1
|
Muqmirah, Xiao G, Jie P, Xu Z, Wei T, Wang H. Sequence analysis and genome organization of a new marafivirus from Leptochloa chinensis. Arch Virol 2025; 170:37. [PMID: 39820686 DOI: 10.1007/s00705-025-06220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/05/2024] [Indexed: 01/19/2025]
Abstract
High-throughput sequencing was used to identify and characterize a novel marafivirus from the weed Leptochloa chinensis, which was tentatively named "Leptochloa chinensis marafivirus" (LcMV). The complete genome of the virus consists of 6,178 base pairs, and its nucleotide sequence is 73.82% identical to that of Sorghum almum marafivirus, which is a member of the genus Marafivirus within the family Tymoviridae. The LcMV genome contains a relatively large open reading frame (ORF) encoding a single polyprotein (220.6 kDa) with five functional domains (methyltransferase, papain-like protease, helicase, RNA-dependent RNA polymerase, and coat proteins), which is a characteristic of members of this genus. Furthermore, a 16-nucleotide conserved marafibox sequence was identified at nucleotide positions 5341-5356. The coat protein of LcMV is 68.02% identical to that of Sorghum almum marafivirus. Phylogenetic analysis based on nucleotide and polyprotein sequences showed that LcMV is closely related to members of the genus Marafivirus. Our findings support the classification of LcMV as a member of a new species within this genus. This is the first report of a marafivirus infecting Leptochloa chinensis, a very important weed of rice.
Collapse
Affiliation(s)
- Muqmirah
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guangming Xiao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Pengpeng Jie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhongtian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hui Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
2
|
Yuan X, Liu Z, Guo M, Jin H, Wang X, Liu Y. Genomic and biological characteristics of a novel leafhopper-transmitted marafivirus infecting Triticum aestivum. Arch Virol 2024; 169:80. [PMID: 38519825 DOI: 10.1007/s00705-024-06011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/25/2024] [Indexed: 03/25/2024]
Abstract
Here, we report a novel wheat-infecting marafivirus, tentatively named "Triticum aestivum marafivirus" (TaMRV). The full-length genome sequence of TaMRV comprises 6,437 nucleotides, excluding the poly(A) tail. Pairwise sequence comparisons and phylogenetic analysis revealed that TaMRV may represent a novel species within the genus Marafivirus in the family Tymoviridae. We also observed a mass of isometric particles with a diameter of about 30 nm in ultrathin sections of infected wheat leaf tissue. In addition, the leafhopper Psammotettix alienus was identified as a vector for this virus. This is the first report of the occurrence of a wheat-infecting marafivirus.
Collapse
Affiliation(s)
- Xiaoyu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhiyuan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengyue Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huaibing Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
3
|
Hu HJ, Wang JR, Cheng XH, Liu Y, Zhang XY. Preliminary Studies on the Effects of Oyster Mushroom Spherical Virus China Strain on the Mycelial Growth and Fruiting Body Yield of the Edible Mushroom Pleurotus ostreatus. BIOLOGY 2022; 11:574. [PMID: 35453773 PMCID: PMC9029326 DOI: 10.3390/biology11040574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Oyster mushroom spherical virus (OMSV) is a positive-sense single-stranded RNA mycovirus which is associated with a devastating oyster mushroom die-back disease. However, little is known about its diversity, and the effects of OMSV infection on its fungal host are not well understood. In this study, we determined the nearly complete nucleotide sequence of OMSV isolated from cultivated oyster mushrooms in China. Sequence analysis suggested that the virus represents a new strain of OMSV (referred to here as OMSV-Ch). A GenBank BLAST search of the genomic sequences demonstrated that the OMSV-Ch had the highest identity (74.9%) with the OMSV from Korea (OMSV-Kr). At the amino acid-sequence level, these two strains shared 84.1% identity in putative replication protein (RP) and 94.1% identity in coat protein (CP). Phylogenetic analysis based on RP showed that OMSV-Ch clustered with OMSV-Kr, closely related to Tymoviridae. Phylogenetic analysis based on both the RP and CP showed that OMSV had a distant clade relationship with tymoviruses, marafiviruses, and maculaviruses. We obtained the OMSV-Ch-free Pleurotus ostreatus strain via single hyphal tip cultures combined with high-temperature treatment. Preliminary studies indicate that OMSV-Ch can significantly inhibit mycelial growth, cause malformations of the fruiting bodies, and reduce the yield of P. ostreatus. Co-cultivation resulted in horizontal transmission of the OMSV-Ch to a virus-cured strain. The findings of our study contribute to the prevention and control of mycoviral diseases in the future.
