1
|
Wechsler SP, Bhandawat V. Behavioral algorithms and neural mechanisms underlying odor-modulated locomotion in insects. J Exp Biol 2023; 226:jeb200261. [PMID: 36637433 PMCID: PMC10086387 DOI: 10.1242/jeb.200261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Odors released from mates and resources such as a host and food are often the first sensory signals that an animal can detect. Changes in locomotion in response to odors are an important mechanism by which animals access resources important to their survival. Odor-modulated changes in locomotion in insects constitute a whole suite of flexible behaviors that allow insects to close in on these resources from long distances and perform local searches to locate and subsequently assess them. Here, we review changes in odor-mediated locomotion across many insect species. We emphasize that changes in locomotion induced by odors are diverse. In particular, the olfactory stimulus is sporadic at long distances and becomes more continuous at short distances. This distance-dependent change in temporal profile produces a corresponding change in an insect's locomotory strategy. We also discuss the neural circuits underlying odor modulation of locomotion.
Collapse
Affiliation(s)
- Samuel P. Wechsler
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Blankers T, Fruitet E, Burdfield‐Steel E, Groot AT. Experimental evolution of a pheromone signal. Ecol Evol 2022; 12:e8941. [PMID: 35646318 PMCID: PMC9130292 DOI: 10.1002/ece3.8941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
Sexual signals are important in speciation, but understanding their evolution is complex as these signals are often composed of multiple, genetically interdependent components. To understand how signals evolve, we thus need to consider selection responses in multiple components and account for the genetic correlations among components. One intriguing possibility is that selection changes the genetic covariance structure of a multicomponent signal in a way that facilitates a response to selection. However, this hypothesis remains largely untested empirically. In this study, we investigate the evolutionary response of the multicomponent female sex pheromone blend of the moth Heliothis subflexa to 10 generations of artificial selection. We observed a selection response of about three-quarters of a phenotypic standard deviation in the components under selection. Interestingly, other pheromone components that are biochemically and genetically linked to the components under selection did not change. We also found that after the onset of selection, the genetic covariance structure diverged, resulting in the disassociation of components under selection and components not under selection across the first two genetic principle components. Our findings provide rare empirical support for an intriguing mechanism by which a sexual signal can respond to selection without possible constraints from indirect selection responses.
Collapse
Affiliation(s)
- Thomas Blankers
- Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Elise Fruitet
- Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Emily Burdfield‐Steel
- Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Astrid T. Groot
- Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
3
|
Cao S, Liu Y, Wang B, Wang G. A single point mutation causes one-way alteration of pheromone receptor function in two Heliothis species. iScience 2021; 24:102981. [PMID: 34485863 PMCID: PMC8403742 DOI: 10.1016/j.isci.2021.102981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/12/2021] [Accepted: 08/11/2021] [Indexed: 11/04/2022] Open
Abstract
The sex pheromone processing system of moths has been a major focus of research on olfaction and speciation, as it is highly specific and closely related to reproductive isolation. The two noctuid moths Heliothis virescens and Heliothis subflexa have been used as a model for deciphering the mechanisms underlying differentiation in pheromone communication, but no information exist regarding the functions of the pheromone receptors (PRs) of H. subflexa. Here, we functionally characterized all candidate PRs of H. subflexa, and found that only the response profile of OR6 differed between the two species. Through domain swapping and site-directed mutation followed by functional characterization, we identified a critical amino acid in OR6 caused a one-way alteration in specificity. This result suggests HsubOR6 evolved from an ancestral OR6 gene with a HvirOR6-like function and implies that the evolutionary direction of the receptor specificity was from the H. virescens-like pattern to H. subflexa-like pattern.
Collapse
Affiliation(s)
- Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
4
|
Blankers T, Lievers R, Plata C, van Wijk M, van Veldhuizen D, Groot AT. Sex pheromone signal and stability covary with fitness. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210180. [PMID: 34234954 PMCID: PMC8242834 DOI: 10.1098/rsos.210180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/07/2021] [Indexed: 05/10/2023]
Abstract
If sexual signals are costly, covariance between signal expression and fitness is expected. Signal-fitness covariance is important, because it can contribute to the maintenance of genetic variation in signals that are under natural or sexual selection. Chemical signals, such as female sex pheromones in moths, have traditionally been assumed to be species-recognition signals, but their relationship with fitness is unclear. Here, we test whether chemical, conspecific mate finding signals covary with fitness in the moth Heliothis subflexa. Additionally, as moth signals are synthesized de novo every night, the maintenance of the signal can be costly. Therefore, we also hypothesized that fitness covaries with signal stability (i.e. lack of temporal intra-individual variation). We measured among- and within-individual variation in pheromone characteristics as well as fecundity, fertility and lifespan in two independent groups that differed in the time in between two pheromone samples. In both groups, we found fitness to be correlated with pheromone amount, composition and stability, supporting both our hypotheses. This study is, to our knowledge, the first to report a correlation between fitness and sex pheromone composition in moths, supporting evidence of condition-dependence and highlighting how signal-fitness covariance may contribute to heritable variation in chemical signals both among and within individuals.
Collapse
Affiliation(s)
- Thomas Blankers
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Rik Lievers
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Camila Plata
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Michiel van Wijk
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Dennis van Veldhuizen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Astrid T. Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena, Germany
| |
Collapse
|
5
|
Zhao Z, McBride CS. Evolution of olfactory circuits in insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:353-367. [PMID: 31984441 PMCID: PMC7192870 DOI: 10.1007/s00359-020-01399-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Recent years have seen an explosion of interest in the evolution of neural circuits. Comparison of animals from different families, orders, and phyla reveals fascinating variation in brain morphology, circuit structure, and neural cell types. However, it can be difficult to connect the complex changes that occur across long evolutionary distances to behavior. Luckily, these changes accumulate through processes that should also be observable in recent time, making more tractable comparisons of closely related species relevant and complementary. Here, we review several decades of research on the evolution of insect olfactory circuits across short evolutionary time scales. We describe two well-studied systems, Drosophila sechellia flies and Heliothis moths, in detailed case studies. We then move through key types of circuit evolution, cataloging examples from other insects and looking for general patterns. The literature is dominated by changes in sensory neuron number and tuning at the periphery-often enhancing neural response to odorants with new ecological or social relevance. However, changes in the way olfactory information is processed by central circuits is clearly important in a few cases, and we suspect the development of genetic tools in non-model species will reveal a broad role for central circuit evolution. Moving forward, such tools should also be used to rigorously test causal links between brain evolution and behavior.
