1
|
Duffy HB, Byrnes C, Zhu H, Tuymetova G, Lee YT, Platt FM, Proia RL. Deletion of Gba in neurons, but not microglia, causes neurodegeneration in a Gaucher mouse model. JCI Insight 2024; 9:e179126. [PMID: 39312723 PMCID: PMC11601582 DOI: 10.1172/jci.insight.179126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Gaucher disease, the most prevalent lysosomal storage disease, is caused by homozygous mutations at the GBA gene, which is responsible for encoding the enzyme glucocerebrosidase. Neuronopathic Gaucher disease is associated with microgliosis, astrogliosis, and neurodegeneration. However, the role that microglia, astrocytes, and neurons play in the disease remains to be determined. In the current study, we developed inducible, cell-type-specific Gba-KO mice to better understand the individual impacts of Gba deficiencies on microglia and neurons. Gba was conditionally knocked out either exclusively in microglia or neurons or throughout the body. These mouse models were developed using a tamoxifen-inducible Cre system, with tamoxifen administration commencing at weaning. Microglia-specific Gba-KO mice showed no signs of disease. However, the neuron-specific Gba KO resulted in a shortened lifespan, severe weight loss, and ataxia. These mice also had significant neurodegeneration, microgliosis, and astrogliosis accompanied by the accumulation of glucosylceramide and glucosylsphingosine, recapitulating Gaucher disease-like symptoms. These surprising findings reveal that, unlike the neuron-specific Gba deficiency, microglia-specific Gba deficiency alone does not induce disease. The neuronal Gaucher disease mouse model, with a median survival of 16 weeks, may be useful for future studies of pathogenesis and the evaluation of therapies.
Collapse
Affiliation(s)
- Hannah B.D. Duffy
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Colleen Byrnes
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Hongling Zhu
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Galina Tuymetova
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Y. Terry Lee
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Richard L. Proia
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
2
|
The interplay between Glucocerebrosidase, α-synuclein and lipids in human models of Parkinson's disease. Biophys Chem 2020; 273:106534. [PMID: 33832803 DOI: 10.1016/j.bpc.2020.106534] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022]
Abstract
Mutations in the gene GBA, encoding glucocerebrosidase (GCase), are the highest genetic risk factor for Parkinson's disease (PD). GCase is a lysosomal glycoprotein responsible for the hydrolysis of glucosylceramide into glucose and ceramide. Mutations in GBA cause a decrease in GCase activity, stability and protein levels which in turn lead to the accumulation of GCase lipid substrates as well as α-synuclein (αS) in vitro and in vivo. αS is the main constituent of Lewy bodies found in the brain of PD patients and an increase in its levels was found to be associated with a decrease in GCase activity/protein levels in vitro and in vivo. In this review, we describe the reported biophysical and biochemical changes that GBA mutations can induce in GCase activity and stability as well as the current overview of the levels of GCase protein/activity, αS and lipids measured in patient-derived samples including post-mortem brains, stem cell-derived neurons, cerebrospinal fluid, blood and fibroblasts as well as in SH-SY5Y cells. In particular, we report how the levels of αS and lipids are affected by/correlated to significant changes in GCase activity/protein levels and which cellular pathways are activated or disrupted by these changes in each model. Finally, we review the current strategies used to revert the changes in the levels of GCase activity/protein, αS and lipids in the context of PD.
