1
|
Shibai A, Furusawa C. Development of specialized devices for microbial experimental evolution. Dev Growth Differ 2024; 66:372-380. [PMID: 39187274 PMCID: PMC11482599 DOI: 10.1111/dgd.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
Experimental evolution of microbial cells provides valuable information on evolutionary dynamics, such as mutations that contribute to fitness gain under given selection pressures. Although experimental evolution is a promising tool in evolutionary biology and bioengineering, long-term culture experiments under multiple environmental conditions often impose an excessive workload on researchers. Therefore, the development of automated systems significantly contributes to the advancement of experimental evolutionary research. This review presents several specialized devices designed for experimental evolution studies, such as an automated system for high-throughput culture experiments, a culture device that generate a temperature gradient, and an automated ultraviolet (UV) irradiation culture device. The ongoing development of such specialized devices is poised to continually expand new frontiers in experimental evolution research.
Collapse
Affiliation(s)
| | - Chikara Furusawa
- Center for Biosystems Dynamics ResearchRIKENSuitaJapan
- Universal Biology InstituteThe University of TokyoTokyoJapan
| |
Collapse
|
2
|
Sustainable Biosynthesis of Esterase Enzymes of Desired Characteristics of Catalysis for Pharmaceutical and Food Industry Employing Specific Strains of Microorganisms. SUSTAINABILITY 2022. [DOI: 10.3390/su14148673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reactions catalysed by sustainably produced enzymes can contribute to the bioeconomy supporting several industries. Low-value compounds can be transformed into added-value products or high-resolution chemicals could be prepared in reactions catalysed by biocatalyst esterase enzymes. These enzymes can be synthesised by purposely isolated or genetically modified strains of microorganisms. Enzymes belonging to the hydrolase family catalyse the formation and hydrolysis of ester bonds to produce the desired esterified molecule. The synthesis of homo-chiral compounds can be accomplished either by chemical or biocatalytic processes, the latter being preferred with the use of microbial esterases. For varied applications, esterases with high stability and retained activity at lower and higher temperatures have been produced with strains isolated from extreme environments. For sustainable production of enzymes, higher productivity has been achieved by employing fast-growing Escherichia coli after incorporating plasmids of required characteristics from specific isolates. This is a review of the isolated and engineered strains used in the biosynthesis of esterase of the desired property, with the objective of a sustainable supply of enzymes, to produce products of industrial importance contributing to the economy.
Collapse
|
3
|
Shibai A, Kotani H, Kawada M, Yokoi N, Furusawa C. Development of a device that generates a temperature gradient in a microtiter plate for microbial culture. SLAS Technol 2022; 27:279-283. [DOI: 10.1016/j.slast.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/23/2022] [Accepted: 07/24/2022] [Indexed: 11/24/2022]
|
4
|
Cis Elements: Added Boost to the Directed Evolution of Plant Genes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To increase the expression of a native/foreign plant/bacterial gene, the complete network of cis-elements must be excavated to increase its biosynthetic yield, especially under industrial stress conditions. For selecting the best set of cis-elements for a foreign gene and aiding the workflow of researchers, often untrained in bioinformatics methodologies, we developed a modular PERL script for their identification and localization. The script is functional on any operating system. It localizes the cis element network of a gene. It aids an easy customization, as per the required analysis, and provides robust strategy, unlike the usually used databases where several applied calculations often become a tricky task. The script allows an uncomplicated analysis of multiplicity of cis elements along with their relative distances, making it easier for designing the more beneficial network of genes for directed evolution experiments. Through a batched scrutiny of several functionally similar genes, it would aid an easy extraction of their evolutionarily favored network of cis elements. It would be extremely helpful to develop the crop plants that are better adapted to the stressful conditions.
Collapse
|
5
|
Dahiya D, Nigam PS. An overview of three biocatalysts of pharmaceutical importance synthesized by microbial cultures. AIMS Microbiol 2021; 7:124-137. [PMID: 34250371 PMCID: PMC8255904 DOI: 10.3934/microbiol.2021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/24/2021] [Indexed: 11/18/2022] Open
Abstract
This article includes a general overview of the published research on a topic relevant to biomedical sciences research, pharma-industries and healthcare sector. We have presented a concise information on three enzymes. These biomolecules have been investigated for their biocatalytic activities beneficial in the detection of drugs and their metabolites present in micro-quantities in samples of blood, urine, and other body fluids, such as salicylate hydroxylase, and dihydrofolate reductase. Some enzymes are useful in biotransformation of compounds to convert them in an optically active form, such as lipase. The information presented in this article has been collected from the published studies on their catalytic function, and biosynthesis using selected microorganisms. Several diagnostic assays are currently using enzymes as effective biocatalysts to perform the detection-test. For the marketing and consumer's convenience, pharmaceutical companies have designed biosensors and diagnostic kits by incorporating specific enzymes for rapid tests required in pathology, as well as for the quantification of certain metabolites and chemicals in pathology samples in a shorter time. For such purpose use of enzymes synthesized by selected specific microorganisms is economical.