Collapse
Affiliation(s)
- Zhilei Zhao
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
6
|
Lee SG, Celestino CF, Stagg J, Kleineidam C, Vickers NJ. Moth pheromone-selective projection neurons with cell bodies in the antennal lobe lateral cluster exhibit diverse morphological and neurophysiological characteristics. J Comp Neurol 2019; 527:1443-1460. [PMID: 30723902 DOI: 10.1002/cne.24611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 11/08/2022]
Abstract
Olfactory projection neurons convey information from the insect antennal lobe (AL) to higher brain centers. Previous reports have demonstrated that pheromone-responsive projection neurons with cell bodies in the moth medial cell cluster (mcPNs) predominantly have dendritic arborizations in the sexually dimorphic macroglomerular complex (MGC) and send an axon from the AL to the calyces of the mushroom body (CA) as well as the lateral horn (LH) of the protocerebrum via the medial AL tract. These neurons typically exhibit a narrow odor tuning range related to the restriction of their dendritic arbors within a single glomerulus (uniglomerular). In this study, we report on the diverse physiological and morphological properties of a group of pheromone-responsive olfactory projection neurons with cell bodies in the AL lateral cell cluster (MGC lcPNs) of two closely related moth species. All pheromone-responsive lcPNs appeared to exhibit "basket-like" dendritic arborizations in two MGC compartments and made connections with various protocerebral targets including ventrolateral and superior neuropils via projections primarily through the lateral AL tract and to a lesser extent the mediolateral antennal lobe tract. Physiological characterization of MGC lcPNs also revealed a diversity of response profiles including those either enhanced by or reliant upon presentation of a pheromone blend. These responses manifested themselves as higher maximum firing rates and/or improved temporal resolution of pulsatile stimuli. MGC lcPNs therefore participate in conveying diverse olfactory information relating to qualitative and temporal facets of the pheromone stimulus to a more expansive number of protocerebral targets than their mcPN counterparts.
Collapse
Affiliation(s)
- Seong-Gyu Lee
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| | - Christine Fogarty Celestino
- School of Biological Sciences, University of Utah, Salt Lake City, Utah.,Program in Neuroscience, University of Utah, Salt Lake City, Utah
| | - Jeffrey Stagg
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| | | | - Neil J Vickers
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
7
|
Nojima S, Classen A, Groot AT, Schal C. Qualitative and quantitative analysis of chemicals emitted from the pheromone gland of individual Heliothis subflexa females. PLoS One 2018; 13:e0202035. [PMID: 30106983 PMCID: PMC6091922 DOI: 10.1371/journal.pone.0202035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/26/2018] [Indexed: 12/02/2022] Open
Abstract
The chemicals emitted from the sex pheromone gland of individual Heliothis subflexa females were sampled using a short section of thick-film megabore fused silica capillary column, and the pheromone glands of the same females were extracted after the effluvia collection. Both samples were treated with a silylation reagent, and then subjected to gas chromatography-chemical ionization-mass spectrometry for quantitative and qualitative analysis of all components. The total amount of all 11 components emitted from the glands of calling females was 153 ng/female/hr, which was substantially higher than previously reported. The ratios of the pheromone components in the volatile emissions and pheromone gland extracts were generally similar to previous studies, but with notable differences. The collections of volatiles and gland extractions contained, respectively: Z9-14:Ald (1.57%, 1.35%), 14:Ald (3.78%, 1.51%), Z7 + Z9-16:Ald (9.60%, 3.59%), Z11-16:Ald (76.14%, 18.94%), 16:Ald (2.95%, 2.17%), Z9-16:OH (0.07%, 7.21%), Z11-16:OH (1.11%, 49.04%), Z7-16:OAc (0.48%, 1.73%), Z9-16:OAc (1.32%, 4.02%), and Z11-16:OAc (2.98%, 10.43%). The thick-film megabore column is an efficient approach for sampling the headspace for semiochemicals.
Collapse
Affiliation(s)
- Satoshi Nojima
- Department of Entomology and Plant pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Alice Classen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Astrid T. Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Coby Schal
- Department of Entomology and Plant pathology, North Carolina State University, Raleigh, North Carolina, United States of America
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
8
|
Olfactory perception and behavioral effects of sex pheromone gland components in Helicoverpa armigera and Helicoverpa assulta. Sci Rep 2016; 6:22998. [PMID: 26975244 PMCID: PMC4792173 DOI: 10.1038/srep22998] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/26/2016] [Indexed: 11/09/2022] Open
Abstract
Two sympatric species Helicoverpa armigera and Helicoverpa assulta use (Z)-11-hexadecenal and (Z)-9-hexadecenal as sex pheromone components in reverse ratio. They also share several other pheromone gland components (PGCs). We present a comparative study on the olfactory coding mechanism and behavioral effects of these additional PGCs in pheromone communication of the two species using single sensillum recording, in situ hybridization, calcium imaging, and wind tunnel. We classify antennal sensilla types A, B and C into A, B1, B2, C1, C2 and C3 based on the response profiles, and identify the glomeruli responsible for antagonist detection in both species. The abundance of these sensilla types when compared with the number of OSNs expressing each of six pheromone receptors suggests that HarmOR13 and HassOR13 are expressed in OSNs housed within A type sensilla, HarmOR14b within B and C type sensilla, while HassOR6 and HassOR16 within some of C type sensilla. We find that for H. armigera, (Z)-11-hexadecenol and (Z)-11-hexadecenyl acetate act as behavioral antagonists. For H. assulta, instead, (Z)-11-hexadecenyl acetate acts as an agonist, while (Z)-9-hexadecenol, (Z)-11-hexadecenol and (Z)-9-hexadecenyl acetate are antagonists. The results provide an overall picture of intra- and interspecific olfactory and behavioral responses to all PGCs in two sister species.
Collapse
|
9
|
Lee SG, Poole K, Linn CE, Vickers NJ. Transplant Antennae and Host Brain Interact to Shape Odor Perceptual Space in Male Moths. PLoS One 2016; 11:e0147906. [PMID: 26816291 PMCID: PMC4729490 DOI: 10.1371/journal.pone.0147906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/07/2016] [Indexed: 11/30/2022] Open
Abstract
Behavioral responses to odors rely first upon their accurate detection by peripheral sensory organs followed by subsequent processing within the brain’s olfactory system and higher centers. These processes allow the animal to form a unified impression of the odor environment and recognize combinations of odorants as single entities. To investigate how interactions between peripheral and central olfactory pathways shape odor perception, we transplanted antennal imaginal discs between larval males of two species of moth Heliothis virescens and Heliothis subflexa that utilize distinct pheromone blends. During metamorphic development olfactory receptor neurons originating from transplanted discs formed connections with host brain neurons within olfactory glomeruli of the adult antennal lobe. The normal antennal receptor repertoire exhibited by males of each species reflects the differences in the pheromone blends that these species employ. Behavioral assays of adult transplant males revealed high response levels to two odor blends that were dissimilar from those that attract normal males of either species. Neurophysiological analyses of peripheral receptor neurons and central olfactory neurons revealed that these behavioral responses were a result of: 1. the specificity of H. virescens donor olfactory receptor neurons for odorants unique to the donor pheromone blend and, 2. central odor recognition by the H. subflexa host brain, which typically requires peripheral receptor input across 3 distinct odor channels in order to elicit behavioral responses.
