1
|
Proteomic profile of the Bradysia odoriphaga in response to the microbial secondary metabolite benzothiazole. Sci Rep 2016; 6:37730. [PMID: 27883048 PMCID: PMC5121901 DOI: 10.1038/srep37730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/31/2016] [Indexed: 01/15/2023] Open
Abstract
Benzothiazole, a microbial secondary metabolite, has been demonstrated to possess fumigant activity against Sclerotinia sclerotiorum, Ditylenchus destructor and Bradysia odoriphaga. However, to facilitate the development of novel microbial pesticides, the mode of action of benzothiazole needs to be elucidated. Here, we employed iTRAQ-based quantitative proteomics analysis to investigate the effects of benzothiazole on the proteomic expression of B. odoriphaga. In response to benzothiazole, 92 of 863 identified proteins in B. odoriphaga exhibited altered levels of expression, among which 14 proteins were related to the action mechanism of benzothiazole, 11 proteins were involved in stress responses, and 67 proteins were associated with the adaptation of B. odoriphaga to benzothiazole. Further bioinformatics analysis indicated that the reduction in energy metabolism, inhibition of the detoxification process and interference with DNA and RNA synthesis were potentially associated with the mode of action of benzothiazole. The myosin heavy chain, succinyl-CoA synthetase and Ca+-transporting ATPase proteins may be related to the stress response. Increased expression of proteins involved in carbohydrate metabolism, energy production and conversion pathways was responsible for the adaptive response of B. odoriphaga. The results of this study provide novel insight into the molecular mechanisms of benzothiazole at a large-scale translation level and will facilitate the elucidation of the mechanism of action of benzothiazole.
Collapse
|
2
|
Abou-Donia MB, Siracuse B, Gupta N, Sobel Sokol A. Sarin (GB, O-isopropyl methylphosphonofluoridate) neurotoxicity: critical review. Crit Rev Toxicol 2016; 46:845-875. [PMID: 27705071 PMCID: PMC5764759 DOI: 10.1080/10408444.2016.1220916] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sarin (GB, O-isopropyl methylphosphonofluoridate) is a potent organophosphorus (OP) nerve agent that inhibits acetylcholinesterase (AChE) irreversibly. The subsequent build-up of acetylcholine (ACh) in the central nervous system (CNS) provokes seizures and, at sufficient doses, centrally-mediated respiratory arrest. Accumulation of ACh at peripheral autonomic synapses leads to peripheral signs of intoxication and overstimulation of the muscarinic and nicotinic receptors, which is described as "cholinergic crisis" (i.e. diarrhea, sweating, salivation, miosis, bronchoconstriction). Exposure to high doses of sarin can result in tremors, seizures, and hypothermia. More seriously, build-up of ACh at neuromuscular junctions also can cause paralysis and ultimately peripherally-mediated respiratory arrest which can lead to death via respiratory failure. In addition to its primary action on the cholinergic system, sarin possesses other indirect effects. These involve the activation of several neurotransmitters including gamma-amino-butyric acid (GABA) and the alteration of other signaling systems such as ion channels, cell adhesion molecules, and inflammatory regulators. Sarin exposure is associated with symptoms of organophosphate-induced delayed neurotoxicity (OPIDN) and organophosphate-induced chronic neurotoxicity (OPICN). Moreover, sarin has been involved in toxic and immunotoxic effects as well as organophosphate-induced endocrine disruption (OPIED). The standard treatment for sarin-like nerve agent exposure is post-exposure injection of atropine, a muscarinic receptor antagonist, accompanied by an oxime, an AChE reactivator, and diazepam.