Collapse
Affiliation(s)
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine Northern Ireland, UK
| |
Collapse
|
6
|
Isolation and Characterization of Thermophilic Bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis Isolates as Potential Producers of Thermostable Enzymes. Int J Microbiol 2017; 2017:6943952. [PMID: 29163641 PMCID: PMC5661075 DOI: 10.1155/2017/6943952] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/08/2017] [Accepted: 08/24/2017] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was the isolation and characterization of thermophilic bacteria from hot springs in Jordan. Ten isolates were characterized by morphological, microscopic, biochemical, molecular, and physiological characteristics. Sequencing of the 16S rDNA of the isolates followed by BLAST search revealed that nine strains could be identified as Bacillus licheniformis and one isolate as Thermomonas hydrothermalis. This is the first report on the isolation of Thermomonas species from Jordanian hot springs. The isolates showed an ability to produce some thermostable enzymes such as amylase, protease, cellulose, gelatins, and lecithin. Moreover, the UPGMA dendrogram of the enzymatic characteristics of the ten isolates was constructed; results indicated a high phenotypic diversity, which encourages future studies to explore further industrial and environmental applications.
Collapse
|
7
|
Shao W, Ma K, Le Y, Wang H, Sha C. Development and Use of a Novel Random Mutagenesis Method: In Situ Error-Prone PCR (is-epPCR). Methods Mol Biol 2017; 1498:497-506. [PMID: 27709598 DOI: 10.1007/978-1-4939-6472-7_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Directed evolution methods are increasingly needed to improve gene and protein properties. Error-prone PCR is the most efficient method to introduce random mutations by reducing the fidelity of the DNA polymerase. However, a highly efficient process is required for constructing and screening a diverse mutagenesis library since a large pool of transformants is needed to generate a desired mutant. We developed a method called in situ error-prone PCR (is-epPCR) to improve the efficiency of constructing a mutation library for directed evolution. This method offers the following advantages: (1) closed-circular PCR products can be directly transformed into competent E. coli cells and easily selected by using an alternative antibiotic; (2) a mutant library can be created and screened by one-step error-prone amplification of a variable DNA region in an expression plasmid; and (3) accumulation of desired mutations in one sequence can be obtained by multiple rounds of is-epPCR. Is-epPCR offers a novel, convenient, and efficient approach for improving genes and proteins through directed evolution.
Collapse
Affiliation(s)
- Weilan Shao
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Kesen Ma
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yilin Le
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hongcheng Wang
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chong Sha
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
8
|
Enzymes and Nanoparticles Produced by Microorganisms and Their Applications in Biotechnology. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68424-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Development and validation of a screening system for a β-galactosidase with increased specific activity produced by directed evolution. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2709-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Zhang X, Li X, Xia L. Expression of a thermo-alkaline lipase gene from Talaromyces thermophilus in recombinant Pichia pastoris. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Accelerated protein engineering for chemical biotechnology via homologous recombination. Curr Opin Biotechnol 2013; 24:1017-22. [DOI: 10.1016/j.copbio.2013.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 12/22/2022]
|
12
|
Fungal Beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 2013; 3:612-31. [PMID: 24970184 PMCID: PMC4030957 DOI: 10.3390/biom3030612] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/17/2013] [Accepted: 08/20/2013] [Indexed: 12/16/2022] Open
Abstract
Profitable biomass conversion processes are highly dependent on the use of efficient enzymes for lignocellulose degradation. Among the cellulose degrading enzymes, beta-glucosidases are essential for efficient hydrolysis of cellulosic biomass as they relieve the inhibition of the cellobiohydrolases and endoglucanases by reducing cellobiose accumulation. In this review, we discuss the important role beta-glucosidases play in complex biomass hydrolysis and how they create a bottleneck in industrial use of lignocellulosic materials. An efficient beta-glucosidase facilitates hydrolysis at specified process conditions, and key points to consider in this respect are hydrolysis rate, inhibitors, and stability. Product inhibition impairing yields, thermal inactivation of enzymes, and the high cost of enzyme production are the main obstacles to commercial cellulose hydrolysis. Therefore, this sets the stage in the search for better alternatives to the currently available enzyme preparations either by improving known or screening for new beta-glucosidases.