Collapse
Affiliation(s)
- Seong-Gyu Lee
- Dept. of Biology, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Kathy Poole
- Dept. of Entomology, Cornell University, Geneva, NY 14456, United States of America
| | - Charles E. Linn
- Dept. of Entomology, Cornell University, Geneva, NY 14456, United States of America
| | - Neil J. Vickers
- Dept. of Biology, University of Utah, Salt Lake City, UT 84112, United States of America
- * E-mail:
| |
Collapse
|
10
|
Berg BG, Zhao XC, Wang G. Processing of Pheromone Information in Related Species of Heliothine Moths. INSECTS 2014; 5:742-61. [PMID: 26462937 PMCID: PMC4592608 DOI: 10.3390/insects5040742] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 11/16/2022]
Abstract
In heliothine moths, the male-specific olfactory system is activated by a few odor molecules, each of which is associated with an easily identifiable glomerulus in the primary olfactory center of the brain. This arrangement is linked to two well-defined behavioral responses, one ensuring attraction and mating behavior by carrying information about pheromones released by conspecific females and the other inhibition of attraction via signal information emitted from heterospecifics. The chance of comparing the characteristic properties of pheromone receptor proteins, male-specific sensory neurons and macroglomerular complex (MGC)-units in closely-related species is especially intriguing. Here, we review studies on the male-specific olfactory system of heliothine moths with particular emphasis on five closely related species, i.e., Heliothis virescens, Heliothis subflexa, Helicoverpa zea, Helicoverpa assulta and Helicoverpa armigera.
Collapse
Affiliation(s)
- Bente G Berg
- Department of Psychology, Norwegian University of Science and Technology, Trondheim 7489, Norway.
| | - Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Groot AT, Staudacher H, Barthel A, Inglis O, Schöfl G, Santangelo RG, Gebauer-Jung S, Vogel H, Emerson J, Schal C, Heckel DG, Gould F. One quantitative trait locus for intra- and interspecific variation in a sex pheromone. Mol Ecol 2013; 22:1065-80. [PMID: 23294019 DOI: 10.1111/mec.12171] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/27/2022]
Abstract
Even though premating isolation is hypothesized to be a major driving force in speciation, its genetic basis is poorly known. In the noctuid moth Heliothis subflexa, one group of sex pheromone components, the acetates, emitted by the female, plays a crucial isolating role in preventing interspecific matings to males of the closely related Heliothis virescens, in which females do not produce acetates and males are repelled by them. We previously found intraspecific variation in acetates in H. subflexa: females in eastern North America contain significantly more acetates than females in Western Mexico. Here we describe the persistence of this intraspecific variation in laboratory-reared strains and the identification of one major quantitative trait locus (QTL), explaining 40% of the variance in acetate amounts. We homologized this intraspecific QTL to our previously identified interspecific QTL using restriction-associated DNA (RAD) tags. We found that a major intraspecific QTL overlaps with one of the two major interspecific QTL. To identify candidate genes underlying the acetate variation, we investigated a number of gene families with known or suspected acetyl- or acyltransferase activity. The most likely candidate genes did not map to our QTL, so that we currently hypothesize that a transcription factor underlies this QTL. Finding a single, large QTL that impacts variation in pheromone blends between and within species is, to our knowledge, the first such example for traits that have been demonstrated to affect premating isolation.
Collapse
Affiliation(s)
- A T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Crespo JG, Goller F, Vickers NJ. Pheromone mediated modulation of pre-flight warm-up behavior in male moths. ACTA ACUST UNITED AC 2012; 215:2203-9. [PMID: 22675180 PMCID: PMC3368620 DOI: 10.1242/jeb.067215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An essential part of sexual reproduction typically involves the
identification of an appropriate mating partner. Males of many moth species
utilize the scent of sex pheromones to track and locate conspecific females.
However, before males engage in flight, warm-up by shivering of the major flight
muscles is necessary to reach a thoracic temperature suitable to sustain flight.
Here we show that Helicoverpa zea males exposed to an
attractive pheromone blend (and in some instances to the primary pheromone
component alone) started shivering earlier and took off at a lower thoracic
temperature than moths subjected to other incomplete or unattractive blends.
This resulted in less time spent shivering and faster heating rates. Two
interesting results emerge from these experiments. First, the rate of heat
generation can be modulated by different olfactory cues. Second, males detecting
the pheromone blend take off at lower thoracic temperatures than males exposed
to other stimuli. The take-off temperature of these males was below that for
optimal power production in the flight muscles, thus generating a trade-off
between rapid departure and suboptimal flight performance. Our results shed
light on thermoregulatory behaviour of unrestrained moths associated with the
scramble competition for access to females and suggest ecological trade-offs
between rapid flight initiation and sub-optimal flight performance.
Collapse
Affiliation(s)
- José G Crespo
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
13
|
Hillier NK, Vickers NJ. Hairpencil volatiles influence interspecific courtship and mating between two related moth species. J Chem Ecol 2011; 37:1127-36. [PMID: 21948202 DOI: 10.1007/s10886-011-0017-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/15/2011] [Accepted: 09/07/2011] [Indexed: 11/27/2022]
Abstract
Reproductive isolation between sympatric, closely related species can be accomplished through a variety of pre-zygotic isolating mechanisms, including courtship-signaling behavior that involves pheromones. In the moths Heliothis virescens and H. subflexa, males display abdominal hairpencils (HP), which release volatile chemicals during courtship. In this study, we demonstrated that HP volatiles released by male H. subflexa function to improve mating success with conspecific females. Interspecific mating experiments were conducted to determine any influence of HP volatiles on species isolation. Female H. virescens and H. subflexa were observed during courtship with males of the other species, following either sham-operation or ablation of HPs, both with and without concurrent presentation of HP volatiles. Mating success was improved by co-presentation of HP extract from males of the same species during courtship. Ablation of HPs improved mating between H. subflexa females and H. virescens males. During interspecific matings, male H. virescens attempted copulation less frequently in the presence of H. virescens HP extract, though H. subflexa males were not affected by the presence of H. subflexa HP extract. This suggests that HP volatiles produced by males of each species may inhibit mating between species through effects on males (H. virescens) and females (H. subflexa).
Collapse
|
14
|
Vásquez GM, Fischer P, Grozinger CM, Gould F. Differential expression of odorant receptor genes involved in the sexual isolation of two Heliothis moths. INSECT MOLECULAR BIOLOGY 2011; 20:115-124. [PMID: 20946534 DOI: 10.1111/j.1365-2583.2010.01044.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Moth sexual communication systems are highly diverse, but the mechanisms underlying their evolutionary diversification remain unclear. Recently, genes coding for odorant receptors (ORs) OR6, OR14, OR15 and OR16 have been genetically associated with species-specific male response to female pheromone blends in Heliothis virescens (Hv) and Heliothis subflexa (Hs). Quantitative real-time PCR analysis indicates that expression of HvOR6, HsOR6, HvOR14, HsOR14, HvOR15 and HsOR15 is male biased, which supports the hypothesis that they have a role in mediating female sex pheromone detection. The genes HvOR14, HvOR15 and HvOR16 are expressed at higher levels than their corresponding orthologues HsOR14, HsOR15 and HsOR16 in male antennae, while HvOR6 and HsOR6 transcripts are equally abundant in male antennae. The lack of higher expression of any of the receptor genes in H. subflexa antennae suggests that interspecific sequence differences, rather than gene regulation differences, underly the species-specific male response to pheromone components.
