1
|
Gubič Š, Hendrickx LA, Toplak Ž, Sterle M, Peigneur S, Tomašič T, Pardo LA, Tytgat J, Zega A, Mašič LP. Discovery of K V 1.3 ion channel inhibitors: Medicinal chemistry approaches and challenges. Med Res Rev 2021; 41:2423-2473. [PMID: 33932253 PMCID: PMC8252768 DOI: 10.1002/med.21800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The KV 1.3 voltage-gated potassium ion channel is involved in many physiological processes both at the plasma membrane and in the mitochondria, chiefly in the immune and nervous systems. Therapeutic targeting KV 1.3 with specific peptides and small molecule inhibitors shows great potential for treating cancers and autoimmune diseases, such as multiple sclerosis, type I diabetes mellitus, psoriasis, contact dermatitis, rheumatoid arthritis, and myasthenia gravis. However, no KV 1.3-targeted compounds have been approved for therapeutic use to date. This review focuses on the presentation of approaches for discovering new KV 1.3 peptide and small-molecule inhibitors, and strategies to improve the selectivity of active compounds toward KV 1.3. Selectivity of dalatazide (ShK-186), a synthetic derivate of the sea anemone toxin ShK, was achieved by chemical modification and has successfully reached clinical trials as a potential therapeutic for treating autoimmune diseases. Other peptides and small-molecule inhibitors are critically evaluated for their lead-like characteristics and potential for progression into clinical development. Some small-molecule inhibitors with well-defined structure-activity relationships have been optimized for selective delivery to mitochondria, and these offer therapeutic potential for the treatment of cancers. This overview of KV 1.3 inhibitors and methodologies is designed to provide a good starting point for drug discovery to identify novel effective KV 1.3 modulators against this target in the future.
Collapse
Affiliation(s)
- Špela Gubič
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Louise A. Hendrickx
- Toxicology and PharmacologyUniversity of Leuven, Campus GasthuisbergLeuvenBelgium
| | - Žan Toplak
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Maša Sterle
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Steve Peigneur
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | | | - Luis A. Pardo
- AG OncophysiologyMax‐Planck Institute for Experimental MedicineGöttingenGermany
| | - Jan Tytgat
- Toxicology and PharmacologyUniversity of Leuven, Campus GasthuisbergLeuvenBelgium
| | - Anamarija Zega
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | | |
Collapse
|
2
|
Baell JB. Personal Accounts of Australian Drug Discovery at the Public–Private Interface. Aust J Chem 2021. [DOI: 10.1071/ch20244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The public–private interface is a vibrant and invigorating stage for drug discovery and can allow for relatively higher risk but more rewarding research. Although adequate resourcing is a perennial challenge, persistence, optimism, and flexibility will pay dividends and can allow for a thoroughly rewarding career. In this account of chronological research experiences, selected examples are used to support this contention.
Collapse
|
3
|
Shen B, Cao Z, Li W, Sabatier JM, Wu Y. Treating autoimmune disorders with venom-derived peptides. Expert Opin Biol Ther 2017; 17:1065-1075. [DOI: 10.1080/14712598.2017.1346606] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Bingzheng Shen
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, China
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, China
| | | | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Harjani JR, Yap BK, Leung EWW, Lucke A, Nicholson SE, Scanlon MJ, Chalmers DK, Thompson PE, Norton RS, Baell JB. Design, Synthesis, and Characterization of Cyclic Peptidomimetics of the Inducible Nitric Oxide Synthase Binding Epitope That Disrupt the Protein–Protein Interaction Involving SPRY Domain-Containing Suppressor of Cytokine Signaling Box Protein (SPSB) 2 and Inducible Nitric Oxide Synthase. J Med Chem 2016; 59:5799-809. [DOI: 10.1021/acs.jmedchem.6b00386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jitendra R. Harjani
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Beow Keat Yap
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Eleanor W. W. Leung
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew Lucke
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sandra E. Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- The
Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Martin J. Scanlon
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David K. Chalmers
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Philip E. Thompson
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Raymond S. Norton
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jonathan B. Baell
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
5
|
Bioactive Mimetics of Conotoxins and other Venom Peptides. Toxins (Basel) 2015; 7:4175-98. [PMID: 26501323 PMCID: PMC4626728 DOI: 10.3390/toxins7104175] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/08/2015] [Indexed: 11/17/2022] Open
Abstract
Ziconotide (Prialt®), a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties.
