1
|
Tomsen-Melero J, Merlo-Mas J, Carreño A, Sala S, Córdoba A, Veciana J, González-Mira E, Ventosa N. Liposomal formulations for treating lysosomal storage disorders. Adv Drug Deliv Rev 2022; 190:114531. [PMID: 36089182 DOI: 10.1016/j.addr.2022.114531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/13/2022] [Accepted: 09/04/2022] [Indexed: 01/24/2023]
Abstract
Lysosomal storage disorders (LSD) are a group of rare life-threatening diseases caused by a lysosomal dysfunction, usually due to the lack of a single enzyme required for the metabolism of macromolecules, which leads to a lysosomal accumulation of specific substrates, resulting in severe disease manifestations and early death. There is currently no definitive cure for LSD, and despite the approval of certain therapies, their effectiveness is limited. Therefore, an appropriate nanocarrier could help improve the efficacy of some of these therapies. Liposomes show excellent properties as drug carriers, because they can entrap active therapeutic compounds offering protection, biocompatibility, and selectivity. Here, we discuss the potential of liposomes for LSD treatment and conduct a detailed analysis of promising liposomal formulations still in the preclinical development stage from various perspectives, including treatment strategy, manufacturing, characterization, and future directions for implementing liposomal formulations for LSD.
Collapse
Affiliation(s)
- Judit Tomsen-Melero
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | - Aida Carreño
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Santi Sala
- Nanomol Technologies SL, 08193 Cerdanyola del Vallès, Spain
| | - Alba Córdoba
- Nanomol Technologies SL, 08193 Cerdanyola del Vallès, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Elisabet González-Mira
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Nora Ventosa
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
2
|
Radulescu D, Buzdugan E, Stoicescu L, Grosu A, Radulescu ML. Current status of cardiac manifestations in Fabry disease and their treatment. Med Pharm Rep 2021; 94:S19-S21. [PMID: 34527902 PMCID: PMC8411827 DOI: 10.15386/mpr-2221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the present paper, we discuss cardiac symptoms in Fabry patients, the main imaging and laboratory methods to diagnose myocardial involvement in this disease. In the second part, we present the main treatment options in Fabry patients, including enzyme replacement therapy, substrate reduction treatment, chaperone therapy, gene treatment.
Collapse
Affiliation(s)
- Dan Radulescu
- 5 Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Elena Buzdugan
- 5 Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lauretiu Stoicescu
- 5 Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alin Grosu
- 5 Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria L Radulescu
- 5 Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Tomsen-Melero J, Passemard S, García-Aranda N, Díaz-Riascos ZV, González-Rioja R, Nedergaard Pedersen J, Lyngsø J, Merlo-Mas J, Cristóbal-Lecina E, Corchero JL, Pulido D, Cámara-Sánchez P, Portnaya I, Ionita I, Schwartz S, Veciana J, Sala S, Royo M, Córdoba A, Danino D, Pedersen JS, González-Mira E, Abasolo I, Ventosa N. Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7825-7838. [PMID: 33583172 DOI: 10.1021/acsami.0c16871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fabry disease is a rare lysosomal storage disorder characterized by a deficiency of α-galactosidase A (GLA), a lysosomal hydrolase. The enzyme replacement therapy administering naked GLA shows several drawbacks including poor biodistribution, limited efficacy, and relatively high immunogenicity in Fabry patients. An attractive strategy to overcome these problems is the use of nanocarriers for encapsulating the enzyme. Nanoliposomes functionalized with RGD peptide have already emerged as a good platform to protect and deliver GLA to endothelial cells. However, low colloidal stability and limited enzyme entrapment efficiency could hinder the further pharmaceutical development and the clinical translation of these nanoformulations. Herein, the incorporation of the cationic miristalkonium chloride (MKC) surfactant to RGD nanovesicles is explored, comparing two different nanosystems-quatsomes and hybrid liposomes. In both systems, the positive surface charge introduced by MKC promotes electrostatic interactions between the enzyme and the nanovesicles, improving the loading capacity and colloidal stability. The presence of high MKC content in quatsomes practically abolishes GLA enzymatic activity, while low concentrations of the surfactant in hybrid liposomes stabilize the enzyme without compromising its activity. Moreover, hybrid liposomes show improved efficacy in cell cultures and a good in vitro/in vivo safety profile, ensuring their future preclinical and clinical development.
