1
|
Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Amino Acids 2019; 51:1409-1431. [DOI: 10.1007/s00726-019-02787-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
AbstractPeptides and proteins are preponderantly emerging in the drug market, as shown by the increasing number of biopharmaceutics already approved or under development. Biomolecules like recombinant monoclonal antibodies have high therapeutic efficacy and offer a valuable alternative to small-molecule drugs. However, due to their complex three-dimensional structure and the presence of many functional groups, the occurrence of spontaneous conformational and chemical changes is much higher for peptides and proteins than for small molecules. The characterization of biotherapeutics with modern and sophisticated analytical methods has revealed the presence of contaminants that mainly arise from oxidation- and elimination-prone amino-acid side chains. This review focuses on protein chemical modifications that may take place during storage due to (1) oxidation (methionine, cysteine, histidine, tyrosine, tryptophan, and phenylalanine), (2) intra- and inter-residue cyclization (aspartic and glutamic acid, asparagine, glutamine, N-terminal dipeptidyl motifs), and (3) β-elimination (serine, threonine, cysteine, cystine) reactions. It also includes some examples of the impact of such modifications on protein structure and function.
Collapse
|
2
|
Urresti S, Cartmell A, Liu F, Walton PH, Davies GJ. Structural studies of the unusual metal-ion site of the GH124 endoglucanase from Ruminiclostridium thermocellum. Acta Crystallogr F Struct Biol Commun 2018; 74:496-505. [PMID: 30084399 PMCID: PMC6096483 DOI: 10.1107/s2053230x18006842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The recent discovery of `lytic' polysaccharide monooxygenases, copper-dependent enzymes for biomass degradation, has provided new impetus for the analysis of unusual metal-ion sites in carbohydrate-active enzymes. In this context, the CAZY family GH124 endoglucanase from Ruminiclostridium thermocellum contains an unusual metal-ion site, which was originally modelled as a Ca2+ site but features aspartic acid, asparagine and two histidine imidazoles as coordinating residues, which are more consistent with a transition-metal binding environment. It was sought to analyse whether the GH124 metal-ion site might accommodate other metals. It is demonstrated through thermal unfolding experiments that this metal-ion site can accommodate a range of transition metals (Fe2+, Cu2+, Mn2+ and Ni2+), whilst the three-dimensional structure and mass spectrometry show that one of the histidines is partially covalently modified and is present as a 2-oxohistidine residue; a feature that is rarely observed but that is believed to be involved in an `off-switch' to transition-metal binding. Atomic resolution (<1.1 Å) complexes define the metal-ion site and also reveal the binding of an unusual fructosylated oligosaccharide, which was presumably present as a contaminant in the cellohexaose used for crystallization. Although it has not been possible to detect a biological role for the unusual metal-ion site, this work highlights the need to study some of the many metal-ion sites in carbohydrate-active enzymes that have long been overlooked or previously mis-assigned.
Collapse
Affiliation(s)
- Saioa Urresti
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| | - Alan Cartmell
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, England
| | - Feng Liu
- Department of Chemistry, University of British Columbia, Vancouver V6T 1Z1, Canada
| | - Paul H. Walton
- Department of Chemistry, University of York, York YO10 5DD, England
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| |
Collapse
|
3
|
Lin JM, Tsai YT, Liu YH, Lin Y, Tai HC, Chen CS. Identification of 2-oxohistidine Interacting Proteins Using E. coli Proteome Chips. Mol Cell Proteomics 2016; 15:3581-3593. [PMID: 27644758 DOI: 10.1074/mcp.m116.060806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/26/2016] [Indexed: 11/06/2022] Open
Abstract
Cellular proteins are constantly damaged by reactive oxygen species generated by cellular respiration. Because of its metal-chelating property, the histidine residue is easily oxidized in the presence of Cu/Fe ions and H2O2 via metal-catalyzed oxidation, usually converted to 2-oxohistidine. We hypothesized that cells may have evolved antioxidant defenses against the generation of 2-oxohistidine residues on proteins, and therefore there would be cellular proteins which specifically interact with this oxidized side chain. Using two chemically synthesized peptide probes containing 2-oxohistidine, high-throughput interactome screening was conducted using the E. coli K12 proteome microarray containing >4200 proteins. Ten interacting proteins were identified, and successfully validated using a third peptide probe, fluorescence polarization assays, as well as binding constant measurements. We discovered that 9 out of 10 identified proteins seemed to be involved in redox-related cellular functions. We also built the functional interaction network to reveal their interacting proteins. The network showed that our interacting proteins were enriched in oxido-reduction processes, ion binding, and carbon metabolism. A consensus motif was identified among these 10 bacterial interacting proteins based on bioinformatic analysis, which also appeared to be present on human S100A1 protein. Besides, we found that the consensus binding motif among our identified proteins, including bacteria and human, were located within α-helices and faced the outside of proteins. The combination of chemically engineered peptide probes with proteome microarrays proves to be an efficient discovery platform for protein interactomes of unusual post-translational modifications, and sensitive enough to detect even the insertion of a single oxygen atom in this case.