Collapse
Affiliation(s)
- Mohamed B Abou-Donia
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| | - Briana Siracuse
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| | - Natasha Gupta
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| | - Ashly Sobel Sokol
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| |
Collapse
|
3
|
Xi J, Pan Y, Wei Z, Yang C, Gao X, Peng T, Bi R, Liu Y, Xin X, Shang Q. Proteomics-based identification and analysis proteins associated with spirotetramat tolerance in Aphis gossypii Glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 119:74-80. [PMID: 25868820 DOI: 10.1016/j.pestbp.2015.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
Spirotetramat were now widely used for control insecticides resistant aphids since 2011 in China. In order to elucidate the possible resistance mechanism, a laboratory selected resistant strain (SR) of cotton aphid was established with a 578.93-fold and 14.91-fold resistance ratio to spirotetramat for adult aphids and nymph, respectively, as compared with the susceptible strain (SS). In this study, a comparative proteomic analysis between SR and SS strains were conducted aims to better understand the resistant cotton aphids' spirotetramat tolerance mechanism. Approximately 493 protein spots were detected in the two-dimension polyacrylamide gel electrophoresis (2-DE). The intensities of 35 protein spots significantly changed, showing differences more than 2-fold in the SR strain compared with that in the SS strain. Of these spots, 20 protein spots were more abundant in the SR strain and 15 protein spots were more abundant in the SS strain. Twenty six differently expressed proteins were identified and categorized into several functional groups including carbohydrate and energy metabolism, antioxidant system, protein folding, amino acid metabolism, secondary metabolism and cytoskeleton protein, etc. Among these proteins, the acetyl-coA carboxylase (ACC), heat shock protein 70, ubiquitin-conjugating enzyme, fatty acid synthase, UDP-glucose 6-dehydrogenase, etc. are speculated confer the spirotetramat resistance in cotton aphids.
Collapse
Affiliation(s)
- Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Zhenxin Wei
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Chen Yang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tianfei Peng
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Rui Bi
- College of Plant Science, Jilin University, Changchun 130062, China; Department of Entomology, Jilin Agricultural University, Changchun 130118, China
| | - Yan Liu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xuecheng Xin
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Huang X, Huang HQ. Alteration of the kidney membrane proteome of Mizuhopecten yessoensis induced by low-level methyl parathion exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:189-199. [PMID: 22446831 DOI: 10.1016/j.aquatox.2012.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
Methyl parathion (MP) is a widely used organophosphorus pesticide that causes severe health and environmental effects. We investigated the alteration of the proteomic profile in the membrane enriched fraction of the kidneys of the scallop Mizuhopecten yessoensis exposed to low-level MP. Gas chromatography analysis showed that MP residues were significantly accumulated in the kidneys and the digestive glands of the scallops. According to two-dimensional electrophoresis, 17 proteins were differentially modulated under MP exposure. The mRNA expressions of 12 differential proteins were analyzed using quantitative PCR, and 10 showed consistent alteration of mRNA level with that of protein expression level. Altered expressions of two proteins (mitochondrial processing peptidase and α-tubulin) were also examined using Western blotting, showing that the mitochondrial processing peptidase was down-regulated but α-tubulin remained unchanged in response to MP exposure. Subcellular locations of all the identified proteins that were predicted using bioinformatics tools indicate that few of them are permanently located in the membrane. The differentially expressed proteins are involved in several critical biological processes, and their relevance to human health has been illuminated. These data taken together have provided some novel insights into the chronic toxicity mechanism of MP and have suggested mitochondrial processing peptidase as a potential biomarker for human health and environmental monitoring.
Collapse
Affiliation(s)
- Xiang Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | |
Collapse
|
5
|
RamaRao G, Bhattacharya BK. Multiple signal transduction pathways alterations during nerve agent toxicity. Toxicol Lett 2011; 208:16-22. [PMID: 22001750 DOI: 10.1016/j.toxlet.2011.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 02/06/2023]
Abstract
Nerve agent toxicity is primarily due to the synaptic build up of toxic levels of acetylcholine. The acute lethal effects of the nerve agents are generally attributed to respiratory failure caused by a combination of effects at both central and peripheral levels and are further complicated by copious secretions, muscle fasciculations, and convulsions. In addition to this, a range of non cholinergic effects have been observed. The development of effective treatment to block multiple effects resulting from nerve agent exposure is hampered by a limited understanding of the molecular changes responsible for their persistent effects. Excessive accumulation of acetylcholine leads to activation nicotinic and muscarinic acetylcholine receptors, these receptors activate diverse kind of cellular responses by distinct signaling pathways. Metabolism of cyclic nucleotides, membrane phospholipids, activation of a multitude of protein kinases and the induction of transcription factors are the key biochemical steps and pathways that have been investigated. This review will focus on the effects of nerve agents on signal transduction pathways; particularly, MAP kinases, protein kinase C isozymes, calcium calmodulin dependent protein kinase II (CaMKII) and on cytoskeletal proteins, calpain, and certain transcription factors and discusses how such changes may be involved in nerve agent induced neurotoxicity. Alterations in these key brain proteins could explain the neurological impairments following nerve agent exposure. A better understanding of the whole picture may lead to new pharmacological interventions aimed to improve or modulate those signal transduction pathways affected during nerve agent poisoning or associated pathologies that are responsible for neuronal disturbances.
