1
|
Tan L, Hu Y, Li Y, Yang L, Cai X, Liu W, He J, Wu Y, Liu T, Wang N, Yang Y, Adelstein RS, Wang A. Investigation of the molecular biology underlying the pronounced high gene targeting frequency at the Myh9 gene locus in mouse embryonic stem cells. PLoS One 2020; 15:e0230126. [PMID: 32226034 PMCID: PMC7105122 DOI: 10.1371/journal.pone.0230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/23/2020] [Indexed: 11/21/2022] Open
Abstract
The generation of genetically modified mouse models derived from gene targeting (GT) in mouse embryonic stem (ES) cells (mESCs) has greatly advanced both basic and clinical research. Our previous finding that gene targeting at the Myh9 exon2 site in mESCs has a pronounced high homologous recombination (HR) efficiency (>90%) has facilitated the generation of a series of nonmuscle myosin II (NM II) related mouse models. Furthermore, the Myh9 gene locus has been well demonstrated to be a new safe harbor for site-specific insertion of other exogenous genes. In the current study, we intend to investigate the molecular biology underlying for this high HR efficiency from other aspects. Our results confirmed some previously characterized properties and revealed some unreported observations: 1) The comparison and analysis of the targeting events occurring at the Myh9 and several widely used loci for targeting transgenesis, including ColA1, HPRT, ROSA26, and the sequences utilized for generating these targeting constructs, indicated that a total length about 6 kb with approximate 50% GC-content of the 5’ and 3’ homologous arms, may facilitate a better performance in terms of GT efficiency. 2) Despite increasing the length of the homologous arms, shifting the targeting site from the Myh9 exon2, to intron2, or exon3 led to a gradually reduced GT frequency (91.7, 71.8 and 50.0%, respectively). This finding provides the first evidence that the HR frequency may also be associated with the targeting site even in the same locus. Meanwhile, the decreased trend of the GT efficiency at these targeting sites was consistent with the reduced percentage of simple sequence repeat (SSR) and short interspersed nuclear elements (SINEs) in the sequences for generating the targeting constructs, suggesting the potential effects of these DNA elements on GT efficiency; 3) Our series of targeting experiments and analyses with truncated 5’ and 3’ arms at the Myh9 exon2 site demonstrated that GT efficiency positively correlates with the total length of the homologous arms (R = 0.7256, p<0.01), confirmed that a 2:1 ratio of the length, a 50% GC-content and the higher amount of SINEs for the 5’ and 3’ arms may benefit for appreciable GT frequency. Though more investigations are required, the Myh9 gene locus appears to be an ideal location for identifying HR-related cis and trans factors, which in turn provide mechanistic insights and also facilitate the practical application of gene editing.
Collapse
Affiliation(s)
- Lei Tan
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yi Hu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yalan Li
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Lingchen Yang
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wei Liu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Jiayi He
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yingxin Wu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Tanbin Liu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Naidong Wang
- Laboratory of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Yi Yang
- Laboratory of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Robert S. Adelstein
- Laboratory of Molecular Cardiology (LMC), NHLBI/NIH, Bethesda, MD, United States of America
| | - Aibing Wang
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
- Laboratory of Molecular Cardiology (LMC), NHLBI/NIH, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
2
|
Kocer A, Henry-Berger J, Noblanc A, Champroux A, Pogorelcnik R, Guiton R, Janny L, Pons-Rejraji H, Saez F, Johnson GD, Krawetz SA, Alvarez JG, Aitken RJ, Drevet JR. Oxidative DNA damage in mouse sperm chromosomes: Size matters. Free Radic Biol Med 2015; 89:993-1002. [PMID: 26510519 DOI: 10.1016/j.freeradbiomed.2015.10.419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/18/2015] [Accepted: 10/22/2015] [Indexed: 01/24/2023]
Abstract
Normal embryo and foetal development as well as the health of the progeny are mostly dependent on gamete nuclear integrity. In the present study, in order to characterize more precisely oxidative DNA damage in mouse sperm we used two mouse models that display high levels of sperm oxidative DNA damage, a common alteration encountered both in in vivo and in vitro reproduction. Immunoprecipitation of oxidized sperm DNA coupled to deep sequencing showed that mouse chromosomes may be largely affected by oxidative alterations. We show that the vulnerability of chromosomes to oxidative attack inversely correlated with their size and was not linked to their GC richness. It was neither correlated with the chromosome content in persisting nucleosomes nor associated with methylated sequences. A strong correlation was found between oxidized sequences and sequences rich in short interspersed repeat elements (SINEs). Chromosome position in the sperm nucleus as revealed by fluorescent in situ hybridization appears to be a confounder. These data map for the first time fragile mouse sperm chromosomal regions when facing oxidative damage that may challenge the repair mechanisms of the oocyte post-fertilization.
