1
|
Domínguez F, Cejudo FJ. Chloroplast dismantling in leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5905-5918. [PMID: 33959761 PMCID: PMC8760853 DOI: 10.1093/jxb/erab200] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/03/2021] [Indexed: 05/02/2023]
Abstract
In photosynthetic plant cells, chloroplasts act as factories of metabolic intermediates that support plant growth. Chloroplast performance is highly influenced by environmental cues. Thus, these organelles have the additional function of sensing ever changing environmental conditions, thereby playing a key role in harmonizing the growth and development of different organs and in plant acclimation to the environment. Moreover, chloroplasts constitute an excellent source of metabolic intermediates that are remobilized to sink tissues during senescence so that chloroplast dismantling is a tightly regulated process that plays a key role in plant development. Stressful environmental conditions enhance the generation of reactive oxygen species (ROS) by chloroplasts, which may lead to oxidative stress causing damage to the organelle. These environmental conditions trigger mechanisms that allow the rapid dismantling of damaged chloroplasts, which is crucial to avoid deleterious effects of toxic by-products of the degradative process. In this review, we discuss the effect of redox homeostasis and ROS generation in the process of chloroplast dismantling. Furthermore, we summarize the structural and biochemical events, both intra- and extraplastid, that characterize the process of chloroplast dismantling in senescence and in response to environmental stresses.
Collapse
Affiliation(s)
- Fernando Domínguez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | | |
Collapse
|
2
|
Schwarz EM, Tietz S, Froehlich JE. Photosystem I-LHCII megacomplexes respond to high light and aging in plants. PHOTOSYNTHESIS RESEARCH 2018; 136:107-124. [PMID: 28975583 PMCID: PMC5851685 DOI: 10.1007/s11120-017-0447-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/21/2017] [Indexed: 05/18/2023]
Abstract
Photosystem II is known to be a highly dynamic multi-protein complex that participates in a variety of regulatory and repair processes. In contrast, photosystem I (PSI) has, until quite recently, been thought of as relatively static. We report the discovery of plant PSI-LHCII megacomplexes containing multiple LHCII trimers per PSI reaction center. These PSI-LHCII megacomplexes respond rapidly to changes in light intensity, as visualized by native gel electrophoresis. PSI-LHCII megacomplex formation was found to require thylakoid stacking, and to depend upon growth light intensity and leaf age. These factors were, in turn, correlated with changes in PSI/PSII ratios and, intriguingly, PSI-LHCII megacomplex dynamics appeared to depend upon PSII core phosphorylation. These findings suggest new functions for PSI and a new level of regulation involving specialized subpopulations of photosystem I which have profound implications for current models of thylakoid dynamics.
Collapse
Affiliation(s)
- Eliezer M Schwarz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - Stephanie Tietz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - John E Froehlich
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
3
|
Tiwari S, Tripathy BC, Jajoo A, Das AB, Murata N, Sane PV. Prasanna K. Mohanty (1934-2013): a great photosynthetiker and a wonderful human being who touched the hearts of many. PHOTOSYNTHESIS RESEARCH 2014; 122:235-260. [PMID: 25193504 DOI: 10.1007/s11120-014-0033-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/15/2014] [Indexed: 06/03/2023]
Abstract
Prasanna K. Mohanty, a great scientist, a great teacher and above all a great human being, left us more than a year ago (on March 9, 2013). He was a pioneer in the field of photosynthesis research; his contributions are many and wide-ranging. In the words of Jack Myers, he would be a "photosynthetiker" par excellence. He remained deeply engaged with research almost to the end of his life; we believe that generations of researchers still to come will benefit from his thorough and enormous work. We present here his life and some of his contributions to the field of Photosynthesis Research. The response to this tribute was overwhelming and we have included most of the tributes, which we received from all over the world. Prasanna Mohanty was a pioneer in the field of "Light Regulation of Photosynthesis", a loving and dedicated teacher-unpretentious, idealistic, and an honest human being.