Collapse
Affiliation(s)
- G RamaRao
- Biochemistry Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, M.P., India.
| | | |
Collapse
|
6
|
Early differential cell death and survival mechanisms initiate and contribute to the development of OPIDN: a study of molecular, cellular, and anatomical parameters. Toxicol Appl Pharmacol 2011; 256:348-59. [PMID: 21840330 DOI: 10.1016/j.taap.2011.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 01/30/2023]
Abstract
Organophosphorus-ester induced delayed neurotoxicity (OPIDN) is a neurodegenerative disorder characterized by ataxia progressing to paralysis with a concomitant central and peripheral, distal axonapathy. Diisopropylphosphorofluoridate (DFP) produces OPIDN in the chicken that results in mild ataxia in 7-14 days and severe paralysis as the disease progresses with a single dose. White leghorn layer hens were treated with DFP (1.7 mg/kg, sc) after prophylactic treatment with atropine (1mg/kg, sc) in normal saline and eserine (1mg/kg, sc) in dimethyl sulfoxide. Control groups were treated with vehicle propylene glycol (0.1 ml/kg, sc), atropine in normal saline and eserine in dimethyl sulfoxide. The hens were euthanized at different time points such as 1, 2, 5, 10 and 20 days, and the tissues from cerebrum, midbrain, cerebellum, brainstem and spinal cord were quickly dissected and frozen for mRNA (northern) studies. Northern blots were probed with BCL2, GADD45, beta actin, and 28S RNA to investigate their expression pattern. Another set of hens was treated for a series of time points and perfused with phosphate buffered saline and fixative for histological studies. Various staining protocols such as Hematoxylin and Eosin (H&E); Sevier-Munger; Cresyl echt Violet for Nissl substance; and Gallocynin stain for Nissl granules were used to assess various patterns of cell death and degenerative changes. Complex cell death mechanisms may be involved in the neuronal and axonal degeneration. These data indicate altered and differential mRNA expressions of BCL2 (anti apoptotic gene) and GADD45 (DNA damage inducible gene) in various tissues. Increased cell death and other degenerative changes noted in the susceptible regions (spinal cord and cerebellum) than the resistant region (cerebrum), may indicate complex molecular pathways via altered BCL2 and GADD45 gene expression, causing the homeostatic imbalance between cell survival and cell death mechanisms. Semi quantitative analysis revealed that the order of severity of damage declines from the spino-cerebellar, ventral, and dorsal tract respectively, suggesting neuroanatomical specificity. Thus, early activation of cell death and cell survival processes may play significant role in the clinical progression and syndromic clinical feature presentation of OPIDN.