Collapse
|
3
|
Sun Y, Liou B, Chu Z, Fannin V, Blackwood R, Peng Y, Grabowski GA, Davis HW, Qi X. Systemic enzyme delivery by blood-brain barrier-penetrating SapC-DOPS nanovesicles for treatment of neuronopathic Gaucher disease. EBioMedicine 2020; 55:102735. [PMID: 32279952 PMCID: PMC7251241 DOI: 10.1016/j.ebiom.2020.102735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background Enzyme replacement therapy (ERT) can positively affect the visceral manifestations of lysosomal storage diseases (LSDs). However, the exclusion of the intravenous ERT agents from the central nervous system (CNS) prevents direct therapeutic effects. Methods Using a neuronopathic Gaucher disease (nGD) mouse model, CNS-ERT was created using a systemic, non-invasive, and CNS-selective delivery system based on nanovesicles of saposin C (SapC) and dioleoylphosphatidylserine (DOPS) to deliver to CNS cells and tissues the corrective, functional acid β-glucosidase (GCase). Findings Compared to free GCase, human GCase formulated with SapC-DOPS nanovesicles (SapC-DOPS-GCase) was more stable in serum, taken up into cells, mostly by a mannose receptor-independent pathway, and resulted in higher activity in GCase-deficient cells. In contrast to free GCase, SapC-DOPS-GCase nanovesicles penetrated through the blood-brain barrier into the CNS. The CNS targeting was mediated by surface phosphatidylserine (PS) of blood vessel and brain cells. Increased GCase activity and reduced GCase substrate levels were found in the CNS of SapC-DOPS-GCase-treated nGD mice, which showed profound improvement in brain inflammation and neurological phenotypes. Interpretation This first-in-class CNS-ERT approach provides considerable promise of therapeutic benefits for neurodegenerative diseases. Funding This study was supported by the National Institutes of Health grants R21NS 095047 to XQ and YS, R01NS 086134 and UH2NS092981 in part to YS; Cincinnati Children's Hospital Medical Center Research Innovation/Pilot award to YS and XQ; Gardner Neuroscience Institute/Neurobiology Research Center Pilot award to XQ and YS, Hematology-Oncology Programmatic Support from University of Cincinnati and New Drug State Key Project grant 009ZX09102-205 to XQ.
Collapse
Affiliation(s)
- Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zhengtao Chu
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Venette Fannin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rachel Blackwood
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yanyan Peng
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory A Grabowski
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Harold W Davis
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Xiaoyang Qi
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Toffoli M, Smith L, Schapira AHV. The biochemical basis of interactions between Glucocerebrosidase and alpha-synuclein in GBA1 mutation carriers. J Neurochem 2020; 154:11-24. [PMID: 31965564 DOI: 10.1111/jnc.14968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
The discovery of genes involved in familial as well as sporadic forms of Parkinson disease (PD) constitutes an important milestone in understanding this disorder's pathophysiology and potential treatment. Among these genes, GBA1 is one of the most common and well-studied, but it is still unclear how mutations in GBA1 translate into an increased risk for developing PD. In this review, we provide an overview of the biochemical and structural relationship between GBA1 and PD to help understand the recent advances in the development of PD therapies intended to target this pathway.
Collapse
Affiliation(s)
- Marco Toffoli
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Laura Smith
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| |
Collapse
|
5
|
Balestrino R, Schapira AHV. Glucocerebrosidase and Parkinson Disease: Molecular, Clinical, and Therapeutic Implications. Neuroscientist 2018; 24:540-559. [PMID: 29400127 DOI: 10.1177/1073858417748875] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Parkinson disease (PD) is a complex neurodegenerative disease characterised by multiple motor and non-motor symptoms. In the last 20 years, more than 20 genes have been identified as causes of parkinsonism. Following the observation of higher risk of PD in patients affected by Gaucher disease, a lysosomal disorder caused by mutations in the glucocerebrosidase (GBA) gene, it was discovered that mutations in this gene constitute the single largest risk factor for development of idiopathic PD. Patients with PD and GBA mutations are clinically indistinguishable from patients with idiopathic PD, although some characteristics emerge depending on the specific mutation, such as slightly earlier onset. The molecular mechanisms which lead to this increased PD risk in GBA mutation carriers are multiple and not yet fully elucidated, they include alpha-synuclein aggregation, lysosomal-autophagy dysfunction and endoplasmic reticulum stress. Moreover, dysfunction of glucocerebrosidase has also been demonstrated in non-GBA PD, suggesting its interaction with other pathogenic mechanisms. Therefore, GBA enzyme function represents an interesting pharmacological target for PD. Cell and animal models suggest that increasing GBA enzyme activity can reduce alpha-synuclein levels. Clinical trials of ambroxol, a glucocerebrosidase chaperone, are currently ongoing in PD and PD dementia, as is a trial of substrate reduction therapy. The aim of this review is to summarise the main features of GBA-PD and discuss the implications of glucocerebrosidase modulation on PD pathogenesis.