Collapse
Affiliation(s)
- Ayhan Kocer
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France
| | - Joelle Henry-Berger
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France
| | - Anais Noblanc
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France
| | - Alexandre Champroux
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France
| | - Romain Pogorelcnik
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France
| | - Rachel Guiton
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France
| | - Laurent Janny
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France; CHU Estaing, Assistance Médicale à la Procréation, Clermont-Ferrand, France
| | - Hanae Pons-Rejraji
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France; CHU Estaing, Assistance Médicale à la Procréation, Clermont-Ferrand, France
| | - Fabrice Saez
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France
| | - Graham D Johnson
- Center for Molecular Medicine & Genetics, Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Stephen A Krawetz
- Center for Molecular Medicine & Genetics, Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Juan G Alvarez
- Centro ANDROGEN, La Coruña, Spain; Harvard Medical School, Boston, MA 02115, USA
| | - R John Aitken
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Joël R Drevet
- GReD laboratory, CNRS UMR6293-INSERM U1103-Clermont Université, BP80006, 63171 Aubière cedex, France.
| |
Collapse
|
3
|
A matrix protein silences transposons and repeats through interaction with retinoblastoma-associated proteins. Curr Biol 2013; 23:345-50. [PMID: 23394836 DOI: 10.1016/j.cub.2013.01.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 12/12/2012] [Accepted: 01/11/2013] [Indexed: 11/24/2022]
Abstract
Epigenetic regulation helps to maintain genomic integrity by suppressing transposable elements (TEs) and also controls key developmental processes, such as flowering time. To prevent TEs from causing rearrangements and mutations, TE and TE-like repetitive DNA sequences are usually methylated, whereas histones are hypoacetylated and methylated on specific residues (e.g., H3 lysine 9 dimethylation [H3K9me2]). TEs and repeats can also attenuate gene expression. However, how various histone modifiers are recruited to target loci is not well understood. Here we show that knockdown of the nuclear matrix protein with AT-hook DNA binding motifs TRANSPOSABLE ELEMENT SILENCING VIA AT-HOOK (TEK) in Arabidopsis Landsberg erecta results in robust activation of various TEs, the TE-like repeat-containing floral repressor genes FLOWERING LOCUS C (FLC) and FWA. This derepression is associated with chromatin conformational changes, increased histone acetylation, reduced H3K9me2, and even TE transposition. TEK directly binds to an FLC-repressive regulatory region and the silencing repeats of FWA and associates with Arabidopsis homologs of the Retinoblastoma-associated protein 46/48, FVE and MSI5, which mediate histone deacetylation. We propose that the nuclear matrix protein TEK acts in the maintenance of genome integrity by silencing TE and repeat-containing genes.
Collapse
|
4
|
Liu R, Koyanagi KO, Chen S, Kishima Y. Evolutionary force of AT-rich repeats to trap genomic and episomal DNAs into the rice genome: lessons from endogenous pararetrovirus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:817-28. [PMID: 22900922 DOI: 10.1111/tpj.12002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In plant genomes, the incorporation of DNA segments is not a common method of artificial gene transfer. Nevertheless, various segments of pararetroviruses have been found in plant genomes in recent decades. The rice genome contains a number of segments of endogenous rice tungro bacilliform virus-like sequences (ERTBVs), many of which are present between AT dinucleotide repeats (ATrs). Comparison of genomic sequences between two closely related rice subspecies, japonica and indica, allowed us to verify the preferential insertion of ERTBVs into ATrs. In addition to ERTBVs, the comparative analyses showed that ATrs occasionally incorporate repeat sequences including transposable elements, and a wide range of other sequences. Besides the known genomic sequences, the insertion sequences also represented DNAs of unclear origins together with ERTBVs, suggesting that ATrs have integrated episomal DNAs that would have been suspended in the nucleus. Such insertion DNAs might be trapped by ATrs in the genome in a host-dependent manner. Conversely, other simple mono- and dinucleotide sequence repeats (SSR) were less frequently involved in insertion events relative to ATrs. Therefore, ATrs could be regarded as hot spots of double-strand breaks that induce non-homologous end joining. The insertions within ATrs occasionally generated new gene-related sequences or involved structural modifications of existing genes. Likewise, in a comparison between Arabidopsis thaliana and Arabidopsis lyrata, the insertions preferred ATrs to other SSRs. Therefore ATrs in plant genomes could be considered as genomic dumping sites that have trapped various DNA molecules and may have exerted a powerful evolutionary force.