Collapse
Affiliation(s)
- Jun-Mu Lin
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan.,§Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan
| | - Yu-Ting Tsai
- ¶Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yu-Hsuan Liu
- ¶Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yun Lin
- ¶Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hwan-Ching Tai
- ¶Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chien-Sheng Chen
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan; .,§Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan
| |
Collapse
|
4
|
Furdui CM, Poole LB. Chemical approaches to detect and analyze protein sulfenic acids. MASS SPECTROMETRY REVIEWS 2014; 33:126-46. [PMID: 24105931 PMCID: PMC3946320 DOI: 10.1002/mas.21384] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 05/08/2023]
Abstract
Orchestration of many processes relying on intracellular signal transduction is recognized to require the generation of hydrogen peroxide as a second messenger, yet relatively few molecular details of how this oxidant acts to regulate protein function are currently understood. This review describes emerging chemical tools and approaches that can be applied to study protein oxidation in biological systems, with a particular emphasis on a key player in protein redox regulation, cysteine sulfenic acid. While sulfenic acids (within purified proteins or simple mixtures) are detectable by physical approaches like X-ray crystallography, nuclear magnetic resonance and mass spectrometry, the propensity of these moieties to undergo further modification in complex biological systems has necessitated the development of chemical probes, reporter groups and analytical approaches to allow for their selective detection and quantification. Provided is an overview of techniques that are currently available for the study of sulfenic acids, and some of the biologically meaningful data that have been collected using such approaches.
Collapse
Affiliation(s)
- Cristina M. Furdui
- Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
- Correspondence to: Leslie B. Poole, Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157; ; telephone: 336-716-6711
| |
Collapse
|
5
|
Torosantucci R, Schöneich C, Jiskoot W. Oxidation of Therapeutic Proteins and Peptides: Structural and Biological Consequences. Pharm Res 2013; 31:541-53. [DOI: 10.1007/s11095-013-1199-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/25/2013] [Indexed: 10/26/2022]
|
6
|
Torosantucci R, Sharov VS, van Beers M, Brinks V, Schöneich C, Jiskoot W. Identification of oxidation sites and covalent cross-links in metal catalyzed oxidized interferon Beta-1a: potential implications for protein aggregation and immunogenicity. Mol Pharm 2013; 10:2311-22. [PMID: 23534382 DOI: 10.1021/mp300665u] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oxidation via Cu(2+)/ascorbate of recombinant human interferon beta-1a (IFNβ1a) leads to highly immunogenic aggregates, however it is unknown which amino acids are modified and how covalent aggregates are formed. In the present work we mapped oxidized and cross-linked amino acid residues in aggregated IFNβ1a, formed via Cu(2+)/ascorbate catalyzed oxidation. Size exclusion chromatography (SEC) was used to confirm extensive aggregation of oxidized IFNβ1a. Circular dichroism and intrinsic fluorescence spectroscopy indicated substantial loss of secondary and tertiary structure, respectively. Derivatization with 4-(aminomethyl)benzenesulfonic acid was used to demonstrate, by fluorescence in combination with SEC, the presence of tyrosine (Tyr) oxidation products. High performance liquid chromatography coupled to electrospray ionization mass spectrometry of reduced, alkylated, and digested protein was employed to localize chemical degradation products. Oxidation products of methionine, histidine, phenylalanine (Phe), tryptophan, and Tyr residues were identified throughout the primary sequence. Covalent cross-links via 1,4- or 1,6-type addition between primary amines and DOCH (2-amino-3-(3,4-dioxocyclohexa-1,5-dien-1-yl)propanoic acid, an oxidation product of Phe and Tyr) were detected. There was no evidence of disulfide bridge, Schiff base, or dityrosine formation. The chemical cross-links identified in this work are most likely responsible for the formation of covalent aggregates of IFNβ1a induced by oxidation, which have previously been shown to be highly immunogenic.
Collapse
Affiliation(s)
- Riccardo Torosantucci
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
A new paradigm for drug activity is presented, which includes both recognition and subsequent irreversible inactivation of therapeutic targets. Application to both RNA and protein biomolecules has been demonstrated. In contrast to RNA targets that are subject to strand scission chemistry mediated by ribose H-atom abstraction, proteins appear to be inactivated either through oxidative damage to amino acid side chains around the enzyme active site, or by backbone hydrolysis.