Collapse
Affiliation(s)
- Judit Tomsen-Melero
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Solène Passemard
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Natalia García-Aranda
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Drug Delivery and Targeting, and Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Zamira Vanessa Díaz-Riascos
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Drug Delivery and Targeting, and Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Ramon González-Rioja
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Jeppe Lyngsø
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Josep Merlo-Mas
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
| | - Edgar Cristóbal-Lecina
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona, Spain
| | - José Luis Corchero
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Daniel Pulido
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona, Spain
| | - Patricia Cámara-Sánchez
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Drug Delivery and Targeting, and Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Irina Portnaya
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Inbal Ionita
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Simó Schwartz
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Santi Sala
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
| | - Miriam Royo
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona, Spain
| | - Alba Córdoba
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
| | - Dganit Danino
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
- Faculty of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Daxue Road, Shantou 515063, Guangdong Province, China
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Elisabet González-Mira
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ibane Abasolo
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Drug Delivery and Targeting, and Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Nora Ventosa
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
4
|
Bernardes TP, Foresto RD, Kirsztajn GM. Fabry disease: genetics, pathology, and treatment. Rev Assoc Med Bras (1992) 2020; 66Suppl 1:s10-s16. [DOI: 10.1590/1806-9282.66.s1.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Cabrera I, Abasolo I, Corchero JL, Elizondo E, Gil PR, Moreno E, Faraudo J, Sala S, Bueno D, González-Mira E, Rivas M, Melgarejo M, Pulido D, Albericio F, Royo M, Villaverde A, García-Parajo MF, Schwartz S, Ventosa N, Veciana J. α-Galactosidase-A Loaded-Nanoliposomes with Enhanced Enzymatic Activity and Intracellular Penetration. Adv Healthc Mater 2016; 5:829-40. [PMID: 26890358 DOI: 10.1002/adhm.201500746] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/03/2015] [Indexed: 12/19/2022]
Abstract
Lysosomal storage disorders (LSD) are caused by lysosomal dysfunction usually as a consequence of deficiency of a single enzyme required for the metabolism of macromolecules, such as lipids, glycoproteins, and mucopolysaccharides. For instance, the lack of α-galactosidase A (GLA) activity in Fabry disease patients causes the accumulation of glycosphingolipids in the vasculature leading to multiple organ pathology. Enzyme replacement therapy, which is the most common treatment of LSD, exhibits several drawbacks mainly related to the instability and low efficacy of the exogenously administered therapeutic enzyme. In this work, the unprecedented increased enzymatic activity and intracellular penetration achieved by the association of a human recombinant GLA to nanoliposomes functionalized with Arginine-Glycine-Aspartic acid (RGD) peptides is reported. Moreover, these new GLA loaded nanoliposomes lead to a higher efficacy in the reduction of the GLA substrate named globotriasylceramide in a cellular model of Fabry disease, than that achieved by the same concentration of the free enzyme. The preparation of these new liposomal formulations by DELOS-SUSP, based on the depressurization of a CO2 -expanded liquid organic solution, shows the great potential of this CO2 -based methodology for the one-step production of protein-nanoliposome conjugates as bioactive nanomaterials with therapeutic interest.
Collapse
Affiliation(s)
- Ingrid Cabrera
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC); Campus Universitari de Bellaterra; 08193 Cerdanyola del Vallès Spain
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Ibane Abasolo
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
- CIBBIM-Nanomedicine; Vall d'Hebron Institut de Recerca (VHIR); Universitat Autònoma de Barcelona; 08035 Barcelona Spain
| | - José L. Corchero
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
- Departament de Genètica i de Microbiologia; Institut de Biotecnologia i de Biomedicina; Universitat Autònoma de Barcelona; 08193 Bellaterra Spain
| | - Elisa Elizondo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC); Campus Universitari de Bellaterra; 08193 Cerdanyola del Vallès Spain
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Pilar Rivera Gil
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC); Campus Universitari de Bellaterra; 08193 Cerdanyola del Vallès Spain
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Evelyn Moreno
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC); Campus Universitari de Bellaterra; 08193 Cerdanyola del Vallès Spain
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Jordi Faraudo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC); Campus Universitari de Bellaterra; 08193 Cerdanyola del Vallès Spain
| | - Santi Sala
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC); Campus Universitari de Bellaterra; 08193 Cerdanyola del Vallès Spain