Collapse
Affiliation(s)
- Ruifang Liu
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | |
Collapse
|
5
|
Wenke T, Döbel T, Sörensen TR, Junghans H, Weisshaar B, Schmidt T. Targeted identification of short interspersed nuclear element families shows their widespread existence and extreme heterogeneity in plant genomes. THE PLANT CELL 2011; 23:3117-28. [PMID: 21908723 PMCID: PMC3203444 DOI: 10.1105/tpc.111.088682] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 05/18/2023]
Abstract
Short interspersed nuclear elements (SINEs) are non-long terminal repeat retrotransposons that are highly abundant, heterogeneous, and mostly not annotated in eukaryotic genomes. We developed a tool designated SINE-Finder for the targeted discovery of tRNA-derived SINEs. We analyzed sequence data of 16 plant genomes, including 13 angiosperms and three gymnosperms and identified 17,829 full-length and truncated SINEs falling into 31 families showing the widespread occurrence of SINEs in higher plants. The investigation focused on potato (Solanum tuberosum), resulting in the detection of seven different SolS SINE families consisting of 1489 full-length and 870 5' truncated copies. Consensus sequences of full-length members range in size from 106 to 244 bp depending on the SINE family. SolS SINEs populated related species and evolved separately, which led to some distinct subfamilies. Solanaceae SINEs are dispersed along chromosomes and distributed without clustering but with preferred integration into short A-rich motifs. They emerged more than 23 million years ago and were species specifically amplified during the radiation of potato, tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum). We show that tobacco TS retrotransposons are composite SINEs consisting of the 3' end of a long interspersed nuclear element integrated downstream of a nonhomologous SINE family followed by successfully colonization of the genome. We propose an evolutionary scenario for the formation of TS as a spontaneous event, which could be typical for the emergence of SINE families.
Collapse
Affiliation(s)
- Torsten Wenke
- Department of Biology, Dresden University of Technology, D-01062 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Zhao T, Palotta M, Langridge P, Prasad M, Graner A, Schulze-Lefert P, Koprek T. Mapped Ds/T-DNA launch pads for functional genomics in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:811-26. [PMID: 16889649 DOI: 10.1111/j.1365-313x.2006.02831.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A system for targeted gene tagging and local saturation mutagenesis based on maize transposable elements (Ac/Ds) was developed in barley (Hordeum vulgare L.). We generated large numbers of transgenic barley lines carrying a single copy of the non-autonomous maize Ds element at defined positions in the genome. Independent Ds lines were either generated by activating Ds elements in existing single-copy lines after crossing with AcTPase-expressing plants or by Agrobacterium-mediated transformation. Genomic DNA flanking Ds and T-DNA insertion sites from over 200 independent lines was isolated and sequenced, and was used for a sequence based mapping strategy in a barley reference population. More than 100 independent Ds insertion sites were mapped and can be used as launch pads for future targeted tagging of genes in the vicinity of the insertion sites. Sequence analysis of Ds and T-DNA flanking regions revealed a sevenfold preference of both mutagens for insertion into non-redundant, gene-containing regions of the barley genome. However, whilst transposed Ds elements preferentially inserted adjacent to regions with a high number of predicted and experimentally validated matrix attachment regions (nuclear MARs), this was not the case for T-DNA integration sites. These findings and an observed high transposition frequency from mapped launch pads demonstrate the future potential of gene tagging for functional genomics and gene discovery in barley.
Collapse
Affiliation(s)
- Tiehan Zhao
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Schulman AH, Kalendar R. A movable feast: diverse retrotransposons and their contribution to barley genome dynamics. Cytogenet Genome Res 2005; 110:598-605. [PMID: 16093713 DOI: 10.1159/000084993] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 03/09/2004] [Indexed: 12/12/2022] Open
Abstract
Cellular genes comprise at most 5% of the barley genome; the rest is occupied primarily by retrotransposons. Retrotransposons move intracellularly by a replicative mechanism similar to that of retroviruses. We describe the major classes of retrotransposons in barley, including the two nonautonomous groups that were recently identified, and detail the evidence supporting our current understanding of their life cycle. Data from analyses of long contiguous segments of the barley genome, as well as surveys of the prevalence of full-length retrotransposons and their solo LTR derivatives in the genus Hordeum, indicate that integration and recombinational loss of retrotransposons are major factors shaping the genome. The sequence conservation and integrative capacity of barley retrotransposons have made them excellent sources for development of molecular marker systems.