Collapse
Affiliation(s)
- Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India,
| | | | | | | | | | | |
Collapse
|
4
|
Humby PL, Snyder ECR, Durnford DG. Conditional senescence in Chlamydomonas reinhardtii (Chlorophyceae). JOURNAL OF PHYCOLOGY 2013; 49:389-400. [PMID: 27008525 DOI: 10.1111/jpy.12049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 01/05/2013] [Indexed: 06/05/2023]
Abstract
The mechanisms of microalgal senescence may play an important role in nutrient recycling and enhanced survival. However, the aging physiology of microalgae is an understudied phenomenon. To investigate the patterns of conditional senescence in Chlamydomonas reinhardtii P. A. Dangeard, we used a cell wall-less strain, transformed with a reporter gene to infer changes in photosynthetic gene expression. We examined plastid ultrastructure, photosynthetic function, and photoprotective mechanisms during aging in batch cultures. LHCII transcription levels decreased before the population entered stationary phase, and the characteristic transcriptional light-shift response was lost. A decline in photosynthetic proteins with a concomitant increase in the photoprotective protein, LHCSR, was observed over time. However, nonphotochemical quenching remained stable during growth and stationary phase, and then declined as alternative quenching mechanisms were up-regulated. Photosynthetic efficiency declined, while Fv/Fm remained stable until the death phases. As the culture progressed through stationary phase, disorganization of the chloroplast was observed along with an increase in cytoplasmic oil bodies. We also observed a partial recovery of function and proteins during the final death phase, and attribute this to the release of nutrients into the medium from cell lysis and/or active secretion while cells were senescing. Allowing open gas exchange resulted in high levels of sustained starch production and maintained maximum cell density, prolonging the stationary phase.
Collapse
Affiliation(s)
- Penny L Humby
- Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, New Brunswick, Canada, E3B 5A3
| | - Ellen C R Snyder
- Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, New Brunswick, Canada, E3B 5A3
| | - Dion G Durnford
- Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, New Brunswick, Canada, E3B 5A3
| |
Collapse
|
5
|
Prakash JSS, Tiwari S. Prasanna Mohanty (1934–2013): a pioneer and a loving teacher. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS 2013; 19:301-305. [PMCID: PMC3656183 DOI: 10.1007/s12298-013-0183-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- J. S. S. Prakash
- />Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500 046 India
| | - Swati Tiwari
- />School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
6
|
Mulisch M, Krupinska K. Ultrastructural Analyses of Senescence Associated Dismantling of Chloroplasts Revisited. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Bennett EJ, Roberts JA, Wagstaff C. The role of the pod in seed development: strategies for manipulating yield. THE NEW PHYTOLOGIST 2011; 190:838-853. [PMID: 21507003 DOI: 10.1111/j.1469-8137.2011.03714.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pods play a key role in encapsulating the developing seeds and protecting them from pests and pathogens. In addition to this protective function, it has been shown that the photosynthetically active pod wall contributes assimilates and nutrients to fuel seed growth. Recent work has revealed that signals originating from the pod may also act to coordinate grain filling and regulate the reallocation of reserves from damaged seeds to those that have retained viability. In this review we consider the evidence that pods can regulate seed growth and maturation, particularly in members of the Brassicaceae family, and explore how the timing and duration of pod development might be manipulated to enhance either the quantity of crop yield or its nutritional properties.
Collapse
Affiliation(s)
- Emma J Bennett
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, Whiteknights, Reading RG6 6AP, UK
| | - Jeremy A Roberts
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonirgton Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Carol Wagstaff
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, Whiteknights, Reading RG6 6AP, UK
| |
Collapse
|
8
|
Wagstaff C, Yang TJW, Stead AD, Buchanan-Wollaston V, Roberts JA. A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:690-705. [PMID: 18980641 DOI: 10.1111/j.1365-313x.2008.03722.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Senescence of plant organs is a genetically controlled process that regulates cell death to facilitate nutrient recovery and recycling, and frequently precedes, or is concomitant with, ripening of reproductive structures. In Arabidopsis thaliana, the seeds are contained within a silique, which is itself a photosynthetic organ in the early stages of development and undergoes a programme of senescence prior to dehiscence. A transcriptional analysis of the silique wall was undertaken to identify changes in gene expression during senescence and to correlate these events with ultrastructural changes. The study revealed that the most highly up-regulated genes in senescing silique wall tissues encoded seed storage proteins, and the significance of this finding is discussed. Global transcription profiles of senescing siliques were compared with those from senescing Arabidopsis leaf or petal tissues using microarray datasets and metabolic pathway analysis software (MapMan). In all three tissues, members of NAC and WRKY transcription factor families were up-regulated, but components of the shikimate and cell-wall biosynthetic pathways were down-regulated during senescence. Expression of genes encoding ethylene biosynthesis and action showed more similarity between senescing siliques and petals than between senescing siliques and leaves. Genes involved in autophagy were highly expressed in the late stages of death of all plant tissues studied, but not always during the preceding remobilization phase of senescence. Analyses showed that, during senescence, silique wall tissues exhibited more transcriptional features in common with petals than with leaves. The shared and distinct regulatory events associated with senescence in the three organs are evaluated and discussed.