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Dolores Bueno
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC); Campus Universitari de Bellaterra; 08193 Cerdanyola del Vallès Spain
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Elisabet González-Mira
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC); Campus Universitari de Bellaterra; 08193 Cerdanyola del Vallès Spain
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Merche Rivas
- ICFO-Institut de Ciencies Fotoniques; Mediterranean Technology Park; 08860 Castelldefels Barcelona Spain
| | - Marta Melgarejo
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
- Combinatorial Chemistry Unit; Barcelona Science Park; Baldiri Reixac 10 08028 Barcelona Spain
| | - Daniel Pulido
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
- Combinatorial Chemistry Unit; Barcelona Science Park; Baldiri Reixac 10 08028 Barcelona Spain
| | - Fernando Albericio
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
- Institute for Research in Biomedicine; Barcelona Science Park; 08028 Barcelona Spain
- Department of Organic Chemistry; University of Barcelona; 08028 Barcelona Spain
| | - Miriam Royo
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
- Combinatorial Chemistry Unit; Barcelona Science Park; Baldiri Reixac 10 08028 Barcelona Spain
| | - Antonio Villaverde
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
- Departament de Genètica i de Microbiologia; Institut de Biotecnologia i de Biomedicina; Universitat Autònoma de Barcelona; 08193 Bellaterra Spain
| | - Maria F. García-Parajo
- ICFO-Institut de Ciencies Fotoniques; Mediterranean Technology Park; 08860 Castelldefels Barcelona Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats; 08010 Barcelona Spain
| | - Simó Schwartz
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
- CIBBIM-Nanomedicine; Vall d'Hebron Institut de Recerca (VHIR); Universitat Autònoma de Barcelona; 08035 Barcelona Spain
| | - Nora Ventosa
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC); Campus Universitari de Bellaterra; 08193 Cerdanyola del Vallès Spain
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC); Campus Universitari de Bellaterra; 08193 Cerdanyola del Vallès Spain
- Centro de Investigación Biomédica en Red-Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Spain
| |
Collapse
|
6
|
Ruiz de Garibay AP, Solinís MA, Rodríguez-Gascón A. Gene therapy for fabry disease: a review of the literature. BioDrugs 2013; 27:237-46. [PMID: 23575647 DOI: 10.1007/s40259-013-0032-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency of the lysosomal enzyme, α-galactosidase A. The lack of adequate enzymatic activity results in a systemic accumulation of neutral glycosphingolipids, predominantly globotriaosylceramide, in the lysosomes of, especially, endothelial and smooth muscle cells of blood vessels. Enzyme replacement therapy is at present the only available specific treatment for Fabry disease; however, this therapy has important drawbacks. Gene-mediated enzyme replacement is a reasonable and highly promising approach for the treatment of Fabry disease. It corresponds to a single gene disorder in which moderately low levels of enzyme activity should be sufficient for clinical efficacy and, thanks to cross-correction mechanisms, the transfection of a small number of cells will potentially correct distant cells too. This article summarizes the studies that have been carried out concerning gene therapy for the treatment of Fabry disease. We briefly review the literature from earlier studies in the 1990s to the current achievements.
Collapse
Affiliation(s)
- Aritz Perez Ruiz de Garibay
- Pharmacokinetics, Nanotechnology and Gene Therapy Group, Pharmacy Faculty, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | | | | |
Collapse
|
7
|
Lee CJ, Fan X, Guo X, Medin JA. Promoter-specific lentivectors for long-term, cardiac-directed therapy of Fabry disease. J Cardiol 2010; 57:115-22. [PMID: 20846825 DOI: 10.1016/j.jjcc.2010.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/28/2010] [Accepted: 08/02/2010] [Indexed: 02/05/2023]
Abstract
In Fabry disease a deficiency of α-galactosidase A (α-gal A) activity leads to accumulation of globotriaosylceramide (Gb3) in various tissues including the heart. A specific cardiac variant of Fabry disease has also been described. Previously we have demonstrated the feasibility of gene therapy for Fabry disease. Here, to provide efficient transfer and increased specificity of transgene expression, we synthesized lentiviral vectors (LVs) with myocardial-specific promoters including: α-myosin heavy chain (α-MHC), myosin light chain (MLC2v), and cardiac troponin T (cTnT). Initially, neonatal Balb/c mice were injected with such LV constructs engineering expression of luciferase. One month post-injection, we found specific expression of luciferase in hearts of recipient animals when compared with transgene expression driven by the standard EF1-α promoter. To examine the feasibility of long-term therapy specifically targeting the heart, recombinant LV/α-gal A therapeutic vectors with analogous cardiac promoters were generated and injected into numerous neonatal Fabry mice. No immune response against the corrective α-gal A hydrolase was observed in the treated mice. Serum α-gal A activity of 10-week-old Fabry mice was increased in LV/α-gal A-injected animals compared to controls. In 28-week-old Fabry mice we observed significantly decreased Gb3 accumulation. Neonatal injections with LVs harboring cardiac-specific promoters may thus be an effective long-term treatment strategy for heart manifestations and cardiac variant Fabry disease. These results can be also extended to other progressive pathologies of the heart.