Collapse
Affiliation(s)
- G M Vásquez
- Department of Entomology and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7634, USA
| | | | | | | |
Collapse
|
15
|
Groot AT, Classen A, Staudacher A, Schal C, Heckel DG. Phenotypic plasticity in sexual communication signal of a noctuid moth. J Evol Biol 2010; 23:2731-8. [PMID: 21121086 DOI: 10.1111/j.1420-9101.2010.02124.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A T Groot
- Department Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | | | | | | | | |
Collapse
|
16
|
Sexual isolation of male moths explained by a single pheromone response QTL containing four receptor genes. Proc Natl Acad Sci U S A 2010; 107:8660-5. [PMID: 20404144 DOI: 10.1073/pnas.0910945107] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Long distance sexual communication in moths has fascinated biologists because of the complex, precise female pheromone signals and the extreme sensitivity of males to specific pheromone molecules. Progress has been made in identifying some genes involved in female pheromone production and in male response. However, we have lacked information on the genetic changes involved in evolutionary diversification of these mate-finding mechanisms that is critical to understanding speciation in moths and other taxa. We used a combined quantitative trait locus (QTL) and candidate gene approach to determine the genetic architecture of sexual isolation in males of two congeneric moths, Heliothis subflexa and Heliothis virescens. We report behavioral and neurophysiological evidence that differential male responses to three female-produced chemicals (Z9-14:Ald, Z9-16:Ald, Z11-16:OAc) that maintain sexual isolation of these species are all controlled by a single QTL containing at least four odorant receptor genes. It is not surprising that pheromone receptor differences could control H. subflexa and H. virescens responses to Z9-16:Ald and Z9-14:Ald, respectively. However, central rather than peripheral level control over the positive and negative responses of H. subflexa and H. virescens to Z11-16:OAc had been expected. Tight linkage of these receptor genes indicates that mutations altering male response to complex blends could be maintained in linkage disequilibrium and could affect the speciation process. Other candidate genes such as those coding for pheromone binding proteins did not map to this QTL, but there was some genetic evidence of a QTL for response to Z11-16:OH associated with a sensory neuron membrane protein gene.
Collapse
|
17
|
Groot AT, Estock ML, Horovitz JL, Hamilton J, Santangelo RG, Schal C, Gould F. QTL analysis of sex pheromone blend differences between two closely related moths: Insights into divergence in biosynthetic pathways. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:568-577. [PMID: 19477278 DOI: 10.1016/j.ibmb.2009.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/10/2009] [Accepted: 05/14/2009] [Indexed: 05/27/2023]
Abstract
To understand the evolution of premating signals in moths, it is important to know the genetic basis of these signals. We conducted Quantitative Trait Locus (QTL) analysis by hybridizing two noctuid moth species, Heliothis virescens (Hv) and Heliothis subflexa (Hs), and backcrossing the F(1) females to males of both parental species. One of these backcrosses (F(1) x Hs) was a biological replicate of our previous study (Sheck et al., 2006) and served to test the robustness of our previous findings. The backcross to Hv was designed to reveal QTL with recessive inheritance of the Hv character state. This study confirms previously discovered QTL, but also reports new QTL. Most importantly, we found relatively large QTL affecting Z9-16:Ald, the critical sex pheromone component of Hs. For Z9-14:Ald, the critical sex pheromone component of Hv, as well as for the minor pheromone compound 14:Ald, we found QTL in which the change in pheromone ratio was opposite-to-expected. Linking QTL to the biosynthetic pathways of the pheromone compounds of Hv and Hs implicates several candidate genes in the divergence of these premating signals, the most important of which are acetyl transferase, one or more desaturase(s), and a fatty acyl reductase or alcohol oxidase.
Collapse
Affiliation(s)
- Astrid T Groot
- Department of Entomology and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-1713, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Groot AT, Inglis O, Bowdridge S, Santangelo RG, Blanco C, López JD, Vargas AT, Gould F, Schal C. Geographic and temporal variation in moth chemical communication. Evolution 2009; 63:1987-2003. [PMID: 19473383 DOI: 10.1111/j.1558-5646.2009.00702.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In moth pheromone communication signals, both quantitative and qualitative intraspecific differences have been found across geographic regions. Such variation has generally been hypothesized to be due to selection, but evidence of genetic control of these differences is largely lacking. To explore the patterns of variation in pheromone signals, we quantified variation in the female sex pheromone blend and male responses of two closely related noctuid moth species in five different geographic regions for 2-3 consecutive years. We found significant variation in the ratios of sex pheromone blend components as well as in male response, not only between geographic regions but also within a region between consecutive years. The temporal variation was of a similar magnitude as the geographic variation. As far as we know, this is the first study reporting such temporal variation in moth chemical communication systems. The geographic variation seems to at least partly be controlled by genetic factors, and to be correlated with the quality of the local chemical environment. However, the pattern of temporal variation within populations suggests that optimization of the pheromonal signal also may be driven by within-generation physiological adjustments by the moths in response to their experience of the local chemical environment.
Collapse
Affiliation(s)
- Astrid T Groot
- North Carolina State University, Department of Entomology and W. M. Keck Center for Behavioral Biology, Raleigh, North Carolina, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Interspecific Pheromone Plume Interference Among Sympatric Heliothine Moths: A Wind Tunnel Test Using Live, Calling Females. J Chem Ecol 2008; 34:725-33. [DOI: 10.1007/s10886-008-9475-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 02/02/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
|
20
|
Balanced olfactory antagonism as a concept for understanding evolutionary shifts in moth sex pheromone blends. J Chem Ecol 2008; 34:971-81. [PMID: 18452043 DOI: 10.1007/s10886-008-9468-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 03/21/2008] [Accepted: 03/24/2008] [Indexed: 10/22/2022]
Abstract
In the sex pheromone communication systems of moths, both heterospecific sex pheromone components and individual conspecific pheromone components may act as behavioral antagonists when they are emitted at excessive rates and ratios. In such cases, the resulting blend composition does not comprise the sex pheromone of a given species. That is, unless these compounds are emitted at optimal rates and ratios with other compounds, they act as behavioral antagonists. Thus, the array of blend compositions that are attractive to males is centered around the characterized female-produced sex pheromone blend of a species. I suggest here that the resulting optimal attraction of males to a sex pheromone is the result of olfactory antagonistic balance, compared to the would-be olfactory antagonistic imbalance imparted by behaviorally active compounds when they are emitted individually or in other off-ratio blends. Such balanced olfactory antagonism might be produced in any number of ways in olfactory pathways, one of which would be mutual, gamma-aminobutyric-acid-related disinhibition by local interneurons in neighboring glomeruli that receive excitatory inputs from pheromone-stimulated olfactory receptor neurons. Such mutual disinhibition would facilitate greater excitatory transmission to higher centers by projection interneurons arborizing in those glomeruli. I propose that in studies of moth sex pheromone olfaction, we should no longer artificially compartmentalize the olfactory effects of heterospecific behavioral antagonists into a special category distinct from olfaction involving conspecific sex pheromone components. Indeed, continuing to impose such a delineation among these compounds may retard advances in understanding how moth olfactory systems can evolve to allow males to exhibit correct behavioral responses (that is, attraction) to novel sex-pheromone-related compositions emitted by females.