Collapse
Affiliation(s)
- Carol Wagstaff
- School of Food Biosciences, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK.
| | | | | | | | | |
Collapse
|
9
|
Zentgraf U, Hemleben V. Molecular Cell Biology: Are Reactive Oxygen Species Regulators of Leaf Senescence? PROGRESS IN BOTANY 2008. [DOI: 10.1007/978-3-540-72954-9_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Hopkins M, Taylor C, Liu Z, Ma F, McNamara L, Wang TW, Thompson JE. Regulation and execution of molecular disassembly and catabolism during senescence. THE NEW PHYTOLOGIST 2007; 175:201-214. [PMID: 17587370 DOI: 10.1111/j.1469-8137.2007.02118.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Senescence is a highly orchestrated developmental stage in the life cycle of plants. The onset of senescence is tightly controlled by signaling cascades that initiate changes in gene expression and the synthesis of new proteins. This complement of new proteins includes hydrolytic enzymes capable of executing catabolism of macromolecules, which in turn sets in motion disassembly of membrane molecular matrices, leading to loss of cell function and, ultimately, complete breakdown of cellular ultrastructure. A distinguishing feature of senescence that sets it apart from other types of programmed cell death is the recovery of carbon and nitrogen from the dying tissue and their translocation to growing parts of the plant such as developing seeds. For this to be accomplished, the initiation of senescence and its execution have to be meticulously regulated. For example, the initiation of membrane disassembly has to be intricately linked with the recruitment of nutrients because their ensuing translocation out of the senescing tissue requires functional membranes. Molecular mechanisms underlying this linkage and its integration with the catabolism of macromolecules in senescing tissues are addressed.
Collapse
Affiliation(s)
- Marianne Hopkins
- Department of Biology, University of Waterloo, Waterloo, ONT Canada N2L 3G1
| | - Catherine Taylor
- Department of Biology, University of Waterloo, Waterloo, ONT Canada N2L 3G1
| | - Zhongda Liu
- Department of Biology, University of Waterloo, Waterloo, ONT Canada N2L 3G1
| | - Fengshan Ma
- Department of Biology, University of Waterloo, Waterloo, ONT Canada N2L 3G1
| | - Linda McNamara
- Department of Biology, University of Waterloo, Waterloo, ONT Canada N2L 3G1
| | - Tzann-Wei Wang
- Department of Biology, University of Waterloo, Waterloo, ONT Canada N2L 3G1
| | - John E Thompson
- Department of Biology, University of Waterloo, Waterloo, ONT Canada N2L 3G1
| |
Collapse
|
11
|
Fate and Activities of Plastids During Leaf Senescence. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2007. [DOI: 10.1007/978-1-4020-4061-0_22] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Synková H, Schnablová R, Polanská L, Husák M, Siffel P, Vácha F, Malbeck J, Machácková I, Nebesárová J. Three-dimensional reconstruction of anomalous chloroplasts in transgenic ipt tobacco. PLANTA 2006; 223:659-71. [PMID: 16160843 DOI: 10.1007/s00425-005-0119-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 07/12/2005] [Indexed: 05/04/2023]
Abstract
Anomalies in the ultrastructure of chloroplasts, from transgenic ipt tobacco, overproducing endogenous cytokinins (CKs) were studied. Detailed analyses of CKs and their metabolites showed that Pssu-ipt tobacco contained enhanced contents of CKs both in leaves and in isolated chloroplasts. The role of CKs in the formation of anomalous structures is suggested. Pssu-ipt chloroplasts frequently formed the distinct peripheral reticulum with a system of caverns that often involved mitochondria and/or peroxisomes. Large crystalloids, which were found in chloroplasts of Pssu-ipt, occupied up to 16% of chloroplast volume. We suggested that the crystalloids were formed by LHC II aggregates. This was supported by analysis of the fluorescence emission spectra at 77 degrees K, chlorophyll a/b ratio, immunogold staining of the structures, and crystallographic unit size analysis.