Collapse
|
7
|
Changes of protein oxidation, calpain and cytoskeletal proteins (alpha tubulin and pNF-H) levels in rat brain after nerve agent poisoning. Toxicol Lett 2011; 203:227-36. [DOI: 10.1016/j.toxlet.2011.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022]
|
8
|
Huang QY, Huang L, Huang HQ. Proteomic analysis of methyl parathion-responsive proteins in zebrafish (Danio rerio) brain. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:67-74. [PMID: 20826231 DOI: 10.1016/j.cbpc.2010.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/30/2010] [Accepted: 08/30/2010] [Indexed: 12/22/2022]
Abstract
Methyl parathion (MP), an organophosphorus pesticide used worldwide, has been associated with a wide spectrum of toxic effects on organisms in the environment. This study set out to analyze the alteration of protein profiles in MP-exposed zebrafish (Danio rerio) brain and find the proteins responsive to MP toxicity. Zebrafish were subjected to 1, 3 and 5mg/L MP and the proteomic changes in their brains were revealed using two-dimensional gel electrophoresis. Six protein spots were observed to be significantly changed by MP exposure. Among these, 4 spots were down-regulated, while 2 spots were up-regulated. These altered spots were excised from the gels and identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry and database searching. The results indicate that these proteins were involved in binding, catalysis, regulation of energy metabolism and cell structure. These data may provide novel biomarkers for the evaluation of MP contamination and useful insights for understanding the mechanisms of MP toxicity.
Collapse
Affiliation(s)
- Qing-Yu Huang
- Department of Biochemistry and Biotechnology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | |
Collapse
|
9
|
Everley PA, Dillman JF. Genomics and proteomics in chemical warfare agent research: recent studies and future applications. Toxicol Lett 2010; 198:297-303. [PMID: 20708669 DOI: 10.1016/j.toxlet.2010.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 11/17/2022]
Abstract
Medical research on the effects of chemical warfare agents (CWAs) has been ongoing for nearly 100 years, yet these agents continue to pose a serious threat to deployed military forces and civilian populations. CWAs are extremely toxic, relatively inexpensive, and easy to produce, making them a legitimate weapon of choice for terrorist organizations. While the mechanisms of action for many CWAs have been known for years, questions about their molecular effects following acute and chronic exposure remain largely unanswered. Global approaches that can pinpoint which cellular pathways are altered in response to CWAs and characterize long-term toxicity have not been widely used. Fortunately, innovations in genomics and proteomics technologies now allow for thousands of genes and proteins to be identified and subsequently quantified in a single experiment. Advanced bioinformatics software can also help decipher large-scale changes observed, leading to mapping of signaling pathways, functional characterization, and identification of potential therapeutic targets. Here we present an overview of how genomics and proteomics technologies have been applied to CWA research and also provide a series of questions focused on how these techniques could further our understanding of CWA toxicity.
Collapse
Affiliation(s)
- Patrick A Everley
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA.
| | | |
Collapse
|
10
|
Damodaran TV, Gupta RP, Attia MK, B. Abou-Donia M. DFP initiated early alterations of PKA/p-CREB pathway and differential persistence of β-tubulin subtypes in the CNS of hens contributes to OPIDN. Toxicol Appl Pharmacol 2009; 240:132-42. [DOI: 10.1016/j.taap.2009.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/23/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
|
11
|
Sachana M, Flaskos J, Hargreaves AJ. Effects of Chlorpyrifos and Chlorpyrifos-Methyl on the Outgrowth of Axon-Like Processes, Tubulin, and GAP-43 in N2a Cells. Toxicol Mech Methods 2008; 15:405-10. [DOI: 10.1080/15376520500194767] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Damodaran TV, Greenfield ST, Patel AG, Dressman HK, Lin SK, Abou-Donia MB. Toxicogenomic studies of the rat brain at an early time point following acute sarin exposure. Neurochem Res 2006; 31:367-81. [PMID: 16733813 DOI: 10.1007/s11064-005-9023-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2005] [Indexed: 10/24/2022]