Collapse
|
8
|
Abstract
A doença de Fabry é enfermidade de armazenamento lisossômico rara, ligada ao cromossomo-X, causada pela deficiência parcial ou completa da enzima alfagalactosidase A. O defeito resulta no acúmulo de globotriaosilceramida no endotélio vascular e tecidos viscerais, sendo a pele, o coração, os rins e o sistema nervoso central os mais afetados. As autoras realizam revisão da literatura relacionada a essa afecção e ressaltam que o reconhecimento precoce dos angioqueratomas e da hipoidrose constitui sinal-chave no diagnóstico dessa doença grave. Destacam também a necessidade de esses doentes serem avaliados por equipe multidisciplinar.
Collapse
Affiliation(s)
- Paula Boggio
- Hospital General de Agudos J.M. Ramos Mejía, Argentina
| | | | | | - Margarita Larralde
- Universidade de Buenos Aires; Hospital de Agudos J.M. Ramos Mejía, Argentina; Hospital Alemán, Argentina
| |
Collapse
|
9
|
Neschadim A, McCart JA, Keating A, Medin JA. A roadmap to safe, efficient, and stable lentivirus-mediated gene therapy with hematopoietic cell transplantation. Biol Blood Marrow Transplant 2008; 13:1407-16. [PMID: 18022569 DOI: 10.1016/j.bbmt.2007.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 09/24/2007] [Indexed: 11/15/2022]
Abstract
Hematopoietic stem cells comprise a prominent target for gene therapy aimed at treating various genetic and acquired disorders. A number of limitations associated with hematopoietic cell transplantation can be circumvented by the use of cells stably modified by retroviral gene transfer. Oncoretroviral and lentiviral vectors offer means for generating efficient and stable transgene expression. This review summarizes the state of the field today in terms of vector development and clinical experimentation. In particular, concerns with the safety of retroviral vectors intended for clinical gene transfer, applicability of preclinical data in directing clinical trial design, and recent research aimed at resolving some of these issues are addressed. Finally, this review underlines the specific advantages offered by lentiviral gene-transfer vectors for gene therapy in stem cells.
Collapse
Affiliation(s)
- Anton Neschadim
- Division of Stem Cell and Developmental Biology, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Möhrenschlager M, Pontz BF, Lanzl I, Podskarbi T, Henkel V, Ring J. Fabry disease: case report with emphasis on enzyme replacement therapy and possible future therapeutic options. J Dtsch Dermatol Ges 2007; 5:594-7. [PMID: 17610610 DOI: 10.1111/j.1610-0387.2007.06334.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 38-year-old male Caucasian with Fabry disease presented with angiokeratomas and tortuous conjunctival and retinal vessels. Additionally, the patient showed characteristic skin lesions of psoriasis and seborrheic dermatitis. His past medical history revealed anhidrosis, acral paresthesias, myocardial infarction, phlebothrombosis, hypertension, antithrombin III deficiency, factor V Leiden disease, chronic obstructive lung disease, tinnitus, diarrhea, recurrent abdominal pain, headache, and depressive mood. He was treated with intravenous substitution of the deficient enzyme alpha-galactosidase A. Possible future options in treatment of Fabry disease are discussed.