Collapse
Affiliation(s)
| | | | | | | | - Xiao-Yan Zhang
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China; (H.-J.H.); (J.-R.W.); (X.-H.C.); (Y.L.)
| |
Collapse
|
4
|
Coat protein expression strategy of maize rayado fino virus and evidence for requirement of CP1 for leafhopper transmission. Virology 2022; 570:96-106. [DOI: 10.1016/j.virol.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/19/2022]
|
5
|
Fan X, Zhang Z, Li C, Ren F, Hu G, Zhang B, Dong Y. High-Throughput Sequencing Indicates a Novel Marafivirus in Grapevine Showing Vein-Clearing Symptoms. PLANTS 2021; 10:plants10071487. [PMID: 34371690 PMCID: PMC8309299 DOI: 10.3390/plants10071487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/18/2022]
Abstract
A putative new marafivirus was identified in a ‘Jumeigui’ grapevine exhibitting obvious vein-clearing symptoms by high-throughput sequencing, which tentatively named grapevine-associated marafivirus (GaMV). The nearly complete genomic sequence of GaMV was amplified by reverse transcription PCR, and the terminal sequences were determined using the rapid amplification of cDNA ends method. The nearly complete genome of GaMV is 6346 bp long, excluding the poly(A) tail, and shows 51.2–62.3% nucleotide identity with other members of the genera Marafivirus, Maculavirus and Tymovirus in the family Tymoviridae. Additionally, it includes five functional domains homologous to those found in members of these genera. A phylogenetic analysis showed that GaMV clustered with other species-related marafiviruses. These data support GaMV being a representative member of a novel species in the genus Marafivirus. Furthermore, GaMV was graft-transmissible and 26 of 516 (5.04%) grapevine samples from five provinces in China tested positive by reverse transcription PCR. The coat protein of GaMV isolates shared 91.7–100% and 96.7–100% identities at the nt and aa levels, respectively. The coat protein-based phylogenetic trees revealed three well-defined clusters.
Collapse
|
6
|
Yang L, Zhang S, Mei S, Liu Q, Zhou Y, Li R, Cao M. Complete genome sequence of a novel citrus virus with characteristics of members of the family Tymoviridae. Arch Virol 2021; 166:2055-2058. [PMID: 33950289 DOI: 10.1007/s00705-021-05082-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 03/17/2021] [Indexed: 11/26/2022]
Abstract
A novel positive-stranded RNA virus provisionally named "citrus virus C" (CVC) was discovered in citrus trees displaying mottling symptoms. Its genome comprises 7,215 nucleotides (nt), excluding the 3' poly(A) tail, and contains two open reading frames (ORFs) that encode a replication-associated polyprotein (RP) and a putative coat protein (CP). The CVC genome contains a 16-nt 'marafibox', which is highly conserved in most viruses belonging to the genus Marafivirus of the same family. Sequence analysis suggested that the virus is most closely related to grapevine Red Globe virus (GRGV), which is yet to be officially classified in the family Tymoviridae. The sequence identities between CVC and GRGV in the whole genome (50.7%, nt) and CP (49.4% for amino acid, and 53.9% for nt) are lower than the thresholds (80% in the genome and 90% in the CP) for species demarcation in the family. Therefore, it is legitimate to propose that CVC is a member of new species in the family Tymoviridae.