Collapse
|
6
|
De novo design and synthesis of a μ-conotoxin KIIIA peptidomimetic. Bioorg Med Chem Lett 2013; 23:4892-5. [DOI: 10.1016/j.bmcl.2013.06.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/14/2013] [Accepted: 06/27/2013] [Indexed: 11/20/2022]
|
7
|
Abstract
Venomous animals use a highly complex cocktails of proteins, peptides and small molecules to subdue and kill their prey. As such, venoms represent highly valuable combinatorial peptide libraries, displaying an extensive range of pharmacological activities, honed by natural selection. Modern analytical technologies enable us to take full advantage of this vast pharmacological cornucopia in the hunt for novel drug leads. Spider venoms represent a resource of several million peptides, which selectively target specific subtypes of ion channels. Structure-function studies of spider toxins are leading not only to the discovery of novel molecules, but also to novel therapeutic routes for cardiovascular diseases, cancer, neuromuscular diseases, pain and to a variety of other pathological conditions. This review presents an overview of spider peptide toxins as candidates for therapeutics and focuses on their applications in the discovery of novel mechanisms of analgesia.
Collapse
Affiliation(s)
- Pierre Escoubas
- University of Nice - Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC) - CNRS UMR6097, 660 Route des Lucioles, 06560 Valbonne, France +33 04 93 95 77 35 ; +33 04 93 95 77 08 ;
| | | |
Collapse
|
8
|
Norton RS. Mu-conotoxins as leads in the development of new analgesics. Molecules 2010; 15:2825-44. [PMID: 20428082 PMCID: PMC6257286 DOI: 10.3390/molecules15042825] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/06/2010] [Accepted: 04/12/2010] [Indexed: 02/02/2023] Open
Abstract
Voltage-gated sodium channels (VGSCs) contain a specific binding site for a family of cone shell toxins known as mu-conotoxins. As some VGSCs are involved in pain perception and mu-conotoxins are able to block these channels, mu-conotoxins show considerable potential as analgesics. Recent studies have advanced our understanding of the three-dimensional structures and structure-function relationships of the mu-conotoxins, including their interaction with VGSCs. Truncated peptide analogues of the native toxins have been created in which secondary structure elements are stabilized by non-native linkers such as lactam bridges. Ultimately, it would be desirable to capture the favourable analgesic properties of the native toxins, in particular their potency and channel sub-type selectivity, in non-peptide mimetics. Such mimetics would constitute lead compounds in the development of new therapeutics for the treatment of pain.
Collapse
Affiliation(s)
- Raymond S Norton
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| |
Collapse
|
9
|
Lessene G, Smith BJ, Gable RW, Baell JB. Characterization of the Two Fundamental Conformations of Benzoylureas and Elucidation of the Factors That Facilitate Their Conformational Interchange. J Org Chem 2009; 74:6511-25. [DOI: 10.1021/jo900871a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Brian J. Smith
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Robert W. Gable
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Jonathan B. Baell
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
10
|
Han TS, Zhang MM, Walewska A, Gruszczynski P, Robertson CR, Cheatham TE, Yoshikami D, Olivera BM, Bulaj G. Structurally minimized mu-conotoxin analogues as sodium channel blockers: implications for designing conopeptide-based therapeutics. ChemMedChem 2009; 4:406-14. [PMID: 19107760 DOI: 10.1002/cmdc.200800292] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disulfide bridges that stabilize the native conformation of conotoxins pose a challenge in the synthesis of smaller conotoxin analogues. Herein we describe the synthesis of a minimized analogue of the analgesic mu-conotoxin KIIIA that blocks two sodium channel subtypes, the neuronal Na(V)1.2 and skeletal muscle Na(V)1.4. Three disulfide-deficient analogues of KIIIA were initially synthesized in which the native disulfide bridge formed between either C1-C9, C2-C15, or C4-C16 was removed. Deletion of the first bridge only slightly affected the peptide's bioactivity. To further minimize this analogue, the N-terminal residue was removed and two nonessential serine residues were replaced by a single 5-amino-3-oxapentanoic acid residue. The resulting "polytide" analogue retained the ability to block sodium channels and to produce analgesia. Until now, the peptidomimetic approach applied to conotoxins has progressed only modestly at best; thus, the disulfide-deficient analogues containing backbone spacers provide an alternative advance toward the development of conopeptide-based therapeutics.
Collapse
Affiliation(s)
- Tiffany S Han
- Department of Biology, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Sea anemones produce a variety of toxic peptides and proteins, including many ion channel blockers and modulators, as well as potent cytolysins. This review describes the structures that have been determined to date for the major classes of peptide and protein toxins. In addition, established and emerging methods for structure determination are summarized and the prospects for modelling newly described toxins are evaluated. In common with most other classes of proteins, toxins display conformational flexibility which may play a role in receptor binding and function. The prospects for obtaining atomic resolution structures of toxins bound to their receptors are also discussed.