Collapse
Affiliation(s)
| | - Anthony H V Schapira
- 2 Department of Clinical Neurosciences, UCL Institute of Neurology, Royal Free Campus, London, UK
| |
Collapse
|
6
|
Gramlich PA, Westbroek W, Feldman RA, Awad O, Mello N, Remington MP, Sun Y, Zhang W, Sidransky E, Betenbaugh MJ, Fishman PS. A peptide-linked recombinant glucocerebrosidase for targeted neuronal delivery: Design, production, and assessment. J Biotechnol 2016; 221:1-12. [PMID: 26795355 DOI: 10.1016/j.jbiotec.2016.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 11/29/2022]
Abstract
Although recombinant glucocerebrosidase (GCase) is the standard therapy for the inherited lysosomal storage disease Gaucher's disease (GD), enzyme replacement is not effective when the central nervous system is affected. We created a series of recombinant genes/proteins where GCase was linked to different membrane binding peptides including the Tat peptide, the rabies glycoprotein derived peptide (RDP), the binding domain from tetanus toxin (TTC), and a tetanus like peptide (Tet1). The majority of these proteins were well-expressed in a mammalian producer cell line (HEK 293F). Purified recombinant Tat-GCase and RDP-GCase showed similar GCase protein delivery to a neuronal cell line that genetically lacks the functional enzyme, and greater delivery than control GCase, Cerezyme (Genzyme). This initial result was unexpected based on observations of superior protein delivery to neurons with RDP as a vector. A recombinant protein where a fragment of the flexible hinge region from IgA (IgAh) was introduced between RDP and GCase showed substantially enhanced GCase neuronal delivery (2.5 times over Tat-GCase), suggesting that the original construct resulted in interference with the capacity of RDP to bind neuronal membranes. Extended treatment of these knockout neuronal cells with either Tat-GCase or RDP-IgAh-GCase resulted in an >90% reduction in the lipid substrate glucosylsphingosine, approaching normal levels. Further in vivo studies of RDP-IgAh-GCase as well as Tat-GCase are warranted to assess their potential as treatments for neuronopathic forms of GD. These peptide vectors are especially attractive as they have the potential to carry a protein across the blood-brain barrier, avoiding invasive direct brain delivery.
Collapse
Affiliation(s)
- Paul A Gramlich
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA.
| | - Wendy Westbroek
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, MD, USA
| | - Ola Awad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, MD, USA
| | - Nicholas Mello
- Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA; Department of Molecular Medicine, University of Maryland School of Medicine, MD, USA
| | - Mary P Remington
- Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wujuan Zhang
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Paul S Fishman
- Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA; Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Awad O, Sarkar C, Panicker LM, Miller D, Zeng X, Sgambato JA, Lipinski MM, Feldman RA. Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells. Hum Mol Genet 2015. [PMID: 26220978 DOI: 10.1093/hmg/ddv297] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase). The severe forms of GD are associated with neurodegeneration with either rapid (Type 2) or slow progression (Type 3). Although the neurodegenerative process in GD has been linked to lysosomal dysfunction, the mechanisms involved are largely unknown. To identify the lysosomal alterations in GD neurons and uncover the mechanisms involved, we used induced pluripotent stem cells (iPSCs) derived from patients with GD. In GD iPSC-derived neuronal cells (iPSC-NCs), GBA1 mutations caused widespread lysosomal depletion, and a block in autophagic flux due to defective lysosomal clearance of autophagosomes. Autophagy induction by rapamycin treatment in GD iPSC-NCs led to cell death. Further analysis showed that in GD iPSC-NCs, expression of the transcription factor EB (TFEB), the master regulator of lysosomal genes, and lysosomal gene expression, were significantly downregulated. There was also reduced stability of the TFEB protein and altered lysosomal protein biosynthesis. Treatment of mutant iPSC-NCs with recombinant GCase (rGCase) reverted the lysosomal depletion and autophagy block. The effect of rGCase on restoring lysosomal numbers in mutant cells was enhanced in the presence of overexpressed TFEB, but TFEB overexpression alone did not reverse the lysosomal depletion phenotype. Our results suggest that GBA1 mutations interfere with TFEB-mediated lysosomal biogenesis, and that the action of GCase in maintaining a functioning pool of lysosomes is exerted in part through TFEB. The lysosomal alterations described here are likely to be a major determinant in GBA1-associated neurodegeneration.