Collapse
Affiliation(s)
- Liu Yang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Song Zhang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Shiqiang Mei
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Qiyan Liu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yan Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ruhui Li
- National Germplasm Resources Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Mengji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Zhang S, Yang L, Ma L, Tian X, Li R, Zhou C, Cao M. Virome of Camellia japonica: Discovery of and Molecular Characterization of New Viruses of Different Taxa in Camellias. Front Microbiol 2020; 11:945. [PMID: 32499772 PMCID: PMC7243478 DOI: 10.3389/fmicb.2020.00945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/20/2020] [Indexed: 01/09/2023] Open
Abstract
Many species of the genus Camellia are native to China, and several species such as C. japonica have been cultivated as garden plants for over 1,000 years. Virus-like symptoms have been recorded for years. In this study, C. japonica plants with various leaf symptoms were observed in Jiangxi and Chongqing provinces. The species composition of potential viruses in the symptomatic plants was analyzed by next-generation sequencing of six libraries prepared from total RNAs of specimens from 10 trees. Five new viruses were discovered, and their genome sequences were determined. These viruses were tentatively named Camellia chlorotic ringspot viruses (CaCRSVs), Camellia yellow ringspot virus (CaYRSV), Camellia-associated badnavirus (CaBaV), and Camellia-associated marafivirus (CaMaV) based on comprehensive analyses. Among these viruses, CaYRSV, CaBaV, and CaMaV share similar genome organizations and clear sequence homology with known viruses in databases and could potentially be classified as new species of the genera Badnavirus, Idaeovirus, and Marafivirus, respectively. CaCRSVs comprise two distinct viruses, and each likely contains five genomic RNA segments that were found to be distantly related to viral RNAs of members in the genus Emaravirus (family Fimoviridae). The RNAs of CaCRSVs show conserved terminal sequences that differ markedly from those of emaraviral RNAs. These data, together with the phylogenetic analysis, suggest that the evolutionary status of CaCRSVs may represent a novel genus in the family Fimoviridae. In addition, two known viruses (geminivirus and blunervirus) and a mass of betaflexiviruses existing as heterogeneous mixtures were detected, and their roles in symptom formation were studied. Collectively, the information of the viral species and detection protocols that were developed can serve as a basis for better management of these viruses. Distinguishing the virus-related symptoms from genetic characteristics of C. japonica is also significant for breeding efforts.
Collapse
Affiliation(s)
- Song Zhang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Liu Yang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lisha Ma
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xin Tian
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ruhui Li
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, United States
| | - Changyong Zhou
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Hily JM, Candresse T, Garcia S, Vigne E, Tannière M, Komar V, Barnabé G, Alliaume A, Gilg S, Hommay G, Beuve M, Marais A, Lemaire O. High-Throughput Sequencing and the Viromic Study of Grapevine Leaves: From the Detection of Grapevine-Infecting Viruses to the Description of a New Environmental Tymovirales Member. Front Microbiol 2018; 9:1782. [PMID: 30210456 PMCID: PMC6123372 DOI: 10.3389/fmicb.2018.01782] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
In the past decade, high-throughput sequencing (HTS) has had a major impact on virus diversity studies as well as on diagnosis, providing an unbiased and more comprehensive view of the virome of a wide range of organisms. Rather than the serological and molecular-based methods, with their more "reductionist" view focusing on one or a few known agents, HTS-based approaches are able to give a "holistic snapshot" of the complex phytobiome of a sample of interest. In grapevine for example, HTS is powerful enough to allow for the assembly of complete genomes of the various viral species or variants infecting a sample of known or novel virus species. In the present study, a total RNAseq-based approach was used to determine the full genome sequences of various grapevine fanleaf virus (GFLV) isolates and to analyze the eventual presence of other viral agents. From four RNAseq datasets, a few complete grapevine-infecting virus and viroid genomes were de-novo assembled: (a) three GFLV genomes, 11 grapevine rupestris stem-pitting associated virus (GRSPaV) and six viroids. In addition, a novel viral genome was detected in all four datasets, consisting of a single-stranded, positive-sense RNA molecule of 6033 nucleotides. This genome displays an organization similar to Tymoviridae family members in the Tymovirales order. Nonetheless, the new virus shows enough differences to be considered as a new species defining a new genus. Detection of this new agent in the original grapevines proved very erratic and was only consistent at the end of the growing season. This virus was never detected in the spring period, raising the possibility that it might not be a grapevine-infecting virus, but rather a virus infecting a grapevine-associated organism that may be transiently present on grapevine samples at some periods of the year. Indeed, the Tymoviridae family comprises isometric viruses infecting a wide range of hosts in different kingdoms (Plantae, Fungi, and Animalia). The present work highlights the fact that even though HTS technologies produce invaluable data for the description of the sanitary status of a plant, in-depth biological studies are necessary before assigning a new virus to a particular host in such metagenomic approaches.