Collapse
Affiliation(s)
- A H Schulman
- Plant Breeding Biotechnology, MTT Agrifood Research, Jokioinen, Finland.
| | | |
Collapse
|
8
|
Reconstruction of putative DNA virus from endogenous rice tungro bacilliform virus-like sequences in the rice genome: implications for integration and evolution. BMC Genomics 2004; 5:80. [PMID: 15488154 PMCID: PMC526188 DOI: 10.1186/1471-2164-5-80] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 10/18/2004] [Indexed: 11/10/2022] Open
Abstract
Background Plant genomes contain various kinds of repetitive sequences such as transposable elements, microsatellites, tandem repeats and virus-like sequences. Most of them, with the exception of virus-like sequences, do not allow us to trace their origins nor to follow the process of their integration into the host genome. Recent discoveries of virus-like sequences in plant genomes led us to set the objective of elucidating the origin of the repetitive sequences. Endogenous rice tungro bacilliform virus (RTBV)-like sequences (ERTBVs) have been found throughout the rice genome. Here, we reconstructed putative virus structures from RTBV-like sequences in the rice genome and characterized to understand evolutionary implication, integration manner and involvements of endogenous virus segments in the corresponding disease response. Results We have collected ERTBVs from the rice genomes. They contain rearranged structures and no intact ORFs. The identified ERTBV segments were shown to be phylogenetically divided into three clusters. For each phylogenetic cluster, we were able to make a consensus alignment for a circular virus-like structure carrying two complete ORFs. Comparisons of DNA and amino acid sequences suggested the closely relationship between ERTBV and RTBV. The Oryza AA-genome species vary in the ERTBV copy number. The species carrying low-copy-number of ERTBV segments have been reported to be extremely susceptible to RTBV. The DNA methylation state of the ERTBV sequences was correlated with their copy number in the genome. Conclusions These ERTBV segments are unlikely to have functional potential as a virus. However, these sequences facilitate to establish putative virus that provided information underlying virus integration and evolutionary relationship with existing virus. Comparison of ERTBV among the Oryza AA-genome species allowed us to speculate a possible role of endogenous virus segments against its related disease.
Collapse
|
9
|
Rudd S, Frisch M, Grote K, Meyers BC, Mayer K, Werner T. Genome-wide in silico mapping of scaffold/matrix attachment regions in Arabidopsis suggests correlation of intragenic scaffold/matrix attachment regions with gene expression. PLANT PHYSIOLOGY 2004; 135:715-22. [PMID: 15208419 PMCID: PMC514109 DOI: 10.1104/pp.103.037861] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 03/26/2004] [Accepted: 03/28/2004] [Indexed: 05/17/2023]
Abstract
We carried out a genome-wide prediction of scaffold/matrix attachment regions (S/MARs) in Arabidopsis. Results indicate no uneven distribution on the chromosomal level but a clear underrepresentation of S/MARs inside genes. In cases where S/MARs were predicted within genes, these intragenic S/MARs were preferentially located within the 5'-half, most prominently within introns 1 and 2. Using Arabidopsis whole-genome expression data generated by the massively parallel signature sequencing methodology, we found a negative correlation between S/MAR-containing genes and transcriptional abundance. Expressed sequence tag data correlated the same way with S/MAR-containing genes. Thus, intragenic S/MARs show a negative correlation with transcription level. For various genes it has been shown experimentally that S/MARs can function as transcriptional regulators and that they have an implication in stabilizing expression levels within transgenic plants. On the basis of a genome-wide in silico S/MAR analysis, we found a significant correlation between the presence of intragenic S/MARs and transcriptional down-regulation.