Abstract
We have studied sarin-induced global gene expression patterns at an early time point (2 h: 0.5 x LD50) using Affymetrix Rat Neurobiology U34 chips and male Sprague-Dawley rats. A total of 46 genes showed statistically significant alterations from control levels. Three gene categories contained more of the altered genes than any other groups: ion channel (8 genes) and calcium channel and binding proteins (6 genes). Alterations were also found in the following gene groups: ATPases and ATP-based transporters (4), growth factors (4), G-protein-coupled receptor pathway-related molecules (3), neurotransmission and neurotransmitter transporters (3), cytoskeletal and cell adhesion molecules (2), hormones (2), mitochondria-associated proteins (2), myelin proteins (2), stress-activated molecules (2), cytokine (1), caspase (1), GABAnergic (1), glutamergic (1), immediate early gene (1), prostaglandin (1), transcription factor (1), and tyrosine phosphorylation molecule (1). Persistent alteration of the following genes also were noted: Arrb1, CaMKIIa, CaMKIId, Clcn5, IL-10, c-Kit, and Plp1, suggesting altered GPCR, kinase, channel, and cytokine pathways. Selected genes from the microarray data were further validated using relative RT-PCR. Some of those genes (GFAP, NF-H, CaMKIIa, Calm, and MBP) have been shown by other laboratories and ours, to be involved in the pathogenesis of sarin-induced pathology and organophosphate-induced delayed neurotoxicity (OPIDN). Induction of both proapoptotic (Bcl2l11, Casp6) and antiapoptotic (Bcl-X) genes, besides suppression of p21, suggest complex cell death/protection-related mechanisms operating early on. Principal component analysis (PCA) of the expression data confirmed that the changes in gene expression are a function of sarin exposure, since the control and treatment groups separated clearly. Our model (based on current and previous studies) indicates that both degenerative and regenerative pathways are activated early and contribute to the level of neurodegeneration at a later time, leading to neuro-pathological alterations.
Collapse
Affiliation(s)
- Tirupapuliyur V Damodaran
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, P.O. Box 3813, Durham, NC, 27710, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Francis F, Gerkens P, Harmel N, Mazzucchelli G, De Pauw E, Haubruge E. Proteomics in Myzus persicae: effect of aphid host plant switch. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:219-27. [PMID: 16503483 DOI: 10.1016/j.ibmb.2006.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 01/20/2006] [Accepted: 01/25/2006] [Indexed: 05/06/2023]
Abstract
Chemical ecology is the study of how particular chemicals are involved in interactions of organisms with each other and with their surroundings. In order to reduce insect attack, plants have evolved a variety of defence mechanisms, both constitutive and inducible, while insects have evolved strategies to overcome these plant defences (such as detoxification enzymes). A major determinant of the influence of evolutionary arms races is the strategy of the insect: generalist insect herbivores, such as Myzus persicae aphid, need more complex adaptive mechanisms since they need to respond to a large array of different plant defensive chemicals. Here we studied the chemical ecology of M. persicae associated with different plant species, from Brassicaceae and Solanaceae families. To identify the involved adaptation systems to cope with the plant secondary substances and to assess the differential expression of these systems, a proteomic approach was developed. A non-restrictive approach was developed to identify all the potential adaptation systems toward the secondary metabolites from host plants. The complex protein mixtures were separated by two-dimensional electrophoresis methods and the related spots of proteins significantly varying were selected and identified by mass spectrometry (ESI MS/MS) coupled with data bank investigations. Fourteen aphid proteins were found to vary according to host plant switch; ten of them were down regulated (proteins involved in glycolysis, TCA cycle, protein and lipid synthesis) while four others were overexpressed (mainly related to the cytoskeleton). These techniques are very reliable to describe the proteome from organisms such as insects in response to particular environmental change such as host plant species of herbivores.