Collapse
Affiliation(s)
- Jean-Michel Hily
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Villenave d'Ornon, Bordeaux, France
| | - Shahinez Garcia
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Emmanuelle Vigne
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Mélanie Tannière
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Véronique Komar
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Guillaume Barnabé
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Antoine Alliaume
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Sophie Gilg
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Gérard Hommay
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Monique Beuve
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Armelle Marais
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Villenave d'Ornon, Bordeaux, France
| | - Olivier Lemaire
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| |
Collapse
|
9
|
Complete nucleotide sequence and genome organization of peach virus D, a putative new member of the genus Marafivirus. Arch Virol 2017; 162:1769-1772. [PMID: 28188372 DOI: 10.1007/s00705-017-3255-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
The complete nucleotide sequence of peach virus D (PeVD) from Prunus persica was determined. The PeVD genome consists of 6,612 nucleotides excluding the 3' poly(A) tail and contains a single open reading frame coding for a polyprotein of 227 kDa. Sequence comparisons and phylogenetic analysis revealed that PeVD is most closely related to viruses in the genus Marafivirus, family Tymoviridae. The complete nucleotide and CP amino acid sequences of PeVD were most similar (51.1-57.8% and 32.2-48.0%, respectively) to members of the genus Marafivirus, suggesting that PeVD is a new member of this genus.
Collapse
|
10
|
Vargas-Asencio J, Wojciechowska K, Baskerville M, Gomez AL, Perry KL, Thompson JR. The complete nucleotide sequence and genomic characterization of grapevine asteroid mosaic associated virus. Virus Res 2016; 227:82-87. [PMID: 27720957 DOI: 10.1016/j.virusres.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/23/2016] [Accepted: 10/01/2016] [Indexed: 11/18/2022]
Abstract
In analyzing grapevine clones infected with grapevine red blotch associated virus, we identified a small number of isometric particles of approximately 30nm in diameter from an enriched fraction of leaf extract. A dominant protein of 25kDa was isolated from this fraction using SDS-PAGE and was identified by mass spectrometry as belonging to grapevine asteroid mosaic associated virus (GAMaV). Using a combination of three methods RNA-Seq, sRNA-Seq, and Sanger sequencing of RT- and RACE-PCR products, we obtained a full-length genome sequence consisting of 6719 nucleotides without the poly(A) tail. The virus possesses all of the typical conserved functional domains concordant with the genus Marafivirus and lies evolutionarily between citrus sudden death associated virus and oat blue dwarf virus. A large shift in RNA-Seq coverage coincided with the predicted location of the subgenomic RNA involved in coat protein (CP) expression. Genus wide sequence alignments confirmed the cleavage motif LxG(G/A) to be dominant between the helicase and RNA dependent RNA polymerase (RdRp), and the RdRp and CP domains. A putative overlapping protein (OP) ORF lacking a canonical translational start codon was identified with a reading frame context more consistent with the putative OPs of tymoviruses and fig fleck associated virus than with those of marafiviruses. BLAST analysis of the predicted GAMaV OP showed a unique relatedness to the OPs of members of the genus Tymovirus.