Collapse
|
21
|
Lim H, Park KC, Baker TC, Greenfield MD. Perception of conspecific female pheromone stimulates female calling in an arctiid moth, Utetheisa ornatrix. J Chem Ecol 2007; 33:1257-71. [PMID: 17435986 DOI: 10.1007/s10886-007-9291-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 02/23/2007] [Accepted: 03/23/2007] [Indexed: 11/29/2022]
Abstract
Perception of the female sex pheromone in Utetheisa ornatrix (Lepidoptera: Arctiidae) is responsible for induction and adjustment of calling by females and the collective phenomenon termed "female pheromonal chorusing". We found five olfactory-active compounds in the U. ornatrix female gland. When females were exposed to the entire pheromone or to two of its (synthetically prepared) components, (Z,Z,Z)-3,6,9-eicosatriene and (Z,Z,Z)-3,6,9-heneicosatriene, they were more likely to call during a given night, begin calling earlier, and briefly increase signal frequency with which they extrude their abdomen, an observable indication of calling in this species. Some females even initiated calling during photophase when exposed to the pheromone components. In general, female U. ornatrix are more sensitive to the complete blend of pheromone than to its individual compounds. We also tested the hypotheses: 1) that abdominal extrusion per se increases the rate of pheromone release; and 2) that greater abdominal pumping rhythm increases pheromone release rate. Contrary to our expectations: 1) females did not respond more strongly to a pulsed pheromone stimulus than to the constant release of pheromone at the same average release rate; and 2) we did not find a relationship between the frequency of abdominal pumping and pheromone release rate. Possible explanations for these unexpected findings are discussed.
Collapse
Affiliation(s)
- Hangkyo Lim
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.
| | | | | | | |
Collapse
|
22
|
Hong RL, Sommer RJ. Chemoattraction in Pristionchus nematodes and implications for insect recognition. Curr Biol 2007; 16:2359-65. [PMID: 17141618 DOI: 10.1016/j.cub.2006.10.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/20/2006] [Accepted: 10/11/2006] [Indexed: 11/19/2022]
Abstract
Nematodes and insects are the two dominant animal taxa in species numbers, and nematode-insect interactions constitute a significant portion of interspecies associations in a diversity of ecosystems. It has been speculated that most insects represent mobile microhabitats in which nematodes can obtain food, mobility, and shelter. Nematode-insect associations can be classified as phoretic (insects used for transportation, not as food), necromenic (insect used for transportation, then carcass as food), and entomopathogenic (insect is killed and used as food). To determine how nematodes target their hosts, we analyzed the chemosensory response and behavioral parameters of closely related Pristionchus nematodes that form species-specific necromenic associations with scarab beetles and the Colorado potato beetle. We found that all four studied Pristionchus species displayed unique chemoattractive profiles toward insect pheromones and plant volatiles with links to Pristionchus habitats. Moreover, chemoattraction in P. pacificus differs from that of C. elegans not only in the types of attractants, but also in its tempo, mode, and concentration response range. We conclude that Pristionchus olfaction is highly diverse among closely related species and is likely to be involved in shaping nematode-host interactions.
Collapse
Affiliation(s)
- Ray L Hong
- Max Planck Institute for Developmental Biology, Department for Evolutionary Biology, Spemannstrasse 37-39, 72076 Tuebingen, Germany.
| | | |
Collapse
|
23
|
Groot AT, Santangelo RG, Ricci E, Brownie C, Gould F, Schal C. Differential Attraction of Heliothis subflexa Males to Synthetic Pheromone Lures in Eastern US and Western Mexico. J Chem Ecol 2007; 33:353-68. [PMID: 17200888 DOI: 10.1007/s10886-006-9233-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
The mate attraction signal of Heliothis subflexa (Hs) females consists of a multicomponent sex pheromone blend. In this study, we assessed the intraspecific importance of three groups of compounds found in Hs pheromone glands: three acetate esters (Z7-16:OAc, Z9-16:OAc, and Z11-16:OAc), two 14-carbon aldehydes (14:Ald and Z9-14:Ald), and one 16-carbon alcohol (Z11-16:OH). Because the relative importance of pheromone components may vary in different regions, we conducted experiments in Eastern US (North Carolina) and Western Mexico (Jalisco). Our experiments in Eastern US showed that when the acetates were omitted from a 7-component blend in rubber septa, fewer males were caught in cone traps. Subsequent experiments conducted both in Eastern US and Western Mexico indicated that the addition of Z9-16:OAc alone does not increase attraction of male Hs, while Z11-16:OAc does. The Hs male response to Z7-16:OAc differed between the two regions. In Eastern US, significantly more males were attracted to a minimal three-component blend to which Z7-16:OAc was added, but this was not the case in Western Mexico. The two 14-carbon aldehydes also showed differential attraction between the two regions. 14:Ald and Z9-14:Ald appeared not to play any role in the sexual communication of Hs in Eastern US, but reduced trap catches in Western Mexico. The alcohol Z11-16:OH was tested in two concurrent dose-response studies with Hs males in Western Mexico, one using a minimal blend and one using a complete blend. The minimal three-component blend provided a more discriminating tool for delineating dose-response effects of Z11-16:OH than the seven-component blend. In the minimal blend, the optimal dose of Z11-16:OH was 1%, while in the complete blend similar numbers of males were caught when the alcohol ranged from 1 to 25%.
Collapse
Affiliation(s)
- Astrid T Groot
- Department of Entomology and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7613, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Hillier NK, Kelly D, Vickers NJ. A specific male olfactory sensillum detects behaviorally antagonistic hairpencil odorants. JOURNAL OF INSECT SCIENCE (ONLINE) 2007; 7:4. [PMID: 20334597 PMCID: PMC2999402 DOI: 10.1673/031.007.0401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Accepted: 08/11/2006] [Indexed: 05/29/2023]
Abstract
Within insect species, olfactory signals play a vital role in communication, particularly in the context of mating. During courtship, males of many moth species release pheromones that function as aphrodisiacs for conspecific females, or repellants to competing conspecific males. The physiology and antennal lobe projections are described of olfactory receptor neurons within an antennal sensillum present on male Heliothis virescens F. (Lepidoptera: Noctuidae) moths sensitive to conspecific male H. virescens-produced pheromone components. Olfactory receptor neurons responded to hexadecanyl acetate and octadecanyl acetate hairpencil components, and Z11-hexadecenyl acetate, an odorant used by closely related heliothine species in their female produced pheromone, which is antagonistic to male H. virescens responses. This acetate-sensitive sensillum appears homologous to a sensillum type previously described in females of this species, sharing similar physiology and glomerular projection targets within the antennal lobe. Wind tunnel observations indicate that H. virescens hairpencil odors (hexadecanyl acetate, octadecanyl acetate) function to antagonize responses of conspecific males following a female sex pheromone plume. Thus, male-male flight antagonism in H. virescens appears to be mediated by this particular sensillum type.