Collapse
|
13
|
Nigam PS. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 2013; 3:597-611. [PMID: 24970183 PMCID: PMC4030947 DOI: 10.3390/biom3030597] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/06/2013] [Accepted: 08/15/2013] [Indexed: 01/09/2023] Open
Abstract
This article overviews the enzymes produced by microorganisms, which have been extensively studied worldwide for their isolation, purification and characterization of their specific properties. Researchers have isolated specific microorganisms from extreme sources under extreme culture conditions, with the objective that such isolated microbes would possess the capability to bio-synthesize special enzymes. Various Bio-industries require enzymes possessing special characteristics for their applications in processing of substrates and raw materials. The microbial enzymes act as bio-catalysts to perform reactions in bio-processes in an economical and environmentally-friendly way as opposed to the use of chemical catalysts. The special characteristics of enzymes are exploited for their commercial interest and industrial applications, which include: thermotolerance, thermophilic nature, tolerance to a varied range of pH, stability of enzyme activity over a range of temperature and pH, and other harsh reaction conditions. Such enzymes have proven their utility in bio-industries such as food, leather, textiles, animal feed, and in bio-conversions and bio-remediations.
Collapse
Affiliation(s)
- Poonam Singh Nigam
- Biomedical Science Research Institute, University of Ulster, Coleraine BT52 1SA, UK.
| |
Collapse
|
14
|
Le Y, Chen H, Zagursky R, Wu JHD, Shao W. Thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. DNA Res 2013; 20:375-82. [PMID: 23633530 PMCID: PMC3738163 DOI: 10.1093/dnares/dst016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polymerase chain reaction (PCR) is a powerful method to produce linear DNA fragments. Here we describe the Tma thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. In this thermostable DNA ligase-mediated whole-plasmid amplification method, the resultant DNA nick between the 5′ end of the PCR primer and the extended newly synthesized DNA 3′ end of each PCR cycle is ligated by Tma DNA ligase, resulting in circular plasmid DNA product that can be directly transformed. The template plasmid DNA is eliminated by ‘selection marker swapping’ upon transformation. When performed under an error-prone condition with Taq DNA polymerase, PPCP allows one-step construction of mutagenesis libraries based on in situ error-prone PCR so that random mutations are introduced into the target gene without altering the expression vector plasmid. A significant difference between PPCP and previously published methods is that PPCP allows exponential amplification of circular DNA. We used this method to create random mutagenesis libraries of a xylanase gene and two cellulase genes. Screening of these libraries resulted in mutant proteins with desired properties, demonstrating the usefulness of in situ error-prone PPCP for creating random mutagenesis libraries for directed evolution.
Collapse
Affiliation(s)
- Yilin Le
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | | | | | | | | |
Collapse
|
15
|
The thiamine-dependent enzyme of the vitamin K biosynthesis catalyzes reductive C-N bond ligation between nitroarenes and α-ketoacids. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Xiong AS, Peng RH, Zhuang J, Chen JM, Zhang B, Zhang J, Yao QH. A thermostable β-glucuronidase obtained by directed evolution as a reporter gene in transgenic plants. PLoS One 2011; 6:e26773. [PMID: 22096498 PMCID: PMC3212524 DOI: 10.1371/journal.pone.0026773] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/03/2011] [Indexed: 11/18/2022] Open
Abstract
A β-glucuronidase variant, GUS-TR3337, that was obtained by directed evolution exhibited higher thermostability than the wild-type enzyme, GUS-WT. In this study, the utility of GUS-TR337 as an improved reporter was evaluated. The corresponding gus-tr3337 and gus-wt genes were independently cloned in a plant expression vector and introduced into Arabidopsis thaliana. With 4-MUG as a substrate, plants containing the gus-wt gene showed no detectable β-glucuronidase activity after exposure to 60°C for 10 min, while those hosting the gus-tr3337 gene retained 70% or 50% activity after exposure to 80°C for 10 min or 30 min, respectively. Similarly, in vivo β-glucuronidase activity could be demonstrated by using X-GLUC as a substrate in transgenic Arabidopsis plants hosting the gus-tr3337 gene that were exposed to 80°C for up to 30 min. Thus, the thermostability of GUS-TR3337 can be exploited to distinguish between endogenous and transgenic β-glucuronidase activity, which is a welcome improvement in its use as a reporter.