Collapse
Affiliation(s)
- José Vargas-Asencio
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Klaudia Wojciechowska
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Maia Baskerville
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Annika L Gomez
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Keith L Perry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jeremy R Thompson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
11
|
Li P, Lin Y, Zhang H, Wang S, Qiu D, Guo L. Molecular characterization of a novel mycovirus of the family Tymoviridae isolated from the plant pathogenic fungus Fusarium graminearum. Virology 2015; 489:86-94. [PMID: 26744993 DOI: 10.1016/j.virol.2015.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/05/2015] [Accepted: 12/13/2015] [Indexed: 11/16/2022]
Abstract
We isolated a novel mycovirus, Fusarium graminearum mycotymovirus 1 (FgMTV1/SX64), which is related to members of the family Tymoviridae, from the plant pathogenic fungus F. graminearum strain SX64. The complete 7863 nucleotide sequence of FgMTV1/SX64, excluding the poly (A) tail, was determined. The genome of FgMTV1/SX64 is predicted to contain four open reading frames (ORFs). The largest ORF1 is 6723 nucleotides (nt) in length and encodes a putative polyprotein of 2242 amino acids (aa), which contains four conserved domains, a methyltransferase (Mtr), tymovirus endopeptidase (Pro), viral RNA helicase (Hel), and RNA-dependent RNA polymerase (RdRp), of the replication-associated proteins (RPs) of the positive-strand RNA viruses. ORFs 2-4 putatively encode three putative small hypothetical proteins, but their functions are still unknown. Sequence alignments and phylogenetic analyses based on the putative RP protein and the three conserved domains (Mtr, Hel and RdRp) showed that FgMTV1/SX64 is most closely related to, but distinctly branched from, the viruses from the family Tymoviridae. Although FgMTV1/SX64 infection caused mild or no effect on conidia production, biomass and virulence of its host F. graminearum strain SX64, its infection had significant effects on the growth rate, colony diameter and deoxynivalenol (DON) production. This is the first molecular characterization of a tymo-like mycovirus isolated from a plant pathogenic fungus. It is proposed that the mycovirus FgMTV1/SX64 is a representative member of new proposed lineage Mycotymovirus in the family Tymoviridae.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Yanhong Lin
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Hailong Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Shuangchao Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China.
| |
Collapse
|
12
|
Edwards MC, Weiland JJ, Todd J, Stewart LR. Infectious Maize rayado fino virus from Cloned cDNA. PHYTOPATHOLOGY 2015; 105:833-839. [PMID: 25651051 DOI: 10.1094/phyto-09-14-0250-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A full-length cDNA clone was produced from a U.S. isolate of Maize rayado fino virus (MRFV), the type member of the genus Marafivirus within the family Tymoviridae. Infectivity of transcripts derived from cDNA clones was demonstrated by infection of maize plants and protoplasts, as well as by transmission via the known leafhopper vectors Dalbulus maidis and Graminella nigrifrons that transmit the virus in a persistent-propagative manner. Infection of maize plants through vascular puncture inoculation of seed with transcript RNA resulted in the induction of fine stipple stripe symptoms typical of those produced by wild-type MRFV and a frequency of infection comparable with that of the wild type. Northern and Western blotting confirmed the production of MRFV-specific RNAs and proteins in infected plants and protoplasts. An unanticipated increase in subgenomic RNA synthesis over levels in infected plants was observed in protoplasts infected with either wild-type or cloned virus. A conserved cleavage site motif previously demonstrated to function in both Oat blue dwarf virus capsid protein and tymoviral nonstructural protein processing was identified near the amino terminus of the MRFV replicase polyprotein, suggesting that cleavage at this site also may occur.
Collapse
Affiliation(s)
- Michael C Edwards
- First and second authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Cereal Crops Research Unit, Fargo, ND 58102-2765; third and fourth authors: USDA-ARS Corn, Soybean, and Wheat Quality Research Unit, Wooster, OH 44691
| | - John J Weiland
- First and second authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Cereal Crops Research Unit, Fargo, ND 58102-2765; third and fourth authors: USDA-ARS Corn, Soybean, and Wheat Quality Research Unit, Wooster, OH 44691
| | - Jane Todd
- First and second authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Cereal Crops Research Unit, Fargo, ND 58102-2765; third and fourth authors: USDA-ARS Corn, Soybean, and Wheat Quality Research Unit, Wooster, OH 44691
| | - Lucy R Stewart
- First and second authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Cereal Crops Research Unit, Fargo, ND 58102-2765; third and fourth authors: USDA-ARS Corn, Soybean, and Wheat Quality Research Unit, Wooster, OH 44691
| |
Collapse
|
13
|
Edwards MC, Weiland JJ. Coat protein expression strategy of oat blue dwarf virus. Virology 2014; 450-451:290-6. [PMID: 24503092 PMCID: PMC7173039 DOI: 10.1016/j.virol.2013.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/19/2013] [Accepted: 12/15/2013] [Indexed: 02/03/2023]
Abstract
Oat blue dwarf virus (OBDV) is a member of the genus Marafivirus whose genome encodes a 227 kDa polyprotein (p227) ostensibly processed post-translationally into its functional components. Encoded near the 3' terminus and coterminal with the p227 ORF are ORFs specifying major and minor capsid proteins (CP). Since the CP expression strategy of marafiviruses has not been thoroughly investigated, we produced a series of point mutants in the OBDV CP encoding gene and examined expression in protoplasts. Results support a model in which the 21 kDa major CP is the product of direct translation of a sgRNA, while the 24 kDa minor CP is a cleavage product derived from both the polyprotein and a larger ~26 kDa precursor translated directly from the sgRNA. Cleavage occurs at an LXG[G/A] motif conserved in many viruses that use papain-like proteases for polyprotein processing and protection against degradation via the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Michael C Edwards
- USDA-Agricultural Research Service, Cereal Crops Research Unit, Northern Crop Science Laboratory, 1605 Albrecht Blvd. N., Fargo, ND 58102-2765, USA.