Collapse
Affiliation(s)
- Helena Synková
- Academy of Sciences of the CR, Na Karlovce 1a, Institute of Experimental Botany, Praha, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Prakash JSS, Baig MA, Bhagwat AS, Mohanty P. Characterisation of senescence-induced changes in light harvesting complex II and photosystem I complex of thylakoids of Cucumis sativus cotyledons: age induced association of LHCII with photosystem I. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:175-184. [PMID: 12685033 DOI: 10.1078/0176-1617-00529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Structure and function of chloroplasts are known to after during senescence. The senescence-induced specific changes in light harvesting antenna of photosystem II (PSII) and photosystem I (PSI) were investigated in Cucumis cotyledons. Purified light harvesting complex II (LHCII) and photosystem I complex were isolated from 6-day non-senescing and 27-day senescing Cucumis cotyledons. The chlorophyll a/b ratio of LHCII obtained from 6-day-old control cotyledons and their absorption, chlorophyll a fluorescence emission and the circular dichroism (CD) spectral properties were comparable to the LHCII preparations from other plants such as pea and spinach. The purified LHCII obtained from 27-day senescing cotyledons had a Chl a/b ratio of 1.25 instead of 1.2 as with 6-day LHCII and also exhibited significant changes in the visible CD spectrum compared to that of 6-day LHCII, indicating some specific alterations in the organisation of chlorophylls of LHCII. The light harvesting antenna of photosystems are likely to be altered due to aging. The room temperature absorption spectrum of LHCII obtained from 27-day senescing cotyledons showed changes in the peak positions. Similarly, comparison of 77K chlorophyll a fluorescence emission characteristics of LHCII preparation from senescing cotyledons with that of control showed a small shift in the peak position and the alteration in the emission profile, which is suggestive of possible changes in energy transfer within LHCII chlorophylls. Further, the salt induced aggregation of LHCII samples was lower, resulting in lower yields of LHCII from 27-day cotyledons than from normal cotyledons. Moreover, the PSI preparations of 6-day cotyledons showed Chl a/b ratios of 5 to 5.5, where as the PSI sample of 27-day cotyledons had a Chl a/b ratio of 2.9 suggesting LHCII association with PSI. The absorption, fluorescence emission and visible CD spectral measurements as well as the polypeptide profiles of 27-day cotyledon-PSI complexes indicated age-induced association of LHCII of PSII with PSI obtained from 27-day cotyledons. We modified our isolation protocols by increasing the duration of detergent Triton X-100 treatment for preparing the PSI and LHCII complexes from 27-day cotyledons. However, the PSI complexes isolated from senescing samples invariably proved to have significantly low Chl a/b ratio suggesting an age induced lateral movement and possible association of LHCII with PSI complexes. The analyses of polypeptide compositions of LHCII and PSI holocomplexes isolated from 6-day control and 27-day senescing cotyledons showed distinctive differences in their profiles. The presence of 26-28 kDa polypeptide in PSI complexes from 27-day cotyledons, but not in 6-day control PSI complexes is in agreement with the notion that senescence induced migration of LHCII to stroma lamellae and its possible association with PSI. We suggest that the migration of LHCII to the stroma lamellae region and its possible association with PSI might cause the destacking and flattening of grana structure during senescence of the chloroplasts. Such structural changes in light harvesting antenna are likely to alter energy transfer between two photosystems. The nature of aging induced migration and association of LHCII with PSI and its existence in other senescing systems need to be estimated in the future.
Collapse
|