Collapse
Affiliation(s)
- Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- * E-mail: ,cn (A-SX); (JZ); (Q-HY)
| | - Ri-He Peng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jing Zhuang
- Alberta Innovates-Technology Futures, Vegreville, Alberta, Canada
| | - Jian-Min Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Bin Zhang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jian Zhang
- Alberta Innovates-Technology Futures, Vegreville, Alberta, Canada
- * E-mail: ,cn (A-SX); (JZ); (Q-HY)
| | - Quan-Hong Yao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- * E-mail: ,cn (A-SX); (JZ); (Q-HY)
| |
Collapse
|
17
|
Hulley ME, Toogood HS, Fryszkowska A, Mansell D, Stephens GM, Gardiner JM, Scrutton NS. Focused directed evolution of pentaerythritol tetranitrate reductase by using automated anaerobic kinetic screening of site-saturated libraries. Chembiochem 2011; 11:2433-47. [PMID: 21064170 DOI: 10.1002/cbic.201000527] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This work describes the development of an automated robotic platform for the rapid screening of enzyme variants generated from directed evolution studies of pentraerythritol tetranitrate (PETN) reductase, a target for industrial biocatalysis. By using a 96-well format, near pure enzyme was recovered and was suitable for high throughput kinetic assays; this enabled rapid screening for improved and new activities from libraries of enzyme variants. Initial characterisation of several single site-saturation libraries targeted at active site residues of PETN reductase, are described. Two mutants (T26S and W102F) were shown to have switched in substrate enantiopreference against substrates (E)-2-aryl-1-nitropropene and α-methyl-trans-cinnamaldehyde, respectively, with an increase in ee (62 % (R) for W102F). In addition, the detection of mutants with weak activity against α,β-unsaturated carboxylic acid substrates showed progress in the expansion of the substrate range of PETN reductase. These methods can readily be adapted for rapid evolution of enzyme variants with other oxidoreductase enzymes.
Collapse
Affiliation(s)
- Martyn E Hulley
- Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Toogood HS, Fryszkowska A, Hulley M, Sakuma M, Mansell D, Stephens GM, Gardiner JM, Scrutton NS. A Site-Saturated Mutagenesis Study of Pentaerythritol Tetranitrate Reductase Reveals that Residues 181 and 184 Influence Ligand Binding, Stereochemistry and Reactivity. Chembiochem 2011; 12:738-49. [DOI: 10.1002/cbic.201000662] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Indexed: 11/09/2022]
|
19
|
Directed in vitro evolution of reporter genes based on semi-rational design and high-throughput screening. Methods Mol Biol 2010; 634:239-56. [PMID: 20676989 DOI: 10.1007/978-1-60761-652-8_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Marker genes, such as gusA, lacZ, and gfp, have been applied comprehensively in biological studies. Directed in vitro evolution provides a powerful tool for modifying genes and for studying gene structure, expression, and function. Here, we describe a strategy for directed in vitro evolution of reporter genes based on semi-rational design and high-throughput screening. The protocol involves two processes of DNA shuffling and screening. The first DNA shuffling and screening process involves eight steps: (1) amplifying the target gene by PCR, (2) cutting the product into random fragments with DNase I, (3) purification of 50-100 bp fragments, (4) reassembly of the fragments in a primerless PCR, (5) amplification of the reassembled product by primer PCR, (6) cloning into expression vector, (7) transformation of E. coli by electroporation, and (8) screening the target mutants using a nitrocellulose filter. The second DNA shuffling and screening process also involves the same eight steps, except that degenerate oligonucleotide primers are based on the sequence of the selected mutant.
Collapse
|
20
|
de Carvalho CCCR. Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 2010; 29:75-83. [PMID: 20837129 DOI: 10.1016/j.biotechadv.2010.09.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
Abstract
The use of enzymes and whole bacterial cells has allowed the production of a plethora of compounds that have been used for centuries in foods and beverages. However, only recently we have been able to master techniques that allow the design and development of new biocatalysts with high stability and productivity. Rational redesign and directed evolution have lead to engineered enzymes with new characteristics whilst the understanding of adaptation mechanisms in bacterial cells has allowed their use under new operational conditions. Bacteria able to thrive under the most extreme conditions have also provided new and extraordinary catalytic processes. In this review, the new tools available for the improvement of biocatalysts are presented and discussed.