Collapse
|
11
|
Liang SB, Yoshimitsu M, Poeppl A, Rasaiah VI, Cai J, Fowler DH, Medin JA. Multiple Reduced-intensity Conditioning Regimens Facilitate Correction of Fabry Mice After Transplantation of Transduced Cells. Mol Ther 2007; 15:618-27. [PMID: 17228315 DOI: 10.1038/sj.mt.6300075] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hematopoietic cell transplantation can impact lysosomal storage disorders (LSDs) and will be enhanced by gene therapy. Transduced cells in LSDs often secrete the therapeutic hydrolase, which can be used by bystander cells. However, toxicity associated with myeloablative transplant preparative regimens limits many applications of this approach in gene therapy. We hypothesized that reduced-intensity (RI) conditioning regimens would allow stable engraftment of therapeutically transduced cells and allow correction of Fabry disease. We transplanted transduced cells into Fabry mice receiving eight different clinically relevant chemotherapy- and/or radiotherapy-based RI conditioning regimens generating modest and transient lymphoid/myeloid cell depletion. Two comprehensive transplantation Protocols were performed. Firstly, transplantation of 0.38 x 10(6) gene-modified stem/progenitor cells was nominally effective; none of the RI regimens led to stable alpha-galactosidase A (alpha-gal A) correction. Secondly, transduced cells were preselected for functional transgene expression and transplanted at a higher dose (0.72 x 10(6) cells). Each RI regimen yielded engraftment of functional transgene-positive cells through 180 days along with increased plasma alpha-gal A activity. Importantly, the RI regimens mediated broad organ enzyme correction and were not associated with immune responses against alpha-gal A. RI conditioning thus has an important role in gene therapy for LSDs; a variety of regimens can be effective in this context.
Collapse
Affiliation(s)
- Sheng-Ben Liang
- Division of Stem Cell and Developmental Biology, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Franken S, Wittke D, Mansson JE, D'Hooge R, De Deyn PP, Lüllmann-Rauch R, Matzner U, Gieselmann V. Modest phenotypic improvements in ASA-deficient mice with only one UDP-galactose:ceramide-galactosyltransferase gene. Lipids Health Dis 2006; 5:21. [PMID: 16893448 PMCID: PMC1564137 DOI: 10.1186/1476-511x-5-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 08/07/2006] [Indexed: 11/10/2022] Open
Abstract
Background Arylsulfatase A (ASA)-deficient mice are a model for the lysosomal storage disorder metachromatic leukodystrophy. This lipidosis is characterised by the lysosomal accumulation of the sphingolipid sulfatide. Storage of this lipid is associated with progressive demyelination. We have mated ASA-deficient mice with mice heterozygous for a non-functional allele of UDP-galactose:ceramide-galactosyltransferase (CGT). This deficiency is known to lead to a decreased synthesis of galactosylceramide and sulfatide, which should reduce sulfatide storage and improve pathology in ASA-deficient mice. Results ASA-/- CGT+/- mice, however, showed no detectable decrease in sulfatide storage. Neuronal degeneration of cells in the spiral ganglion of the inner ear, however, was decreased. Behavioural tests showed small but clear improvements of the phenotype in ASA-/- CGT+/- mice. Conclusion Thus the reduction of galactosylceramide and sulfatide biosynthesis by genetic means overall causes modest improvements of pathology.
Collapse
Affiliation(s)
- S Franken
- Department of Physiological Chemistry, University of Bonn, Germany
- Institut für Physiologische Chemie, Rheinische-Friedrich-Wilhelms Universität, Nussallee 11, 53115, Bonn, Germany
| | - D Wittke
- Anatomisches Institut, Universität Kiel, Germany
| | - JE Mansson
- Institute of Clinical Neuroscience, Goteborg University, Sweden
| | - R D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | - PP De Deyn
- Department of Biomedical Sciences and Department of Neurology/Memory Clinic, University of Antwerp, Belgium
| | | | - U Matzner
- Department of Physiological Chemistry, University of Bonn, Germany
| | - V Gieselmann
- Department of Physiological Chemistry, University of Bonn, Germany
| |
Collapse
|
13
|
Mattocks M, Bagovich M, De Rosa M, Bond S, Binnington B, Rasaiah VI, Medin J, Lingwood C. Treatment of neutral glycosphingolipid lysosomal storage diseases via inhibition of the ABC drug transporter, MDR1. FEBS J 2006; 273:2064-75. [PMID: 16724420 DOI: 10.1111/j.1742-4658.2006.05223.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have shown that the ABC transporter, multiple drug resistance protein 1 (MDR1, P-glycoprotein) translocates glucosyl ceramide from the cytosolic to the luminal Golgi surface for neutral, but not acidic, glycosphingolipid (GSL) synthesis. Here we show that the MDR1 inhibitor, cyclosporin A (CsA) can deplete Gaucher lymphoid cell lines of accumulated glucosyl ceramide and Fabry cell lines of globotriaosyl ceramide (Gb3), by preventing de novo synthesis. In the Fabry mouse model, Gb3 is increased in the heart, liver, spleen, brain and kidney. The lack of renal glomerular Gb3 is retained, but the number of verotoxin 1 (VT1)-staining renal tubules, and VT1 tubular targeting in vivo, is markedly increased in Fabry mice. Adult Fabry mice were treated with alpha-galactosidase (enzyme-replacement therapy, ERT) to eliminate serum Gb3 and lower Gb3 levels in some tissues. Serum Gb3 was monitored using a VT1 ELISA during a post-ERT recovery phase +/- biweekly intra peritoneal CsA. After 9 weeks, tissue Gb3 content and localization were determined using VT1/TLC overlay and histochemistry. Serum Gb3 recovered to lower levels after CsA treatment. Gb3 was undetected in wild-type liver, and the levels of Gb3 (but not gangliosides) in Fabry mouse liver were significantly depleted by CsA treatment. VT1 liver histochemistry showed Gb3 accumulated in Kupffer cells, endothelial cell subsets within the central and portal vein and within the portal triad. Hepatic venule endothelial and Kupffer cell VT1 staining was considerably reduced by in vivo CsA treatment. We conclude that MDR1 inhibition warrants consideration as a novel adjunct treatment for neutral GSL storage diseases.