| | - John J Weiland
- USDA-Agricultural Research Service, Cereal Crops Research Unit, Northern Crop Science Laboratory, 1605 Albrecht Blvd. N., Fargo, ND 58102-2765, USA
| |
Collapse
|
14
|
Genomic characterization of a novel virus of the family Tymoviridae isolated from mosquitoes. PLoS One 2012; 7:e39845. [PMID: 22848363 PMCID: PMC3407206 DOI: 10.1371/journal.pone.0039845] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/01/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The family Tymoviridae comprises three plant virus genera, including Tymovirus, Marafivirus, and Maculavirus, which are found in most parts of the world and cause severe agricultural losses. We describe a putatively novel member of the family Tymoviridae, which is isolated from mosquitoes (Culex spp.), referred to as CuTLV. METHODS AND RESULTS The CuTLV was isolated by cell culture, which replicates and causes cytopathic effects in Aedes albopictus C6/36 cells, but not in mammalian BHK-21 or Vero cells. The complete 6471 nucleotide sequence of CuTLV was determined. The genome of CuTLV is predicted to contain three open reading frames (ORFs). The largest ORF1 is 5307 nucleotides (nt) in length and encodes a putative polypeptide of 1769 amino acids (aa), which contains the conserved motifs for the methyltransferase (MTR), Tymovirus endopeptidase (PRO), helicase (HEL), and RNA-dependent RNA polymerase (RdRp) of the replication-associated proteins (RPs) of positive-stranded RNA viruses. In contrast, the ORF1 sequence does not contain the so-called "tymobox" or "marafibox", the conserved subgenomic RNA promoter present in all tymoviruses or marafiviruses, respectively. ORF2 and ORF3 putatively encode a 248-aa coat protein (CP) and a proline-rich 149-aa polypeptide. The whole genomic nucleotide identity of CuTLV with other members of family Tymoviridae ranged from 46.2% (ChiYMV) to 52.4% (GFkV). Phylogenetic analysis based on the putative RP and CP genes of CuTLV demonstrated that the virus is most closely related to viruses in the genus Maculavirus. CONCLUSIONS The CuTLV is a novel virus related to members of the family Tymoviridae, with molecular characters that are distinct from those of tymoviruses, marafiviruses, and other maculaviruses or macula-like viruses. This is the first report of the isolation of a Tymoviridae-like virus from mosquitoes. Further investigations are required to clarify the origin, replication strategy, and the public health or agricultural importance of the CuTLV.