Collapse
Affiliation(s)
- Lalintip Hocharoen
- Evans Laboratory of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
8
|
Dyer JM, Clerens S, Cornellison CD, Murphy CJ, Maurdev G, Millington KR. Photoproducts Formed in the Photoyellowing of Collagen in the Presence of a Fluorescent Whitening Agent. Photochem Photobiol 2009; 85:1314-21. [DOI: 10.1111/j.1751-1097.2009.00614.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Albenne C, Canut H, Boudart G, Zhang Y, San Clemente H, Pont-Lezica R, Jamet E. Plant cell wall proteomics: mass spectrometry data, a trove for research on protein structure/function relationships. MOLECULAR PLANT 2009; 2:977-89. [PMID: 19825673 DOI: 10.1093/mp/ssp059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Proteomics allows the large-scale study of protein expression either in whole organisms or in purified organelles. In particular, mass spectrometry (MS) analysis of gel-separated proteins produces data not only for protein identification, but for protein structure, location, and processing as well. An in-depth analysis was performed on MS data from etiolated hypocotyl cell wall proteomics of Arabidopsis thaliana. These analyses show that highly homologous members of multigene families can be differentiated. Two lectins presenting 93% amino acid identity were identified using peptide mass fingerprinting. Although the identification of structural proteins such as extensins or hydroxyproline/proline-rich proteins (H/PRPs) is arduous, different types of MS spectra were exploited to identify and characterize an H/PRP. Maturation events in a couple of cell wall proteins (CWPs) were analyzed using site mapping. N-glycosylation of CWPs as well as the hydroxylation or oxidation of amino acids were also explored, adding information to improve our understanding of CWP structure/function relationships. A bioinformatic tool was developed to locate by means of MS the N-terminus of mature secreted proteins and N-glycosylation.
Collapse
Affiliation(s)
- Cécile Albenne
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR 5546 CNRS-UPS-Université de Toulouse, Pôle de Biotechnologie Végétale, 24 chemin de Borde-Rouge, BP 42617 Auzeville, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Traoré DAK, El Ghazouani A, Jacquamet L, Borel F, Ferrer JL, Lascoux D, Ravanat JL, Jaquinod M, Blondin G, Caux-Thang C, Duarte V, Latour JM. Structural and functional characterization of 2-oxo-histidine in oxidized PerR protein. Nat Chem Biol 2008; 5:53-9. [PMID: 19079268 DOI: 10.1038/nchembio.133] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 11/17/2008] [Indexed: 11/09/2022]
Abstract
In Bacillus subtilis, PerR is a metal-dependent sensor of hydrogen peroxide. PerR is a dimeric zinc protein with a regulatory site that coordinates either Fe(2+) (PerR-Zn-Fe) or Mn(2+) (PerR-Zn-Mn). Though most of the peroxide sensors use cysteines to detect H(2)O(2), it has been shown that reaction of PerR-Zn-Fe with H(2)O(2) leads to the oxidation of one histidine residue. Oxidation of PerR leads to the incorporation of one oxygen atom into His37 or His91. This study presents the crystal structure of the oxidized PerR protein (PerR-Zn-ox), which clearly shows a 2-oxo-histidine residue in position 37. Formation of 2-oxo-histidine is demonstrated and quantified by HPLC-MS/MS. EPR experiments indicate that PerR-Zn-H37ox retains a significant affinity for the regulatory metal, whereas PerR-Zn-H91ox shows a considerably reduced affinity for the metal ion. In spite of these major differences in terms of metal binding affinity, oxidation of His37 and/or His91 in PerR prevents DNA binding.
Collapse
Affiliation(s)
- Daouda A K Traoré
- Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Chimie et Biologie des Métaux, CEA-Grenoble, 17 avenue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate. J Neurosci 2007; 27:12577-83. [PMID: 18003836 DOI: 10.1523/jneurosci.2206-07.2007] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
T-type Ca2+ channels (T-channels) are involved in the control of neuronal excitability and their gating can be modulated by a variety of redox agents. Ascorbate is an endogenous redox agent that can function as both an anti- and pro-oxidant. Here, we show that ascorbate selectively inhibits native Ca(v)3.2 T-channels in peripheral and central neurons, as well as recombinant Ca(v)3.2 channels heterologously expressed in human embryonic kidney 293 cells, by initiating the metal-catalyzed oxidation of a specific, metal-binding histidine residue in domain 1 of the channel. Our biophysical experiments indicate that ascorbate reduces the availability of Ca(v)3.2 channels over a wide range of membrane potentials, and inhibits Ca(v)3.2-dependent low-threshold-Ca2+ spikes as well as burst-firing in reticular thalamic neurons at physiologically relevant concentrations. This study represents the first mechanistic demonstration of ion channel modulation by ascorbate, and suggests that ascorbate may function as an endogenous modulator of neuronal excitability.