Collapse
Affiliation(s)
- Michael Mattocks
- Research Institute, The Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Interest in the diagnosis and treatment of Fabry disease has been greatly stimulated by the availability of Food and Drug Administration-approved, effective enzyme replacement therapy. This review will update the progress in this area since enzyme replacement therapy has become available. Fabry disease is often associated with proteinuric chronic kidney disease (CKD), and it appears that the treatment paradigms that have proven to be so effective in diabetes mellitus and other forms of proteinuric kidney disease are also effective in conjunction with enzyme replacement therapy for treating the kidney manifestations of Fabry disease. As such, Fabry disease represents an interesting example of progressive proteinuric kidney disease in which the usual blood pressure is lower than in other forms of CKD. This makes the use of effective antiproteinuric therapy challenging, especially considering the autonomic dysfunction that appears to be part of the disease. Comprehensive therapy for Fabry disease includes enzyme replacement therapy and all of the adjunctive therapies that are currently used to treat all forms of proteinuric CKD. It is anticipated that this approach will preserve kidney function and also benefit the cardiac and cerebrovascular systems in patients with Fabry disease.
Collapse
Affiliation(s)
- David G Warnock
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA.
| | | |
Collapse
|
15
|
Poeppl AG, Murray GJ, Medin JA. Enhanced filter paper enzyme assay for high-throughput population screening for Fabry disease. Anal Biochem 2005; 337:161-3. [PMID: 15649390 DOI: 10.1016/j.ab.2004.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Indexed: 11/21/2022]
Affiliation(s)
- Armando G Poeppl
- Division of Experimental Therapeutics, Ontario Cancer Institute, Canada
| | | | | |
Collapse
|
16
|
Hoshikawa M, Kase R, Tadokoro M, Sakuraba H, Sakiyama T. Long-term expressed human alpha-galactosidase A in tissues of HalphaG transgenic mice. Pediatr Int 2004; 46:673-7. [PMID: 15660866 DOI: 10.1111/j.1442-200x.2004.01983.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Human alpha-galactosidase A (halphaG) is an essential lysosomal enzyme in catalyzing the hydrolysis of ceramide trihexoside in humans. Effects have been directed to develop effective gene and replacement therapies for the deficiency of halphaG, Fabry disease. In recent years, halphaG transgenic mice (TGM) have been established, and the expression of halphaG in their general organs has been reported. However, detailed distribution of the cells expressing halphaG have not yet been defined. METHODS The distribution of halphaG in organs of the halphaG-TGM was studied by means of immunohistochemistry and enzyme assay. RESULTS Immunohistochemical analysis revealed a systematic halphaG expression in the TGM, including endothelial cells of the bone marrow, liver, spleen, pancreas, lungs, uriniferous tubules in the kidneys, and choroids plexus in the brain. Enzyme assay demonstrated a persistent expression of halphaG in the TGM during 14-20 months after birth. CONCLUSION A long-term expression of halphaG in organs may indicate halphaG-TGM as a useful tool in the research of gene and replacement therapies for Fabry disease.