Collapse
|
15
|
Presence of a polyA tail at the 3’ end of maize rayado fino virus RNA. Arch Virol 2010; 156:331-4. [DOI: 10.1007/s00705-010-0880-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/26/2010] [Indexed: 10/18/2022]
|
16
|
Complete nucleotide sequence and genome organization of Olive latent virus 3, a new putative member of the family Tymoviridae. Virus Res 2010; 152:10-8. [PMID: 20561953 DOI: 10.1016/j.virusres.2010.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/07/2010] [Accepted: 05/24/2010] [Indexed: 12/16/2022]
Abstract
The complete nucleotide sequence and the genome organization were determined of a putative new member of the family Tymoviridae, tentatively named Olive latent virus 3 (OLV-3), recovered in southern Italy from a symptomless olive tree. The sequenced ssRNA genome comprises 7148 nucleotides excluding the poly(A) tail and contains four open reading frames (ORFs). ORF1 encodes a polyprotein of 221.6kDa in size, containing the conserved signatures of the methyltransferase (MTR), papain-like protease (PRO), helicase (HEL) and RNA-dependent RNA polymerase (RdRp) domains of the replication-associated proteins of positive-strand RNA viruses. ORF2 overlaps completely ORF1 and encodes a putative protein of 43.33kDa showing limited sequence similarity with the putative movement protein of Maize rayado fino virus (MRFV). ORF3 codes for a protein with predicted molecular mass of 28.46kDa, identified as the coat protein (CP), whereas ORF4 overlaps ORF3 and encodes a putative protein of 16kDa with sequence similarity to the p16 and p31 proteins of Citrus sudden death-associated virus (CSDaV) and Grapevine fleck virus (GFkV), respectively. Within the family Tymoviridae, OLV-3 genome has the closest identity level (49-52%) with members of the genus Marafivirus, from which, however, it differs because of the diverse genome organization and the presence of a single type of CP subunits.
Collapse
|
17
|
Maize rayado fino virus capsid proteins assemble into virus-like particles in Escherichia coli. Virus Res 2010; 147:208-15. [DOI: 10.1016/j.virusres.2009.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 11/02/2009] [Accepted: 11/08/2009] [Indexed: 11/18/2022]
|
18
|
Al Rwahnih M, Daubert S, Golino D, Rowhani A. Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 2009; 387:395-401. [PMID: 19304303 DOI: 10.1016/j.virol.2009.02.028] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/10/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
In a search for viruses associated with decline symptoms of Syrah grapevines, we have undertaken an analysis of total plant RNA sequences using Life Sciences 454 high-throughput sequencing. 67.5 megabases of sequence data were derived from reverse-transcribed cDNA fragments, and screened for sequences of viral or viroid origin. The data revealed that a vine showing decline symptoms supported a mixed infection that included seven different RNA genomes. Fragments identified as derived from viruses or viroids spanned a approximately ten thousand fold range in relative prevalence, from 48,278 fragments derived from Rupestris stem pitting-associated virus to 4 fragments from Australian grapevine viroid. 1527 fragments were identified as derived from an unknown marafivirus. Its complete genome was sequenced and characterized, and an RT-PCR test was developed to analyze its field distribution and to demonstrate its presence in leafhoppers (vector for marafiviruses) collected from diseased vines. Initial surveys detected a limited presence of the virus in grape-growing regions of California.
Collapse
Affiliation(s)
- M Al Rwahnih
- Department of Plant Pathology, University of California, Davis, 95616, USA.
| | | | | | | |
Collapse
|
19
|
Chicas M, Caviedes M, Hammond R, Madriz K, Albertazzi F, Villalobos H, Ramírez P. Partial characterization of Maize rayado fino virus isolates from Ecuador: Phylogenetic analysis supports a Central American origin of the virus. Virus Res 2007; 126:268-76. [PMID: 17386956 DOI: 10.1016/j.virusres.2007.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/05/2007] [Accepted: 02/09/2007] [Indexed: 11/30/2022]
Abstract
Maize rayado fino virus (MRFV) infects maize and appears to be restricted to, yet widespread in, the Americas. MRFV was previously unreported from Ecuador. Maize plants exhibiting symptoms of MRFV infection were collected at the Santa Catalina experiment station in Quito, Ecuador. RT-PCR reactions were performed on total RNA extracted from the symptomatic leaves using primers specific for the capsid protein (CP) gene and 3' non-translated region of MRFV and first strand cDNA as a template. Nucleotide sequence comparisons to previously sequenced MRFV isolates from other geographic regions revealed 88-91% sequence identity. Phylogenetic trees constructed using Maximum Likelihood, UPGMA, Minimal Evolution, Neighbor Joining, and Maximum Parsimony methods separated the MRFV isolates into four groups. These groups may represent geographic isolation generated by the mountainous chains of the American continent. Analysis of the sequences and the genetic distances among the different isolates suggests that MRFV may have originated in Mexico and/or Guatemala and from there it dispersed to the rest of the Americas.