Collapse
|
12
|
Abstract
The purpose of this study is to quantitate the sensitivity of Zn2+ -insulin to oxidation catalyzed by various redox active transition metals, Cu2+, Fe2+, Mn2+, Ni2+, Co2+, Cr3+. Human recombinant insulin (INS) was subjected to oxidation under various conditions in the presence and absence of Zn2+ and ascorbate. The extent of oxidation was monitored by RP-HPLC. Only Cu2+, but none of the other metals or combination thereof, for example, Ni2+/Co2+, Co2+/Cr3+, and Ni2+/Cr3+, catalyzed INS oxidation, for example, to an extent of 45% when 20 microM INS/8.8 microM Zn2+ were exposed to 8 microM Cu2+ and 50 microM ascorbate for 90 min. The Cu2+ -catalyzed oxidation mainly targeted the B chain of INS, where the two histidine residues are located.
Collapse
Affiliation(s)
- Vikram Sadineni
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
13
|
Muginova SV, Zhavoronkova AM, Polyakov AE, Shekhovtsova TN. Application of alkaline phosphatases from different sources in pharmaceutical and clinical analysis for the determination of their cofactors; zinc and magnesium ions. ANAL SCI 2007; 23:357-63. [PMID: 17372382 DOI: 10.2116/analsci.23.357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prospects of using different alkaline phosphatases bearing zinc and magnesium ions in their catalytic and allosteric sites, respectively, in pharmaceutical and clinical analysis were demonstrated. Also their application for the determination of zinc in insulin to control injection quality and magnesium in human urine for the diagnosis and treatment of magnesium deficiency was shown. The reaction of p-nitrophenyl phosphate hydrolysis was chosen as an indicator. The choice of appropriate alkaline phosphatase was substantiated, the influence of the nature of buffer solutions on the behavior of the enzyme-metal systems was studied, and the conditions of the indicator reaction proceeding in the presence of sample matrixes were optimized. Simple, rapid, sensitive, and selective enzymatic procedures for determining zinc and magnesium based on their inhibiting and activating effects on the catalytic activity of alkaline phosphatases from seal and chicken intestine, respectively, were developed.
Collapse
|
14
|
Bridgewater JD, Srikanth R, Lim J, Vachet RW. The effect of histidine oxidation on the dissociation patterns of peptide ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:553-62. [PMID: 17157528 PMCID: PMC1839887 DOI: 10.1016/j.jasms.2006.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/31/2006] [Accepted: 11/01/2006] [Indexed: 05/12/2023]
Abstract
Oxidative modifications to amino acid side chains can change the dissociation pathways of peptide ions, although these variations are most commonly observed when cysteine and methionine residues are oxidized. In this work we describe the very noticeable effect that oxidation of histidine residues can have on the dissociation patterns of peptide ions containing this residue. A common product ion spectral feature of doubly charged tryptic peptides is enhanced cleavage at the C-terminal side of histidine residues. This preferential cleavage arises as a result of the unique acid/base character of the imidazole side chain that initiates cleavage of a proximal peptide bond for ions in which the number of protons does not exceed the number of basic residues. We demonstrate here that this enhanced cleavage is eliminated when histidine is oxidized to 2-oxo-histidine because the proton affinity and nucleophilicity of the imidazole side chain are lowered. Furthermore, we find that oxidation of histidine to 2-oxo-histidine can cause the misassignment of oxidized residues when more than one oxidized isomer is simultaneously subjected to tandem mass spectrometry (MS/MS). These spectral misinterpretations can usually be avoided by using multiple stages of MS/MS (MS(n)) or by specially optimized liquid chromatographic separation conditions. When these approaches are not accessible or do not work, N-terminal derivatization with sulfobenzoic acid avoids the problem of mistakenly assigning oxidized residues.
Collapse
Affiliation(s)
| | | | | | - Richard W. Vachet
- *Corresponding author: Department of Chemistry, Lederle GRT 701, 710 N. Pleasant St., University of Massachusetts, Amherst, MA 01003, , Phone: 413-545-2733, Fax: 413-545-4490
| |
Collapse
|