Collapse
|
12
|
Wulff H, Zhorov BS. K+ channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem Rev 2008; 108:1744-73. [PMID: 18476673 PMCID: PMC2714671 DOI: 10.1021/cr078234p] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Heike Wulff
- Department of Pharmacology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
13
|
Green BR, Catlin P, Zhang MM, Fiedler B, Bayudan W, Morrison A, Norton RS, Smith BJ, Yoshikami D, Olivera BM, Bulaj G. Conotoxins containing nonnatural backbone spacers: cladistic-based design, chemical synthesis, and improved analgesic activity. ACTA ACUST UNITED AC 2007; 14:399-407. [PMID: 17462575 DOI: 10.1016/j.chembiol.2007.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/09/2007] [Accepted: 02/20/2007] [Indexed: 11/23/2022]
Abstract
Disulfide-rich neurotoxins from venomous animals continue to provide compounds with therapeutic potential. Minimizing neurotoxins often results in removal of disulfide bridges or critical amino acids. To address this drug-design challenge, we explored the concept of disulfide-rich scaffolds consisting of isostere polymers and peptidic pharmacophores. Flexible spacers, such as amino-3-oxapentanoic or 6-aminohexanoic acids, were used to replace conformationally constrained parts of a three-disulfide-bridged conotoxin, SIIIA. The peptide-polymer hybrids, polytides, were designed based on cladistic identification of nonconserved loci in related peptides. After oxidative folding, the polytides appeared to be better inhibitors of sodium currents in dorsal root ganglia and sciatic nerves in mice. Moreover, the polytides appeared to be significantly more potent and longer-lasting analgesics in the inflammatory pain model in mice, when compared to SIIIA. The resulting polytides provide a promising strategy for transforming disulfide-rich peptides into therapeutics.
Collapse
Affiliation(s)
- Brad R Green
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nicholson GM. Fighting the global pest problem: preface to the special Toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon 2006; 49:413-22. [PMID: 17223148 DOI: 10.1016/j.toxicon.2006.11.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 11/17/2006] [Indexed: 12/21/2022]
Abstract
Arthropod pests are responsible for major crop devastation and are vectors for the transmission of new and re-emerging diseases in humans and livestock. Despite many years of effective control by conventional agrochemical insecticides, a number of factors are threatening the effectiveness and continued use of these agents. These include the development of insecticide resistance and use-cancellation or de-registration of some insecticides due to human health and environmental concerns. Several approaches are being investigated for the design of new (bio)pesticides. These include the development of transgenic plants and recombinant baculoviruses as delivery systems for a variety of insect-selective toxins. Additional approaches for the development of foliar sprays include the rational design of peptidomimetics based on the key residues of these toxins that interact with the insect target. This special issue provides an overview of these phyletically selective animal, plant and microbial toxins and their diverse mechanisms of action to paralyze or kill arthropods. In addition, it reviews their potential for biopesticide discovery and validation of novel insecticide targets and provides an overview of the strengths and weaknesses of biopesticides in the global control of arthropod pests.
Collapse
Affiliation(s)
- Graham M Nicholson
- Neurotoxin Research Group, Department of Medical & Molecular Biosciences, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
15
|
Baell JB, Duggan PJ, Forsyth SA, Lewis RJ, Lok YP, Schroeder CI, Shepherd NE. Synthesis and biological evaluation of anthranilamide-based non-peptide mimetics of ω-conotoxin GVIA. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.05.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Harvey AJ, Baell JB, Toovey N, Homerick D, Wulff H. A new class of blockers of the voltage-gated potassium channel Kv1.3 via modification of the 4- or 7-position of khellinone. J Med Chem 2006; 49:1433-41. [PMID: 16480279 DOI: 10.1021/jm050839v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The voltage-gated potassium channel Kv1.3 constitutes an attractive target for the selective suppression of effector memory T cells in autoimmune diseases. We have previously reported the natural product khellinone, 1a, as a versatile lead molecule and identified two new classes of Kv1.3 blockers: (i) chalcone derivatives of khellinone, and (ii) khellinone dimers linked through the 6-position. Here we describe the multiple parallel synthesis of a new class of khellinone derivatives selectively alkylated at either the 4- or 7-position via the phenolic OH and show that several chloro, bromo, methoxy, and nitro substituted benzyl derivatives inhibit Kv1.3 with submicromolar potencies. Representative examples of the most potent compounds from each subclass, 11m (5-acetyl-4-(4'-chloro)benzyloxy-6-hydroxy-7-methoxybenzofuran) and 14m (5-acetyl-7-(4'-bromo)benzyloxy-6-hydroxy-4-methoxybenzofuran), block Kv1.3 with EC50 values of 480 and 400 nM, respectively. Both compounds exhibit moderate selectivity over other Kv1-family channels and HERG, are not cytotoxic, and suppress human T cell proliferation at low micromolar concentrations.