Collapse
Affiliation(s)
- Stephen Rudd
- Munich Information Center for Protein Sequences/Institute for Bioinformatics, GSF-National Research Center for Environment and Health, 85764 Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Bode J, Goetze S, Heng H, Krawetz SA, Benham C. From DNA structure to gene expression: mediators of nuclear compartmentalization and dynamics. Chromosome Res 2004; 11:435-45. [PMID: 12971720 DOI: 10.1023/a:1024918525818] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Eukaryotic genomes are functionally compartmentalized into chromatin domains by their attachment to a supporting structure that has traditionally been termed the nuclear matrix. Present evidence indicates the dynamics of this entity, which requires particular properties of the elements that mediate this kind of interaction. Above all, this is enabled by the so-called 'mass binding phenomenon' by which scaffold/matrix-attachment regions (S/MARs) reversibly associate with ubiquitous factors. Recent investigations and novel techniques have shown that these contacts can be altered by modulators as well as by specific interactions with the components of enhancers and locus control regions.
Collapse
Affiliation(s)
- J Bode
- GBF-German Research Center for Biotechnology/Epigenetic Regulation, Mascheroder Weg 1, D-38124 Braunschweig.
| | | | | | | | | |
Collapse
|
11
|
Avramova ZV. Heterochromatin in animals and plants. Similarities and differences. PLANT PHYSIOLOGY 2002; 129:40-9. [PMID: 12011336 PMCID: PMC1540225 DOI: 10.1104/pp.010981] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Zoya V Avramova
- School of Biological Sciences, Manter Hall, University of Nebraska, Lincoln, Nebraska 68588, USA.
| |
Collapse
|
12
|
Lenoir A, Lavie L, Prieto JL, Goubely C, Coté JC, Pélissier T, Deragon JM. The evolutionary origin and genomic organization of SINEs in Arabidopsis thaliana. Mol Biol Evol 2001; 18:2315-22. [PMID: 11719581 DOI: 10.1093/oxfordjournals.molbev.a003778] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have characterized the two families of SINE retroposons present in Arabidopsis thaliana. The origin, distribution, organization, and evolutionary history of RAthE1 and RAthE2 elements were studied and compared to the well-characterized SINE S1 element from Brassica. Our studies show that RAthE1, RAthE2, and S1 retroposons were generated independently from three different tRNAs. The RAthE1 and RAthE2 families are older than the S1 family and are present in all tested Cruciferae species. The evolutionary history of the RAthE1 family is unusual for SINEs. The 144 RAthE1 elements of the Arabidopsis genome cannot be classified in distinct subfamilies of different evolutionary ages as is the case for S1, RAthE2, and mammalian SINEs. Instead, most RAthE1 elements were probably derived steadily from a single source gene that was maintained intact and active for at least 12-20 Myr, a result suggesting that the RAthE1 source gene was under selection. The distribution of RAthE1 and RAthE2 elements on the Arabidopsis physical map was studied. We observed that, in contrast to other Arabidopsis transposable elements, SINEs are not concentrated in the heterochromatic regions. Instead, SINEs are grouped in the euchromatic chromosome territories several hundred kilobase pairs long. In these territories, SINE elements are closely associated with genes. A retroposition partnership between Arabidopsis SINEs and LINEs is proposed.
Collapse
Affiliation(s)
- A Lenoir
- Centre National de la Recherche Scientifique, Université Blaise Pascal Clermont-Ferrand II, Aubière cedex, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Arnaud P, Yukawa Y, Lavie L, Pélissier T, Sugiura M, Deragon JM. Analysis of the SINE S1 Pol III promoter from Brassica; impact of methylation and influence of external sequences. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 26:295-305. [PMID: 11439118 DOI: 10.1046/j.1365-313x.2001.01029.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transcription is an important control point in the transposable element mobilization process. To better understand the regulation of the plant SINE (Short Interspersed Elements) S1, its promoter sequence was studied using an in vitro pol III transcription system derived from tobacco cells. We show that the internal S1 promoter can be functional although upstream external sequences were found to enhance this basal level of transcription. For one putative 'master' locus (na7), three CAA triplets (in positions -12, -7 and -2) and two overlapping TATA motifs (in positions -54 to -43) were important to stimulate transcription. For this locus, two transcription initiation regions were characterized, one centered on position + 1 (first nucleotide of the S1 element) and one centered on position - 19 independently of the internal motifs. The CAA triplets only influence transcription in + 1 and work in association with the internal motifs. We show that methylation can inhibit transcription at the na7 locus. We also observe that S1 RNA is cleaved in a smaller Poly (A) minus product by a process analogous to the maturation of mammalian SINEs.
Collapse
Affiliation(s)
- P Arnaud
- CNRS UMR6547 and GDR2157, Biomove, Université Blaise Pascal Clermont-Ferrand II, 63177 Aubière Cedex, France
| | | | | | | | | | | |
Collapse
|