Collapse
Affiliation(s)
- Mauricio Chicas
- Centro de Investigacion en Biologia Celular y Molecular (CIBCM) and Escuela de Biologia, Universidad de Costa Rica, San Jose, Costa Rica
| | | | | | | | | | | | | |
Collapse
|
20
|
Izadpanah K, Zaki-Aghl M, Zhang YP, Daubert SD, Rowhani A. Bermuda Grass as a Potential Reservoir Host for Grapevine fanleaf virus. PLANT DISEASE 2003; 87:1179-1182. [PMID: 30812719 DOI: 10.1094/pdis.2003.87.10.1179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Grapevine fanleaf virus (GFLV) was detected in samples of Bermuda grass (BG) from Iran by reverse transcription-polymerase chain reaction (RT-PCR) using two different pairs of GFLV-specific primers, and also by enzyme-linked immunosorbent assay (ELISA) using antiserum specific for a North American isolate of the virus. RT-PCR detected GFLV in both fresh and dried BG tissues and in virus preparations purified from these plants. Cloning and sequencing of the RT-PCR products confirmed that the amplified sequences were sections of the GFLV coat protein gene. Similar results were obtained when random and oligo(dT) primers were used on viral RNA templates recovered from BG to synthesize cDNA for cloning and sequencing. The virus induced few or no symptoms in BG, but could nonetheless be transmitted from BG to Chenopodium quinoa by mechanical inoculation. Some isolates induced systemic chlorotic spots and leaf deformation; others remained symptomless in this plant. Both symptomatic and symptomless C. quinoa plants were found to be infected with GFLV, giving positive ELISA and RT-PCR tests. A North American isolate of GFLV was found to be mechanically transmissible to BG as indicated by positive RT-PCR results from root samples of inoculated plants. GFLV-infected BG was widely distributed in the Fars province of Iran.
Collapse
Affiliation(s)
- K Izadpanah
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
| | - M Zaki-Aghl
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Y P Zhang
- Department of Plant Pathology, University of California, Davis 95616
| | - S D Daubert
- Department of Plant Pathology, University of California, Davis 95616
| | - A Rowhani
- Department of Plant Pathology, University of California, Davis 95616
| |
Collapse
|
21
|
Ghanem-Sabanadzovic NA, Sabanadzovic S, Martelli GP. Sequence analysis of the 3' end of three Grapevine fleck virus-like viruses from grapevine. Virus Genes 2003; 27:11-6. [PMID: 12913354 DOI: 10.1023/a:1025164200412] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The 3' end of the genome of three Grapevine fleck virus-like viruses, i.e. Grapevine redglobe virus (GRGV), Grapevine asteroid mosaic-associated virus (GAMaV), and an unidentified virus from a Greek grapevine (accession GR8-19) was amplified from reverse transcribed total nucleic acid extracts from infected grapevine tissues and sequenced. The analysed genome portions differed in size and organization. The 3' ends of GAMaV (1852 nt) and of GR8-19 (1791 nt) resembled that of marafiviruses, as both encoded a single putative polyprotein containing the conserved "marafibox" sequence and lacked the stop codon between the replicase and coat protein genes. By contrast, the replicase and coat protein genes present in the terminal 2006 nt of GRGV genome were clearly separated and there was a 3'-proximal open reading frame encoding a putative proline rich protein with molecular mass of c. 17 kDa. The genome of all three viruses was polyadenylated. The organization of the 3' terminal genomic region and phylogenetic analysis of viral replicases and coat proteins suggest that GAMaV and the Greek virus GR8-19 belong in the genus Marafivirus, and GRGV in the genus Maculavirus, family Tymoviridae. Virus GR8-19 had molecular traits differing enough from GAMaV and other marafiviruses to be regarded as a new putative species in the genus Marafivirus, for which the name of Grapevine rupestris vein feathering virus is proposed.
Collapse
|