Collapse
Affiliation(s)
- N. K. Hillier
- Department of Biology, University of Utah, Room 201 South Biology, Salt Lake City, Utah, USA, 84112
| | - D. Kelly
- Department of Biology, University of Utah, Room 201 South Biology, Salt Lake City, Utah, USA, 84112
| | - N. J. Vickers
- Department of Biology, University of Utah, Room 201 South Biology, Salt Lake City, Utah, USA, 84112
| |
Collapse
|
25
|
Sheck AL, Groot AT, Ward CM, Gemeno C, Wang J, Brownie C, Schal C, Gould F. Genetics of sex pheromone blend differences between Heliothis virescens and Heliothis subflexa: a chromosome mapping approach. J Evol Biol 2006; 19:600-17. [PMID: 16599935 DOI: 10.1111/j.1420-9101.2005.00999.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Males of the noctuid moths, Heliothis virescens and H. subflexa locate mates based on species-specific responses to female-emitted pheromones that are composed of distinct blends of volatile compounds. We conducted genetic crosses between these two species and used AFLP marker-based mapping of backcross families (H. subflexa direction) to determine which of the 30 autosomes in these moths contained quantitative trait loci (QTL) controlling the proportion of specific chemical components in the pheromone blends. Presence/absence of single H. virescens chromosomes accounted for 7-34% of the phenotypic variation among backcross females in seven pheromone components. For a set of three similar 16-carbon acetates, two H. virescens chromosomes interacted in determining their relative amounts within the pheromone gland and together accounted for 53% of the phenotypic variance. Our results are discussed relative to theories about population genetic processes and biochemical mechanisms involved in the evolution of new sexual communication systems.
Collapse
Affiliation(s)
- A L Sheck
- Department of Entomology and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Vickers NJ. Inheritance of olfactory preferences III. Processing of pheromonal signals in the antennal lobe of Heliothis subflexa x Heliothis virescens hybrid male moths. BRAIN, BEHAVIOR AND EVOLUTION 2006; 68:90-108. [PMID: 16707862 DOI: 10.1159/000093376] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 09/01/2005] [Indexed: 11/19/2022]
Abstract
Pheromone-responsive olfactory interneurons were studied to determine the extent to which their physiological and morphological properties complemented the behavior and peripheral olfactory neurobiology observed in hybrid male moths created by interbreeding two species of heliothine moth, Heliothis virescens and Heliothis subflexa. Complete recordings were made from a total of 33 neurons, and 16 projection neurons (PNs) were subsequently stained with a fluorescent dye. Stained PNs tuned to pheromonal odorants had dendritic arborizations restricted to one of four olfactory glomeruli that together constituted the macroglomerular complex (MGC). As in parental males, PNs tuned to (Z)-11-hexadecenal always had an arbor in the cumulus, the largest of the MGC glomeruli. Previous neurophysiological investigations revealed that PNs with dendritic arbors restricted to the dorso-medial glomerulus (DM) of the MGC responded specifically to either (Z)-9-tetradecenal (Z9-14:Ald; H. virescens males) or (Z)-9-hexadecenal (Z9-16:Ald; H. subflexa males). Hybrid males, which responded equally well in wind tunnel tests to blends containing either Z9-14:Ald or Z9-16:Ald, had DM PNs that responded to both odorants. PNs specific for a third compound, (Z)-11-hexadecenol, required by hybrid males for behavioral activity were localized to the antero-medial MGC glomerulus (AM). Thus, neuronal activity across the cumulus, DM and AM glomeruli represented an attractive blend in hybrid males. Neurons tuned to (Z)-11-hexadecenyl acetate and Z9-14:Ald were restricted to a fourth, ventro-medial glomerulus. The across-glomerular pattern of activity associated with attractive pheromone blends was most similar to that of H. subflexa males, signifying a dominant effect of H. subflexa genes. These results indicate that the behavioral phenotype of hybrid males can be linked to underlying central olfactory characteristics.
Collapse
Affiliation(s)
- Neil J Vickers
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
27
|
Vickers NJ. Inheritance of olfactory preferences I. Pheromone-mediated behavioral responses of Heliothis subflexa x Heliothis virescens hybrid male moths. BRAIN, BEHAVIOR AND EVOLUTION 2006; 68:63-74. [PMID: 16707860 DOI: 10.1159/000093374] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 09/01/2005] [Indexed: 11/19/2022]
Abstract
Shifts in male preference for qualitatively different pheromone blends appear to have played a fundamental role in the divergence of olfactory communication and evolution of moth species. As an initial step in documenting the genetic complexity underlying such shifts, we characterized the behavioral responses of hybrid male moths created by mating two heliothine moth species, Heliothis subflexa and Heliothis virescens. Between 67 and 96% of hybrid males flew upwind and contacted the pheromone source when presented with a blend consisting of (Z)-11-hexadecenal (Z11-16:Ald), (Z)-9-hexadecenal (Z9-16:Ald), and (Z)-11-hexadecenol (Z11-16:OH) in a 1:0.5:0.1 ratio that has previously been shown to be attractive to H. subflexa males. In addition, an H. virescens blend of Z11-16:Ald and (Z)-9-tetradecenal (Z9-14:Ald) enhanced by the addition of Z11-16:OH (in a 1:0.05:0.1 mixture) was attractive to hybrid males (26-64% source contact), but significantly fewer males reached the odor source compared to the blend containing Z9-16:Ald. A blend in which the dosage of Z9-14:Ald was doubled, however, was equally attractive (75-77% source contact) as the Z9-16:Ald-containing blend. Consecutive presentation of two blends revealed that individual hybrid males responded equally well to blends containing either Z9-14:Ald or Z9-16:Ald. Together these results suggest that in addition to Z11-16:Ald, hybrid males: (1) required either Z9-16:Ald (likeH. subflexamales) or Z9-14:Ald (like H. virescens males); (2) required the presence of Z11-16:OH (H. subflexa dominant); (3) were not adversely affected by the presence of Z11-16:Ac (H. subflexa dominant). The behavioral response phenotype of hybrid males was therefore influenced by genetic factors inherited from both parental species.