Collapse
Affiliation(s)
- Masahiro Hoshikawa
- Department of Pathology, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Japan.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Bone marrow (BM) contains hematopoietic stem cells (HSCs), which differentiate into every type of mature blood cell; endothelial cell progenitors; and marrow stromal cells, also called mesenchymal stem cells (MSCs), which can differentiate into mature cells of multiple mesenchymal tissues including fat, bone, and cartilage. Recent findings indicate that adult BM also contains cells that can differentiate into additional mature, nonhematopoietic cells of multiple tissues including epithelial cells of the liver, kidney, lung, skin, gastrointestinal (GI) tract, and myocytes of heart and skeletal muscle. Experimental results obtained in vitro and in vivo are the subject of this review. The emphasis is on how these experiments were performed and under what conditions differentiation from bone marrow to epithelial and neural cells occurs. Questions arise regarding whether tissue injury is necessary for this differentiation and the mechanisms by which it occurs. We also consider which bone marrow subpopulations are capable of this differentiation. Only after we have a better understanding of the mechanisms involved and of the cells required for this differentiation will we be able to fully harness adult stem cell plasticity for clinical purposes.
Collapse
Affiliation(s)
- Erica L Herzog
- Department of Medicine, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | | | | |
Collapse
|
18
|
D'Costa J, Harvey-White J, Qasba P, Limaye A, Kaneski CR, Davis-Warren A, Brady RO, Bankiewicz KS, Major EO, Arya SK. HIV-2 derived lentiviral vectors: gene transfer in Parkinson's and Fabry disease models in vitro. J Med Virol 2003; 71:173-82. [PMID: 12938190 DOI: 10.1002/jmv.10467] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Lentiviral vectors are prime candidate vectors for gene transfer into dividing and non-dividing cells, including neuronal cells and stem cells. For safety, HIV-2 lentiviral vectors may be better suited for gene transfer in humans than HIV-1 lentiviral vectors. HIV-2 vectors cross-packaged in HIV-1 cores may be even safer. Demonstration of the efficacy of these vectors in disease models will validate their usefulness. Parkinson's disease and Fabry disease provide excellent models for validation. Parkinson's disease is a focal degeneration of dopaminergic neurons in the brain with progressive loss of ability to produce the neurotransmitter dopamine. Current treatment entails administration of increasing doses of L-dopa, with attendant toxicity. We explore here the hypothesis that gene transfer of aromatic acid decarboxylase (AADC), a key enzyme in the pathway, will make neuronal cells more efficiently convert L-dopa into dopamine. Fabry disease on the other hand is a monogenic inherited disease, characterized by alpha-galactosidase A (AGA) deficiency, resulting in glycolipid accumulation in several cell types, including fibroblasts. Animal models for preclinical investigations of both of these diseases are available. We have designed monocistronic HIV-1 and HIV-2 vectors with the AADC transgene and monocistronic and bicistronic HIV-2 vectors with the AGA and puromycin resistance transgenes. They were packaged with either HIV-2 cores or HIV-1 cores (hybrid vectors). Gene transfer of AADC gene in neuronal cells imparted the ability on the transduced cells to efficiently convert L-dopa into dopamine. Similarly, the AGA vectors induced Fabry fibroblasts to produce high levels of AGA enzyme and caused rapid clearance of the glycolipids from the cells. Both monocistronic and bicistronic vectors were effective. Thus, the insertion of a second gene downstream in the bicistronic vector was not deleterious. In addition, both the self-packaged vectors and the cross-packaged hybrid vectors were effective in gene transfer.
Collapse
Affiliation(s)
- Jenice D'Costa
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Medin JA. Fabry Disease: Vector Divergence to Convergence? Gene Ther 2003. [DOI: 10.1038/sj.gt.3302072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
|
21
|
Watts RWE. A historical perspective of the glycosphingolipids and sphingolipidoses. Philos Trans R Soc Lond B Biol Sci 2003; 358:975-83. [PMID: 12803932 PMCID: PMC1693177 DOI: 10.1098/rstb.2003.1280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glycosphingolipids are a polysaccharide chain between 1 and 40 carbohydrate residues long glycosidically linked to ceramide (a long-chain aliphatic amino-alcohol or sphingoid) that is embedded in the cell plasma membrane with the carbohydrate moiety on the outside. The sphingoid imparts rigidity to the membrane and the carbohydrate tails protect the cell surface and have functions in relation to cell adhesion, growth, regulation, differentiation, cell interaction, recognition and signalling. They provide adhesion sites for pathogens and change during oncogenic transformation. Ceramide is also a component of sphingomyelin. Glycosphingolipids are degraded by lysosomal hydrolysis. The sphingolipidoses are a series of diseases in which mutations affecting the enzymes catalysing the last 11 steps of this process causing abnormal compounds proximal to the metabolic block to accumulate intralysosomally. Thus, they are a sub-group of the lysosomal storage diseases. The degradation of sphingolipids containing three or less carbohydrate residues requires a sphingolipid activator protein and mutations affecting these proteins also cause abnormal glycosphingolipid storage. With one exception (Fabry disease, which is X linked) the sphingolipidoses are inherited autosomally. The phenotypic manifestations of the individual sphingolipidoses are variable although the more severe variants are usually the better known. They have generally been regarded as untreatable but notable therapeutic advances are being made by enzyme replacement therapy and regulating the rate of glycosphingolipid synthesis by inhibiting UDP-glucose-N-acylsphingosine D-glucosyl transferase (CerGlcT), which is the first reaction on the pathway of glycosphingolipid synthesis. The compounds used are N-alkylated iminosugars whose glucose and galactose stereochemistries inhibit CerGlcT. Prenatal and carrier state diagnosis, genetic counselling and the abortion of affected foetuses are reducing the incidence of some of the most severe sphingolipidoses in certain high-incidence populations.