Collapse
Affiliation(s)
- Ola Awad
- Department of Microbiology and Immunology
| | | | | | | | - Xianmin Zeng
- Buck Institute for Age Research, Novato, CA, USA
| | | | - Marta M Lipinski
- Department of Anesthesiology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA and
| | | |
Collapse
|
8
|
Lamghari M, Barrias CC, Sá Miranda C, Barbosa MA. Recombinant glucocerebrosidase uptake by Gaucher disease human osteoblast culture model. Blood Cells Mol Dis 2005; 35:348-54. [PMID: 16125984 DOI: 10.1016/j.bcmd.2005.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 07/13/2005] [Accepted: 07/13/2005] [Indexed: 11/18/2022]
Abstract
Bone lesions are a major cause of morbidity in Gaucher disease (GD) type I. Enzyme replacement therapy (ERT) has been successful in treating many symptoms of type I GD but skeletal response lags behind. Local exogenous glucocerebrosidase supplementation in bone lesions via a drug delivery system may overcome this limitation. Although local enzyme supplementation aims to target lipid-engorged macrophages (Gaucher Cells) in bone compartment, enzyme uptake by osteoblasts is not excluded. To investigate the ability of human osteoblasts to internalize recombinant glucocerebrosidase (rGCR), we have used an artificial GD human osteoblasts cell culture system. MG63 human osteoblasts were treated with conduritol B epoxide (CBE) to induce complete and prolonged inhibition of endogenous glucocerebrosidase activity of cells. rGCR uptake by glucocerebrosidase-inactivated osteoblasts was examined using (125)I-radiolabelling, Western blot analysis and measurement of glucocerebrosidase activity. Analysis of radiolabeled enzyme uptake by CBE treated osteoblasts showed 67.9% of internalized protein in cell extract. Enzyme internalization was also observed by Western blot analysis where the amount of mature form of glucocerebrosidase protein recognized by the glucocerebrosidase antibody was increased following the administrations of rGCR. Moreover, enzymatic activity measurement showed 23.9% of glucocerebrosidase activity of control cells. The rGCR internalization by MG63 osteoblast seems to be partially mediated by mannose receptors. These data provide evidence that MG63 human osteoblasts are able to internalize rGCR.
Collapse
Affiliation(s)
- M Lamghari
- INEB-Instituto de Engenharia Biomédica, Laboratório de Biomateriais, R. Campo Alegre 823, 4150-180 Porto, Portugal.
| | | | | | | |
Collapse
|
9
|
Lonser RR, Walbridge S, Murray GJ, Aizenberg MR, Vortmeyer AO, Aerts JMFG, Brady RO, Oldfield EH. Convection perfusion of glucocerebrosidase for neuronopathic Gaucher's disease. Ann Neurol 2005; 57:542-8. [PMID: 15786474 DOI: 10.1002/ana.20444] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Systemic enzyme replacement for Gaucher's disease has not prevented premature death or severe morbidity in patients with a neuronopathic phenotype, because the enzyme does not cross the blood-brain barrier. We used convection-enhanced delivery for regional distribution of glucocerebrosidase in rat and primate brains and examined its safety and feasibility for neuronopathic Gaucher's disease. Rats underwent intrastriatal infusion and were observed and then sacrificed at 14 hours, 4 days, or 6 weeks. Primates underwent serial magnetic resonance imaging during enzyme perfusion of the right frontal lobe or brainstem, were observed and then sacrificed after infusion completion. Animals underwent histologic and enzymatic tissue analyses. Magnetic resonance imaging revealed perfusion of the primate right frontal lobe or pons with infusate. Enzyme activity was substantially and significantly (p < 0.05) increased in cortex and white matter of the infused frontal lobe and pons compared to control. Immunohistochemistry demonstrated intraneuronal glucocerebrosidase. There was no toxicity. Convection-enhanced delivery can be used to safely perfuse large regions of the brain and brainstem with therapeutic levels of glucocerebrosidase. Patients with neuronopathic Gaucher's disease and similar central nervous system disorders may benefit from this treatment.