Collapse
Affiliation(s)
- Frédéric Francis
- Gembloux Agricultural University, Functional and Evolutionary Entomology, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | | | | | | | | | | |
Collapse
|
14
|
Damodaran TV, Patel AG, Greenfield ST, Dressman HK, Lin SM, Abou-Donia MB. Gene expression profiles of the rat brain both immediately and 3 months following acute sarin exposure. Biochem Pharmacol 2005; 71:497-520. [PMID: 16376859 DOI: 10.1016/j.bcp.2005.10.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 10/07/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
We have studied sarin-induced global gene expression patterns at an early time point (15 min; 0.5xLD50) and a later time point (3 months; 1xLD50) using Affymetrix: Rat Neurobiology U34 chips in male, Sprague-Dawley rats and have identified a total of 65 (early) and 38 (late) genes showing statistically significant alterations from control levels at 15 min and 3 months, respectively. At the early time point, those that are classified as ion channel, cytoskeletal and cell adhesion molecules, in addition to neuropeptides and their receptors predominated over all other groups. The other groups included: cholinergic signaling, calcium channel and binding proteins, transporters, chemokines, GABAnergic, glutamatergic, aspartate, catecholaminergic, nitric oxide synthase, purinergic, and serotonergic signaling molecules. At the late time point, genes that are classified as calcium channel and binding proteins, cytoskeletal and cell adhesion molecules and GABAnergic signaling molecules were most prominent. Seven molecules (Ania-9, Arrb-1, CX-3C, Gabab-1d, Nos-2a, Nrxn-1b, PDE2) were identified that showed altered persistent expression in both time points. Selected genes from each of these time points were further validated using semi quantitative RT-PCR approaches. Some of the genes that were identified in the present study have been shown to be involved in organophosphate-induced neurotoxicity by both other groups as well as ours. Principal component analysis (PCA) of the expression data from both time points was used for comparative analysis of the gene expression, which indicated that the changes in gene expression were a function of dose and time of euthanasia after the treatment. Our model also predicts that besides dose and duration of post-treatment period, age and possibly other factors may be playing important roles in the regulation of pathways, leading to the neurotoxicity.
Collapse
Affiliation(s)
- Tirupapuliyur V Damodaran
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
15
|
Sharma R, Komatsu S, Noda H. Proteomic analysis of brown planthopper: application to the study of carbamate toxicity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:425-432. [PMID: 15110863 DOI: 10.1016/j.ibmb.2004.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 01/20/2004] [Accepted: 01/21/2004] [Indexed: 05/24/2023]
Abstract
Toxicity to o-sec-butylphenyl methylcarbamate compound (BPMC) was analyzed in the rice brown planthopper, Nilaparvata lugens, using a differential proteomics approach of identifying proteins on two dimensional-polyacrylamide gel electrophoresis (2D-PAGE). Proteome analysis from BPMC-treated brown planthopper resulted in the modulation of 22 proteins at the expression level as compared to control samples on coomassie brilliant blue (CBB) stained gels. Out of total 22 proteins, 10 proteins showed elevated expression, eight proteins showed decreased expression and four proteins showed specific expression after insecticide treatment. The N-terminal sequences of seven out of 22 proteins were determined by a gas-phase protein sequencer. The internal amino acid sequences of the 15 proteins were determined by the sequence analyses of peptides obtained by Cleveland peptide mapping method and were compared with those of the known proteins available in public databases and the EST database of the brown planthopper in our laboratory to understand the nature of the proteins. Sequence analyses revealed that the expression of putative serine/threonine protein kinase, paramyosin, HSP 90, beta-tubulin, calreticulin, ATP synthase, actin and tropomyosin was elevated, and that of beta-mitochondrial processing peptidase, dihydrolipoamide dehydrogenase, enolase and acyl-coA dehydrogenase was reduced due to the exposure of BPMC. The differential expression of these proteins reflects the overall change in cellular structure and metabolism after insecticide treatment.