Collapse
Affiliation(s)
- Richard W E Watts
- Department of Medicine, Imperial College of Science, Technology and Medicine (Hammersmith Campus), Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| |
Collapse
|
22
|
Gieselmann V, Matzner U, Klein D, Mansson JE, D'Hooge R, DeDeyn PD, Lüllmann Rauch R, Hartmann D, Harzer K. Gene therapy: prospects for glycolipid storage diseases. Philos Trans R Soc Lond B Biol Sci 2003; 358:921-5. [PMID: 12803926 PMCID: PMC1693175 DOI: 10.1098/rstb.2003.1277] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lysosomal storage diseases comprise a group of about 40 disorders, which in most cases are due to the deficiency of a lysosomal enzyme. Since lysosomal enzymes are involved in the degradation of various compounds, the diseases can be further subdivided according to which pathway is affected. Thus, enzyme deficiencies in the degradation pathway of glycosaminoglycans cause mucopolysaccharidosis, and deficiencies affecting glycopeptides cause glycoproteinosis. In glycolipid storage diseases enzymes are deficient that are involved in the degradation of sphingolipids. Mouse models are available for most of these diseases, and some of these mouse models have been used to study the applicability of in vivo gene therapy. We review the rationale for gene therapy in lysosomal disorders and present data, in particular, about trials in an animal model of metachromatic leukodystrophy. The data of these trials are compared with those obtained with animal models of other lysosomal diseases.
Collapse
Affiliation(s)
- Volkmar Gieselmann
- Institut für Physiologische Chemie, Rheinische-Friedrich-Wilhelms Universität, Bonn 53115, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Watase K, Zoghbi HY. Modelling brain diseases in mice: the challenges of design and analysis. Nat Rev Genet 2003; 4:296-307. [PMID: 12671660 DOI: 10.1038/nrg1045] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetically engineered mice have been generated to model a variety of neurological disorders. Several of these models have provided valuable insights into the pathogenesis of the relevant diseases; however, they have rarely reproduced all, or even most, of the features observed in the corresponding human conditions. Here, we review the challenges that must be faced when attempting to accurately reproduce human brain disorders in mice, and discuss some of the ways to overcome them. Building on the knowledge gathered from the study of existing mutants, and on recent progress in phenotyping mutant mice, we anticipate better methods for preclinical interventional trials and significant advances in the understanding and treatment of neurological diseases.
Collapse
Affiliation(s)
- Kei Watase
- Department of Molecular and Human Genetics and Howard Hughes Medical Institute, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
24
|
Medin JA, Fowler DH. Post-transduction events in retrovirus-mediated gene therapy involving hematopoietic stem cells: beyond efficiency issues. J Cell Biochem 2002; 38:46-54. [PMID: 12046849 DOI: 10.1002/jcb.10052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Numerous incremental technological improvements have occurred recently in the application of therapeutic retrovirus-mediated gene transfer into hematopoietic stem cells (HSCs). Improved transduction efficiencies are now reaching levels that may correct some inherited or acquired disorders. Novel retroviral vector systems likewise offer the possibility for an expanded portfolio of treatment approaches. Most importantly, however, investigators are now also focusing efforts on post-transduction events to fully impact correction. Here we describe recent advances in the field, with a special emphasis on the role of post-transduction processes, for correction of disorders or treatments that involve HSCs or their progeny.
Collapse
Affiliation(s)
- Jeffrey A Medin
- Division of Experimental Therapeutics, Ontario Cancer Institute, Toronto, Canada.
| | | |
Collapse
|
25
|
|