos uma avaliação crítica do que dispomos no Brasil para seguirmos as diretrizes estabelecidas nos consensos sobre diagnóstico e tratamento da acromegalia.
Collapse
Affiliation(s)
- Ines Donangelo
- Universidade Federal do Rio de Janeiro; Instituto Estadual de Diabetes e Endocrinologia
| | - Karina Une
- Universidade Federal do Rio de Janeiro; Instituto Estadual de Diabetes e Endocrinologia
| | - Mônica Gadelha
- Universidade Federal do Rio de Janeiro; Instituto Estadual de Diabetes e Endocrinologia
| |
Collapse
|
31
|
Park JH, Kim IJ, Kang HC, Lee SH, Shin Y, Kim KH, Lim SB, Kang SB, Lee K, Kim SY, Lee MS, Lee MK, Park JH, Moon SD, Park JG. Germline mutations of the MEN1 gene in Korean families with multiple endocrine neoplasia type 1 (MEN1) or MEN1-related disorders. Clin Genet 2003; 64:48-53. [PMID: 12791038 DOI: 10.1034/j.1399-0004.2003.00091.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a familial cancer syndrome characterized by the combined occurrence of tumours of the parathyroid glands, pancreatic islet cells and anterior pituitary gland. Mutation analysis of the MEN1 gene has enabled the genetic diagnosis of patients with MEN1. Two MEN1-related disorders - familial isolated hyperparathyroidism (FIHP) and familial pituitary adenoma - are considered to be variants of MEN1, or at least to be incompletely expressed variants. Germline mutations of the MEN1 gene have been reported in some with FIHP, but familial pituitary adenoma usually lacks the MEN1 mutation and has been described as a genetically distinct disorder. In this work, we investigated five Korean families with MEN1, one family with FIHP and one family with familial pituitary adenoma. Polymerase chain reaction (PCR)-based single-strand conformation polymorphism (PCR-SSCP) analysis, denaturing high-performance liquid chromatography (DHPLC) and sequencing were used to detect the MEN1 mutations. Screening of the genetic variations of the MEN1 gene revealed four germline mutations in five typical MEN1 families. All four germline mutations led to truncated proteins or a change in the amino acids of the functional domains. In this study, we identified three novel MEN1 germline mutations (969C >A, 973G >C and 1213C >T) and one previously reported mutation (200-201insAGCCC). The frequency of the MEN1 germline mutation in Korean MEN1 families (four of five; 80%) was similar to those reported previously. In accordance with previous studies, no MEN1 germline mutation was detected in two families with FIHP or familial pituitary adenoma.
Collapse
Affiliation(s)
- J-H Park
- Korean Hereditary Tumor Registry, Laboratory of Cell Biology, Cancer Research Center and Cancer Research Institute, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Isolated familial somatotropinomas (IFS) rarely occurs in the absence of multiple endocrine neoplasia type I (MEN1) or the Carney complex. In the present study we report two Italian siblings affected by GH-secreting adenomas. There was no history of parental consanguinity. The sister presented at 18 years of age with secondary amenorrhea and acromegalic features and one of her two brothers presented with gigantism at the same age. Endocrinological investigations confirmed GH hypersecretion in both cases. Although a pituitary microadenoma was detected in both patients, transsphenoidal surgery was not successful. The sister received conventional radiotherapy and acromegaly is now considered controlled; the brother is being treated with octreotide LAR 30 mg monthly and the disease is considered clinically active. Patients, their parents and the unaffected brother underwent extensive evaluation, and no features of MEN1 or Carney complex were found. Analysis of polymorphic microsatellite markers from chromosome 11q13 (D11S599, D11S4945, D11S4939, D11S4938 and D11S987) showed that the acromegalic siblings had inherited different maternal chromosomes and shared the paternal chromosome. No pathogenic MEN1 sequence changes were detected by sequencing or dideoxy fingerprinting of the coding sequence (exons 2-10) and exon/intron junctions. Although mutations in the promoter, introns or untranslated regions of the MEN1 gene cannot be excluded, germline mutations within the coding region of this gene do not appear responsible for IFS in this family.
Collapse
Affiliation(s)
- Ernesto De Menis
- Department of Internal Medicine, General Hospital, Treviso, Italy
| | | |
Collapse
|
33
|
Ki Wong F, Burgess J, Nordenskjöld M, Larsson C, Tean Teh B. Multiple endocrine neoplasia type 1. Semin Cancer Biol 2000; 10:299-312. [PMID: 10966852 DOI: 10.1006/scbi.2000.0150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recent cloning of the gene responsible for multiple endocrine neoplasia type 1 (MEN 1) has opened new avenues for both clinical and basic science research in the field of endocrine oncology. A large amount of genetic information, particularly those in relation to germline and somatic mutations, has since been published during the last 2 years. This new knowledge has provided important insights into its gene function. The significance of these advances in relation to clinical management and future directions for research is discussed.
Collapse
Affiliation(s)
- F Ki Wong
- Department of Molecular Medicine, CMM L8:01, Karolinska Hospital, Stockholm, S-17176, Sweden
| | | | | | | | | |
Collapse
|