Collapse
Affiliation(s)
- Neil J Vickers
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
28
|
Baker TC, Quero C, Ochieng' SA, Vickers NJ. Inheritance of olfactory preferences II. Olfactory receptor neuron responses from Heliothis subflexa x Heliothis virescens hybrid male moths. BRAIN, BEHAVIOR AND EVOLUTION 2006; 68:75-89. [PMID: 16707861 DOI: 10.1159/000093375] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 09/01/2005] [Indexed: 11/19/2022]
Abstract
Single-cell electrophysiological recordings were obtained from olfactory receptor neurons (ORNs) in sensilla trichodea on male antennae of hybrids formed mainly by crossing female Heliothis subflexa with male Heliothis virescens ('SV hybrids'). We recorded from the A-, B-, and C-type sensilla trichodea, with the latter two types housing ORNs exhibiting response profiles to different pheromone components that we had previously found to be characteristic for each species. For both the B- and the C-type SV hybrid sensilla, most of the ORNs exhibited a spike amplitude and ORN co-compartmentalization within sensilla that more strongly resembled the ORNs of parental H. subflexa rather than those of H. virescens. The overall mean dose-response profiles of the ORNs in hybrid C- and B-type sensilla were intermediate between those of the H. virescens and H. subflexa parental type ORNs. However, not all hybrid ORNs were intermediate in their tuning spectra, but rather ranged from those that closely resembled H. subflexa or H. virescens parental types to those that were intermediate, even on the same antenna. The most noteworthy shift in ORN responsiveness in hybrid males was an overall increase in sensitivity to Z9-14:Ald exhibited by Z9-16:Ald-responsive ORNs. Heightened cross-responsiveness to Z9-14:Ald by hybrid ORNs correlates well with observed behavioral cross-responsiveness of hybrids in which Z9-14:Ald could substitute for Z9-16:Ald in the pheromone blend, a behavior not observed in parental types. The hybrid ORN shifts involving greater sensitivity to Z9- 14:Ald also correlate well with studies of hybrid male antennal lobe interneurons that exhibited a shift toward greater cross-responsiveness to Z9-14:Ald and Z9- 16:Ald. We propose that the differences between parental H. virescens, H. subflexa, and SV hybrid male pheromone ORN responsiveness to Z9-16:Ald and Z9-14:Ald are most logically explained by an increased or decreased co-expression of two different odorant receptors for each of these compounds on the same ORN.
Collapse
Affiliation(s)
- T C Baker
- Department of Entomology, Chemical Ecology Lab, Penn State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
29
|
Groot AT, Horovitz JL, Hamilton J, Santangelo RG, Schal C, Gould F. Experimental evidence for interspecific directional selection on moth pheromone communication. Proc Natl Acad Sci U S A 2006; 103:5858-63. [PMID: 16585529 PMCID: PMC1458663 DOI: 10.1073/pnas.0508609103] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Indexed: 11/18/2022] Open
Abstract
The chemical composition of the sexual communication signals of female moths is thought to be under strong stabilizing selection, because females that produce atypical pheromone blends suffer lower success in finding mates. This intraspecific selection pressure cannot explain the high diversity of moth pheromone blends found in nature. We conducted experiments to determine whether communication interference from males of closely related species could exert strong enough directional selection to cause evolution of these signals. Attraction and mating success of Heliothis subflexa (Hs) females with a normal quantitative trait locus for production of acetate pheromone components (norm-OAc) were compared with Hs females with an introgressed quantitative trait locus from Heliothis virescens (Hv) that dramatically decreased the amount of acetate esters in their pheromone glands (low-OAc). In field experiments with natural Hv and Hs populations, 10 times more Hv males were captured in traps baited with live low-OAc Hs females than in traps with norm-OAc Hs females. This pattern was confirmed in mate-choice assays in cages. Hybrids resulting from Hv-Hs matings have effectively zero fitness in the field. Combining our results with the extensive data set gathered in the past 40 years on the reproductive biology of Hv, we can quantitatively estimate that the directional selection exerted by Hv males on Hs females to produce relatively high amounts (>5%) of acetates can range from 0.135 to 0.231. Such intense interspecific selection may counteract intraspecific stabilizing selection that impedes evolutionary changes in pheromone blends and could lead to diversification of sexual signals.
Collapse
Affiliation(s)
- Astrid T Groot
- Department of Entomology and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Hillier NK, Kleineidam C, Vickers NJ. Physiology and glomerular projections of olfactory receptor neurons on the antenna of female Heliothis virescens (Lepidoptera: Noctuidae) responsive to behaviorally relevant odors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 192:199-219. [PMID: 16249880 DOI: 10.1007/s00359-005-0061-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 09/14/2005] [Accepted: 09/18/2005] [Indexed: 11/30/2022]
Abstract
The neurophysiology and antennal lobe projections of olfactory receptor neurons housed within short trichoid sensilla of female Heliothis virescens F. (Noctuidae: Lepidoptera) were investigated using a combination of cut-sensillum recording and cobalt-lysine staining techniques. Behaviorally relevant odorants, including intra- and inter-sexual pheromonal compounds, plant and floral volatiles were selected for testing sensillar responses. A total of 184 sensilla were categorized into 25 possible sensillar types based on odor responses and sensitivity. Sensilla exhibited both narrow (responding to few odors) and broad (responding to many odors) response spectra. Sixty-six percent of the sensilla identified were stimulated by conspecific odors; in particular, major components of the male H. virescens hairpencil pheromone (hexadecanyl acetate and octadecanyl acetate) and a minor component of the female sex pheromone, (Z)-9-tetradecenal. Following characterization of the responses, olfactory receptor neurons within individual sensilla were stained with cobalt lysine (N=39) and traced to individual glomeruli in the antennal lobe. Olfactory receptor neurons with specific responses to (Z)-9-tetradecenal, a female H. virescens sex pheromone component, projected to the female-specific central large female glomerulus (cLFG) and other glomeruli. Terminal arborizations from sensillar types containing olfactory receptor neurons sensitive to male hairpencil components and plant volatiles were also localized to distinct glomerular locations. This information provides insight into the representation of behaviorally relevant odorants in the female moth olfactory system.
Collapse
Affiliation(s)
- N K Hillier
- Department of Biology, University of Utah, Room 201 South Biology, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
31
|
Groot AT, Fan Y, Brownie C, Jurenka RA, Gould F, Schal C. Effect of PBAN on pheromone production by mated Heliothis virescens and Heliothis subflexa females. J Chem Ecol 2005; 31:15-28. [PMID: 15839476 DOI: 10.1007/s10886-005-0970-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mated female Heliothis virescens and H. subflexa were induced to produce sex pheromone during the photophase by injection of pheromone biosynthesis activating neuropeptide (PBAN). When injected with 1 pmol Hez-PBAN, the total amount of pheromone that could be extracted from glands of mated females during the photophase was similar to that extracted from virgin females in the scotophase. The PBAN-induced profile of pheromone components was compared between mated, PBAN-injected females and virgin females during spring and fall. Virgin females exhibited some differences in the relative composition of the pheromone blend between spring and fall, but no such temporal differences were detected in PBAN-injected, mated females. Because the temporal variation in pheromone blend composition was greater for virgin females than for PBAN-injected females, PBAN can be used to determine a female's native pheromone phenotype. This procedure has the advantages that pheromone glands can be extracted during the photophase, from mated females that have already oviposited.