Collapse
Affiliation(s)
- Carla C C R de Carvalho
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
21
|
Toogood H, Gardiner J, Scrutton N. Biocatalytic Reductions and Chemical Versatility of the Old Yellow Enzyme Family of Flavoprotein Oxidoreductases. ChemCatChem 2010. [DOI: 10.1002/cctc.201000094] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Ma A, Hu Q, Bai Z, Qu Y, Liu W, Zhuang G. Functional display of fungal cellulases from Trichoderma reesei on phage M13. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9702-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Xiong AS, Peng RH, Zhuang J, Liu JG, Xu F, Cai B, Guo ZK, Qiao YS, Chen JM, Zhang Z, Yao QH. Directed Evolution of Beta-galactosidase from Escherichia coli into Beta-glucuronidase. BMB Rep 2007; 40:419-25. [PMID: 17562294 DOI: 10.5483/bmbrep.2007.40.3.419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro directed evolution through DNA shuffling is a powerful molecular tool for creation of new biological phenotypes. E. coli beta-galactosidase and beta-glucuronidase are widely used, and their biological function, catalytic mechanism, and molecular structures are well characterized. We applied an in vitro directed evolution strategy through DNA shuffling and obtained five mutants named YG6764, YG6768, YG6769, YG6770 and YG6771 after two rounds of DNA shuffling and screening, which exhibited more beta-glucuronidase activity than wild-type beta-galactosidase. These variants had mutations at fourteen nucleic acid sites, resulting in changes in ten amino acids: S193N, T266A, Q267R, V411A, D448G, G466A, L527I, M543I, Q626R and Q951R. We expressed and purified those mutant proteins. Compared to the wild-type protein, five mutant proteins exhibited high beta-glucuronidase activity. The comparison of molecular models of the mutated and wildtype enzymes revealed the relationship between protein function and structural modification.
Collapse
Affiliation(s)
- Ai-Sheng Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Xiong AS, Peng RH, Liu JG, Zhuang J, Qiao YS, Xu F, Cai B, Zhang Z, Chen JM, Yao QH. High efficiency and throughput system in directed evolution in vitro of reporter gene. Appl Microbiol Biotechnol 2007; 74:160-8. [PMID: 17009011 DOI: 10.1007/s00253-006-0659-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/25/2006] [Accepted: 09/04/2006] [Indexed: 11/25/2022]
Abstract
In vitro directed evolution, especially with DNA shuffling, is a powerful means in biological studies of protein structure and function, and consequently for industrial applications. Escherichia coli beta-glucuronidase (gusA) gene, a versatile and efficient reporter gene, was the model for studying in vitro directed evolution because of its stability, easy analysis of the enzyme properties and conveniently visible phenotype. We developed a high efficiency, throughput system for in vitro directed evolution using gusA reporter gene as the model. The system consisted mainly of three aspects: a prokaryotic expression vector pYPX251, an easy method for obtaining the mutated gene from DNA shuffling and a suitable selected strategy. The vector pYPX251 carried the moderately strong aacC1 gene promoter and T1T2 transcription terminator that allowed expression in E. coli. Over 10,000 individuals could be selected individually in a 9 cm Petri dish after colonies were absorbed on a nitrocellulose filter. A library, which contained 100,000 individuals was screened by incubating ten filter papers with X-Glu. The polymerase chain reaction products of the gusA gene, the fragments of 50-100 bp, with high mutation rates were purified using a dialysis bag from 10% PAGE after electrophoresis. The possibility of obtaining desirable mutations was increased dramatically as the size of the library expanded. A GUS variant, named GUS-TR, was obtained through this system, which is significantly more resistant to high temperature than the wild type enzyme. GUS-TR maintained its high activity even when the nitrocellulose filter containing the variant colony was heated at 100 degrees C for 30 min.
Collapse
Affiliation(s)
- Ai-Sheng Xiong
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai 201106, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Guo Z, Vikbjerg AF, Xu X. Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol Adv 2005; 23:203-59. [PMID: 15763405 DOI: 10.1016/j.biotechadv.2005.02.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Accepted: 02/05/2005] [Indexed: 11/26/2022]
Abstract
Rapid progress in biochemistry of phospholipids and evolution of modern bioengineering has brought forth a number of novel concepts and technical advancements in the modification of phospholipids for industrial applications and human nutrition. Highlights cover preparation of novel phospholipid analogs based on the latest understanding of pivotal role of phospholipids in manifold biological processes, exploration of remarkable application potentials of phospholipids in meliorating human health, as well as development of new chemical and biotechnological approaches applied to the modification of phospholipids. This work reviews the natural occurrence and structural characteristics of phospholipids, their updated knowledge on manifold biological and nutritional functions, traditional and novel physical and chemical approaches to modify phospholipids as well as their applications to obtain novel phospholipids, and brief introduction of the efforts focusing on de novo syntheses of phospholipids. Special attention is given to the summary of molecular structural characteristics and catalytic properties of multiple phospholipases, which helps to interpret experimental phenomena and to improve reaction design. This will of course provide fundamental bases also for the development of enzymatic technology to produce structured or modified phospholipids.