Collapse
Affiliation(s)
- Rashmi Sharma
- Institute of Insect and Animal Science, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | |
Collapse
|
16
|
Damodaran TV, Jones KH, Patel AG, Abou-Donia MB. Sarin (nerve agent GB)-induced differential expression of mRNA coding for the acetylcholinesterase gene in the rat central nervous system. Biochem Pharmacol 2003; 65:2041-7. [PMID: 12787884 DOI: 10.1016/s0006-2952(03)00160-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We carried out a time-course study on the effects of a single intramuscular (i.m.) dose (0.5x LD(50)) of sarin (O-isopropyl methylphosphonofluoridate), also known as nerve agent GB, on the mRNA expression of acetylcholinesterase (AChE) in the brain of male Sprague-Dawley rats. Sarin inactivates the enzyme AChE which is responsible for the breakdown of the neurotransmitter acetylcholine (ACh), leading to its accumulation at ACh receptors and overstimulation of the cholinergic system. Rats were treated with 50 microg/kg of sarin (0.5x LD(50)) in 1 mL saline/kg and terminated at the following time points: 1 and 2 hr and 1, 3, and 7 days post-treatment. Control rats were treated with normal saline. Total RNA was extracted, and northern blots were hybridized with cDNA probes for AChE and 28S RNA (control). Poly-A RNA from both treated and control cortex was used for reverse transcription-polymerase chain reaction (RT-PCR)-based verification of the data from the northern blots. The results obtained indicate that a single (i.m.) dose of sarin (0.5x LD(50)) produced differential induction and persistence of AChE mRNA levels in different regions of the brain. Immediate induction of AChE transcripts was noted in the brainstem (126+/-6%), cortex (149+/-4%), midbrain (153+/-5%), and cerebellum (234+/-2%) at 1 hr. The AChE expression level, however, increased over time and remained elevated after a decline at 1 day in the previously shown more susceptible brainstem. The transcript levels remained elevated at a later time point (3 days) in the midbrain, after a dramatic decline at day 1 (110+/-2%). In the cortex, transcript levels came down to control values by day 1. The cerebellum also showed a decline of the elevated levels observed at 2 hr (275+/-2%) to control values by day 1. RT-PCR analysis of the AChE transcript at 30 min in the cortex showed an induction to 213+/-3% of the control level, confirming the expression pattern obtained by the northern blot data. The immediate induction followed by the complex pattern of the AChE mRNA time-course in the CNS may indicate that the activation of both cholinergic-related and unrelated functions of the gene plays an important role in the pathological manifestations of sarin-induced neurotoxicity.
Collapse
Affiliation(s)
- Tirupapuliyur V Damodaran
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, PO Box 3813, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
17
|
Damodaran TV, Bilska MA, Rahman AA, Abou-Doni MB. Sarin causes early differential alteration and persistent overexpression in mRNAs coding for glial fibrillary acidic protein (GFAP) and vimentin genes in the central nervous system of rats. Neurochem Res 2002; 27:407-15. [PMID: 12064357 DOI: 10.1023/a:1015508132137] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurotoxic effects of single dose of 0.5 x LD50 sarin (O-isopropylmethylphosphonoflouridate) on central nervous system (CNS) of male Sprague-Dawley rats were studied. We investigated the mRNA expression of the astroglial marker genes glial fibrillary acidic protein (GFAP) and vimentin to evaluate the fate of astroglial and neuronal cells, because reactive gliosis is very often used to assess the extent of CNS damage. Rats were treated with 50 microg/kg/ml of sarin and terminated at the time-points 1 and 2 hours and 1, 3, and 7 days post-treatment. Control rats were treated with normal saline. Total RNA was extracted and Northern blots were hybridized with cDNA probes for GFAP and vimentin, as well as 28S RNA (control). The data obtained indicate that a single dose of sarin (0.5 x LD50) showed induction in the transcript levels of GFAP and vimentin in the cortex, cerebellum, brainstem and midbrain, and spinal cord. The induction showed distinct spatial-temporal differences for each tissue studied. Both GFAP and vimentin were induced at 1 hour in all the tissues studied except brainstem, where moderate and high levels of GFAP induction were noted at 1 and 3 days. Overexpressed transcript levels of GFAP and vimentin remained high in more responsive tissues such as the brainstem and midbrain. Other tissues, such as the cortex, spinal cord, and cerebellum showed a more downward trend for either GFAP or vimentin, or both, transcript levels at 7 days. It is noteworthy that both cortex (318 +/- 12%) and spinal cord (368 +/- 12%) showed relatively higher induction of GFAP, whereas cortex alone showed the highest level of overexpressed vimentin transcript levels (284 +/- 11%). Overall it is also clear that both GFAP and vimentin are needed for the effective recovery involving co-ordinated alternating up- and downregulation of these two key astrocyte genes, depending on tissue specificity. The changes seen in the transcript levels of GFAP and vimentin may be the result of astrocyte dysfunction and loss, accompanied by compensatory proliferation and dedifferentiation of the astroglia. These changes could affect the neuronal cell types, thus altering the neuron-glia homeostasis.
Collapse
Affiliation(s)
- Tirupapuliyar V Damodaran
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|