Collapse
Affiliation(s)
- Astrid T Groot
- Department of Entomology and W. M. Keck Center for Behavioral Biology.
| | | | | | | | | | | |
Collapse
|
32
|
Berg BG, Almaas TJ, Bjaalie JG, Mustaparta H. Projections of male-specific receptor neurons in the antennal lobe of the Oriental tobacco budworm moth, Helicoverpa assulta: a unique glomerular organization among related species. J Comp Neurol 2005; 486:209-20. [PMID: 15844171 DOI: 10.1002/cne.20544] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The macroglomerular complex in the primary olfactory center of male moths receives information from numerous pheromone-detecting receptor neurons housed in specific sensilla located on the antennae. We investigated the functional organization of the three glomeruli constituting this complex in Helicoverpa assulta, a unique species among heliothine moths as concerns the composition of the pheromone blend. By tip recordings from the male-specific receptor neurons combined with cobalt-lysine stainings, the axon terminals in the brain were traced and subsequently reconstructed by camera lucida drawings. Some were also reconstructed in a digital form. The results showed that the sensilla could be classified into two functional types. A major category housed two colocalized receptor neurons, one responding to the primary pheromone component cis-9-hexadecenal and the other to the behavioral antagonists cis-9-tetradecenal and cis-9-hexadecenol. Cobalt-lysine applied to this sensillum type consistently resulted in two stained axons, each terminating in one of the two large subunits of the macroglomerular complex: the cumulus or the dorsomedial glomerulus. The second, less frequently appearing sensillum type contained a receptor neuron responding to the second pheromone component, cis-11-hexadecenal. Dye applied to this type resulted in stained axon projections in the ventral glomerulus. In an evolutionary context it is particularly interesting that differences of related heliothine species are reflected in the functional organization of the MGC compartments.
Collapse
Affiliation(s)
- Bente G Berg
- Department of Psychology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | | | | | | |
Collapse
|
33
|
Pilla RS, Kitska DJ, Loader C. Statistical analysis of modified complete randomized designs: applications to chemo-orientation studies. ACTA ACUST UNITED AC 2005; 208:1267-76. [PMID: 15781887 DOI: 10.1242/jeb.01523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Often experimental scientists employ a Randomized Complete Block Design (RCBD) to study the effect of treatments on different subjects. Under a 'complete randomization', the order of the apparatus setups within each block, including all replications of each treatment across all subjects, is completely randomized. However, in many experimental settings complete randomization is impractical due to the cost involved in re-adjusting the device to administer a new treatment. One typically resorts to a type of 'restricted randomization', in which multiple subjects are tested under each treatment before the apparatus is re-adjusted. The order of the treatments as well as the assignment of subjects to each block are random. If the data obtained under any type of restricted randomization are treated as if the data were collected under an RCBD with complete randomization within each block, then there is potential to increase the risk of false positives (Type I error). This is of concern to animal orientation studies and other areas such as chemical ecology where it is impractical to reset the experimental device for each subject tested. The goal of the research presented in this article is twofold: (1) to demonstrate the consequences of constructing an F-statistic based on a mean square error for testing the significance of treatment effects under the restricted randomization; (2) to describe an alternative method, based on split-plot analysis of variance, to analyze designed experiments that yield better power under the restricted randomization. The statistical analyses of simulated experiments and data involving virgin male Periplaneta americana substantiate the benefits of the alternative approach under the restricted randomization. The methodology and analysis employed for the simulated experiment is equally applicable to any organism or artificial agent tested under a restricted randomization protocol.
Collapse
Affiliation(s)
- Ramani S Pilla
- Department of Statistics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
34
|
Odor Perception and the Variability in Natural Odor Scenes. RECENT ADVANCES IN PHYTOCHEMISTRY 2005. [DOI: 10.1016/s0079-9920(05)80009-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
35
|
Baker TC, Ochieng' SA, Cossé AA, Lee SG, Todd JL, Quero C, Vickers NJ. A comparison of responses from olfactory receptor neurons of Heliothis subflexa and Heliothis virescens to components of their sex pheromone. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2003; 190:155-65. [PMID: 14689220 DOI: 10.1007/s00359-003-0483-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Revised: 10/17/2003] [Accepted: 11/25/2003] [Indexed: 10/26/2022]
Abstract
Single-cell electrophysiological recordings were obtained from olfactory receptor neurons in sensilla trichodea on male antennae of the heliothine species Heliothis subflexa and the closely related congener H. virescens. A large percentage of sensilla (72% and 81%, respectively, of all sensilla sampled) contained a single odor-responsive receptor neuron tuned to the major pheromone component of both species, Z-11-hexadecenal. A second population of sensilla on H. subflexa antennae (18%) housed receptor neurons that were tuned to Z-9-hexadecenal but also responded with less sensitivity to Z-9-tetradecenal. A similar population of sensilla (4%) on H. virescens male antennae housed receptor neurons that were shown to be tuned specifically only to Z-9-tetradecenal, with no response to even high dosages of Z-9-hexadecenal. A third population of sensilla (comprising 8% and 16% of the sensilla sampled in H. subflexa and H. virescens, respectively) housed two olfactory receptor neurons, one of which was tuned to Z-11-hexadecenyl acetate and the other tuned to Z-11-hexadecenol. In H. subflexa the Z-11-hexadecenyl acetate-tuned neuron also responded to Z-9-tetradecenal with nearly equivalent sensitivity. The behavioral requirements of males of these two species for distinct pheromonal blends was, therefore, reflected by the subtle differences in the tuning properties of antennal olfactory receptor neurons.
Collapse
Affiliation(s)
- T C Baker
- Department of Entomology, Pesticide Research Laboratory, Penn State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Vickers NJ, Poole K, Linn CE. Consequences of interspecies antennal imaginal disc transplantation on organization of olfactory glomeruli and pheromone blend discrimination. J Comp Neurol 2003; 466:377-88. [PMID: 14556295 DOI: 10.1002/cne.10890] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The antennal imaginal disc was transplanted between male larvae of two different heliothine moth species, Heliothis virescens (HV) and Helicoverpa zea (HZ). Males of these species respond to distinct pheromone blends, have different peripheral and central olfactory neuron specificities, as well as distinct arrangements of antennal lobe olfactory glomeruli, in the specialized male macroglomerular complex (MGC). After pupal development and adult eclosion, unilateral (with one antennal disc left intact) and bilateral antennal transplant males were assayed in a wind tunnel to both species' pheromone blends to determine their ability to discriminate between the two signals. The postmetamorphic developmental effects of interspecific transplantation upon the primary olfactory centers in the moth brain were then examined in these same individuals. Behavioral tests showed that both types of unilateral transplant continued to exhibit upwind anemotactic flight to the normal recipient blend with occasional flights to the donor blend. In contrast, bilateral transplants preferred the HV pheromone blend regardless of the direction of transplant, with some males of each type also responding to the HZ blend. Neuroanatomic evaluation of the MGC revealed that the donor arrangement of MGC glomeruli was induced in 73% HZ donor to HV recipient transplants and 56% of the reciprocal transplant. Surprisingly, several V-Z bilateral transplant males responded to both HV and HZ pheromone blends and had two HV MGC structures. This behavioral outcome was unexpected, because responses to the HV blend are mediated by inputs that are normally antagonistic to HZ males and the normal HV antenna lacks olfactory receptor neurons capable of responding to the essential minor pheromone component of the HZ blend. These data indicate a plasticity in developmental pathways regulating the expression of peripheral olfactory receptor neurons and in the glomerular processing of species-specific olfactory information.
Collapse
Affiliation(s)
- Neil J Vickers
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | |
Collapse
|