Collapse
Affiliation(s)
- Zheng Guo
- Food Biotechnology and Engineering Group, BioCentrum-DTU, Building 221, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | |
Collapse
|
26
|
Kretz KA, Richardson TH, Gray KA, Robertson DE, Tan X, Short JM. Gene site saturation mutagenesis: a comprehensive mutagenesis approach. Methods Enzymol 2004; 388:3-11. [PMID: 15289056 DOI: 10.1016/s0076-6879(04)88001-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Keith A Kretz
- Diversa Corporation, San Diego, California 92121, USA
| | | | | | | | | | | |
Collapse
|
27
|
High-throughput screening methods for selecting l-threonine aldolases with improved activity. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/j.molcatb.2003.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Abstract
The conventional notion that enzymes are only active in aqueous media has long been discarded, thanks to the numerous studies documenting enzyme activities in nonaqueous media, including pure organic solvents and supercritical fluids. Enzymatic reactions in nonaqueous solvents offer new possibilities for producing useful chemicals (emulsifiers, surfactants, wax esters, chiral drug molecules, biopolymers, peptides and proteins, modified fats and oils, structured lipids and flavor esters). The use of enzymes in both macro- and microaqueous systems has been investigated especially intensively in the last two decades. Although enzymes exhibit considerable activity in nonaqueous media, the activity is low compared to that in water. This observation has led to numerous studies to modify enzymes for specific purposes by various means including protein engineering. This review covers the historical developments, major technological advances and recent trends of enzyme catalysis in nonconventional media. A brief description of different classes of enzymes and their use in industry is provided with representative examples. Recent trends including use of novel solvent systems, role of water activity, stability issues, medium and biocatalyst engineering aspects have been discussed with examples. Special attention is given to protein engineering and directed evolution.
Collapse
Affiliation(s)
- Sajja Hari Krishna
- AK-Technische Chemie und Biotechnologie, Institut für Chemie und Biochemie, Universität Greifswald, Soldmannstrasse 16, D-17487 Greifswald, Germany.
| |
Collapse
|
29
|
Kong X, Li Z, Gou X, Zhu S, Zhang H, Wang X, Zhang J. A monomeric L-aspartase obtained by in vitro selection. J Biol Chem 2002; 277:24289-93. [PMID: 11983692 DOI: 10.1074/jbc.m200370200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By mimicking the partial spatial structure of the dimer of the l-aspartase subunit, the central ten-helix bundle, and an "active site" between the cleft of domain 1 (D1) and domain 3 (D3) from different subunits, we designed l-aspartase variants, in which D1D2 and D2D3 were ligated with a random hexapeptide loop. As expected, we obtained the variant with the highest activity (relative activity is 21.3% of the native enzyme, named as drAsp017) by in vitro selection. The molecular weight of this variant, obtained from size-exclusion column chromatography, is about 81 kDa, which indicates that it is indeed a monomer, whereas native l-aspartase is a tetramer. The activity-reversibility of drAsp017 (10(-7) m) was 80% after incubation for 30 min at 50 degrees C, while native enzyme only retained about 17% under the same conditions. Reactivation of drAsp017 denatured in 4 m guanidine HCl was independent of protein concentration at up to 20 x 10(-8) m at 25 degrees C, whereas the protein concentration of native enzyme strongly affected its reactivation under the above conditions. The sensitivity of drAsp017 (10(-7) m) to effective factors in the fumarate-amination reaction compared with native enzyme was also determined. Half-saturating concentrations of the activator l-aspartate and Mg2+ for drAsp017 (0.8 and 0.5 mm, respectively) are much higher than that of the native enzyme (0.10 and 0.15 mm, respectively). The data show that a monomeric l-aspartase is obtained by in vitro selection. Thus, the conversion of oligomeric proteins into their functional monomers could have important applications.
Collapse
Affiliation(s)
- Xiangduo Kong
- Key Lab for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130023, Peoples Republic of China
| | | | | | | | | | | | | |
Collapse
|