Collapse
Affiliation(s)
- Russell R Lonser
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kakkis E, McEntee M, Vogler C, Le S, Levy B, Belichenko P, Mobley W, Dickson P, Hanson S, Passage M. Intrathecal enzyme replacement therapy reduces lysosomal storage in the brain and meninges of the canine model of MPS I. Mol Genet Metab 2004; 83:163-74. [PMID: 15464431 DOI: 10.1016/j.ymgme.2004.07.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/05/2004] [Accepted: 07/07/2004] [Indexed: 11/19/2022]
Abstract
Enzyme replacement therapy (ERT) has been developed for several lysosomal storage disorders, including mucopolysaccharidosis I (MPS I), and is effective at reducing lysosomal storage in many tissues and in ameliorating clinical disease. However, intravenous ERT does not adequately treat storage disease in the central nervous system (CNS), presumably due to effects of the blood-brain barrier on enzyme distribution. To circumvent this barrier, we studied whether intrathecal (IT) recombinant human alpha-L-iduronidase (rhIDU) could penetrate and treat the brain and meninges. An initial dose-response study showed that doses of 0.46-4.14 mg of IT rhIDU successfully penetrated the brain of normal dogs and reached tissue levels 5.6 to 18.9-fold normal overall and 2.7 to 5.9-fold normal in deep brain sections lacking CSF contact. To assess the efficacy and safety in treating lysosomal storage disease, four weekly doses of approximately 1 mg of IT rhIDU were administered to MPS I-affected dogs resulting in a mean 23- and 300-fold normal levels of iduronidase in total brain and meninges, respectively. Quantitative glycosaminoglycan (GAG) analysis showed that the IT treatment reduced mean total brain GAG to normal levels and achieved a 57% reduction in meningeal GAG levels accompanied by histologic improvement in lysosomal storage in all cell types. The dogs did develop a dose-dependent immune response against the recombinant human protein and a meningeal lymphocytic/plasmacytic infiltrate. The IT route of ERT administration may be an effective way to treat the CNS disease in MPS I and could be applicable to other lysosomal storage disorders.
Collapse
Affiliation(s)
- E Kakkis
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Research and Education Institute, Torrance CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Schueler UH, Kolter T, Kaneski CR, Blusztajn JK, Herkenham M, Sandhoff K, Brady RO. Toxicity of glucosylsphingosine (glucopsychosine) to cultured neuronal cells: a model system for assessing neuronal damage in Gaucher disease type 2 and 3. Neurobiol Dis 2004; 14:595-601. [PMID: 14678774 DOI: 10.1016/j.nbd.2003.08.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Patients with Gaucher disease have been classified as type 1 nonneuronopathic, type 2 acute neuronopathic, and type 3 chronic neuronopathic phenotypes. Increased quantities of glucocerebroside and glucosylsphingosine (glucopsychosine) are present in the brain of type 2 and type 3 Gaucher patients. Galactosylsphingosine has previously been shown to be neurotoxic in globoid cell leukodystrophy (Krabbe disease). To determine whether glucosylsphingosine is also neurotoxic, we examined its effect on cultured cholinergic neuron-like LA-N-2 cells. When these cells were exposed to 1, 5, or 10 microM glucosylsphingosine for a period of 18 h, they became shriveled, neurite outgrowth was suppressed, and the activities of the lysosomal enzymes glucocerebrosidase, sphingomyelinase, and beta-galactosidase were reduced in a dose-dependent manner. Acetylcholine in cells exposed to glucosylsphingosine also declined. Cells switched to glucosylsphingosine-free medium partially recovered. The data suggest that accumulation of glucosylsphingosine contributes to neuronal dysfunction and destruction in patients with neuronopathic Gaucher disease.
Collapse
Affiliation(s)
- U H Schueler
- Developmental and Metabolic Neurology Branch, NINDS, NIH, DHHS, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
UNLABELLED Over the past 40 years there has been remarkable development in our understanding of the pathophysiology of lysosomal storage disorders. This review describes the research carried out on the sphingolipid storage disorders from the first demonstration of the underlying metabolic abnormality in Gaucher disease to the development of enzyme replacement therapy for Gaucher and Fabry diseases. Initial developments in gene therapy are also described. CONCLUSION The introduction of enzyme replacement therapy has provided a lifeline for patients with Gaucher or Fabry disease. It is anticipated that future developments, including gene therapy, will provide additional therapeutic options.
Collapse
Affiliation(s)
- R O Brady
- Developmental and Metabolic Neurology Branch, National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-1260, USA.
| |
Collapse
|