Collapse
Affiliation(s)
- Andrew J Harvey
- The Walter and Eliza Hall Institute of Medical Research Biotechnology Centre, 4 Research Avenue, La Trobe R&D Park, Bundoora 3086, Australia.
| | | | | | | | | |
Collapse
|
17
|
Harvey AJ, Gable RW, Baell JB. A three-residue, continuous binding epitope peptidomimetic of ShK toxin as a Kv1.3 inhibitor. Bioorg Med Chem Lett 2005; 15:3193-6. [PMID: 15935664 DOI: 10.1016/j.bmcl.2005.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 04/27/2005] [Accepted: 05/03/2005] [Indexed: 12/26/2022]
Abstract
The ShK toxin is a polypeptide that blocks the Kv1.3 potassium channel in T-lymphocytes and has been identified as a potential therapeutic for multiple sclerosis. ShK is well characterised in terms of structure and binding, offering an attractive target for the design of structural and functional mimetics. Building on our previous success in developing rationally designed peptidomimetics of ShK, we report a novel mimetic of the K22-Y23-R24 residues of the peptide. The mimetic was shown to inhibit the Kv1.3 channel with moderate activity.
Collapse
Affiliation(s)
- Andrew J Harvey
- The Walter and Eliza Hall, Institute of Medical Research, Biotechnology Centre, 4 Research Avenue, La Trobe R and D Park, Bundoora 3086, Australia
| | | | | |
Collapse
|
18
|
Tedford HW, Gilles N, Ménez A, Doering CJ, Zamponi GW, King GF. Scanning mutagenesis of omega-atracotoxin-Hv1a reveals a spatially restricted epitope that confers selective activity against insect calcium channels. J Biol Chem 2004; 279:44133-40. [PMID: 15308644 DOI: 10.1074/jbc.m404006200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We constructed a complete panel of alanine mutants of the insect-specific calcium channel blocker omega-atracotoxin-Hv1a. Lethality assays using these mutant toxins identified three spatially contiguous residues, Pro10, Asn27, and Arg35, that are critical for insecticidal activity against flies (Musca domestica) and crickets (Acheta domestica). Competitive binding assays using radiolabeled omega-atracotoxin-Hv1a and neuronal membranes prepared from the heads of American cockroaches (Periplaneta americana) confirmed the importance of these three residues for binding of the toxin to target calcium channels presumably expressed in the insect membranes. At concentrations up to 10 microm, omega-atracotoxin-Hv1a had no effect on heterologously expressed rat Cav2.1, Cav2.2, and Cav1.2 calcium channels, consistent with the previously reported insect selectivity of the toxin. 30 microm omega-atracotoxin-Hv1a inhibited rat Cav currents by 10-34%, depending on the channel subtype, and this low level of inhibition was essentially unchanged when Asn27 and Arg35, which appears to be critical for interaction of the toxin with insect Cav channels, were both mutated to alanine. We propose that the spatially contiguous epitope formed by Pro10, Asn27, and Arg35 confers specific binding to insect Cav channels and is largely responsible for the remarkable phyletic selectivity of omega-atracotoxin-Hv1a. This epitope provides a structural template for rational design of chemical insecticides that selectively target insect Cav channels.
Collapse
Affiliation(s)
- Hugo W Tedford
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington 06032-3305, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Arthropods are the most diverse animal group on the planet. Their ability to inhabit a vast array of ecological niches has inevitably brought them into conflict with humans. Although only a small minority are classified as pest species, they nevertheless destroy about a quarter of the world's annual crop production and transmit an impressive array of pathogens of human and veterinary public health importance. Arthropod pests have been controlled almost exclusively with chemical insecticides since the introduction of DDT in the 1940s. However, the evolution of resistance to many insecticides, coupled with increased awareness of the potential environmental and human and animal health impacts of these chemicals, has stimulated the search for new insecticidal compounds, novel molecular targets, and alternative control methods. Spider venoms are complex chemical cocktails that have evolved to kill or paralyze arthropod prey, and they represent a largely untapped reservoir of insecticidal compounds. This review focuses on several families of invertebrate-specific peptide neurotoxins that were isolated from the venom of Australian funnel-web spiders. These peptides are promising insecticide leads because of their selectivity for invertebrates and activity on previously unvalidated targets. These toxins should facilitate the development of novel target-based screens for new insecticide leads, while their mapped pharmacophores will provide templates for rational design of mimetics that act at these target sites. Furthermore, genes encoding these toxins can be used to improve the efficacy of insect-specific viruses.
Collapse
Affiliation(s)
- Hugo W Tedford
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06032-3305, USA
| | | | | | | |
Collapse
|