1
|
Hu J, Li P, Han H, Ji P, Zhao X, Li Z. Integrated analysis of metabolomic and transcriptomic profiling reveals the effect of Buyang Huanwu decoction on Parkinson's disease in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154755. [PMID: 36948142 DOI: 10.1016/j.phymed.2023.154755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a common, complex, and chronic neurodegenerative disorder involved in multi-system. At present, medicine for PD has many limitations. Buyang Huanwu decoction (BHD), a famous traditional Chinese medicinal (TCM) formulae, is used in the treatment of PD clinically in China. However, the therapeutic mechanism is still unknown. PURPOSE We aimed to explore the pharmacological mechanism of BHD alleviating PD through an integrated liver metabolome and brain transcriptome analysis. METHODS The mice with PD were induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Behavioral tests and immunohistochemistry were used to evaluate the neuroprotective effects of BHD. The non-targeted metabolomics analysis was conducted to profile differentially accumulated metabolites (DAMs) in the liver using a UHPLC-Q-Exactive MS/MS method. The differentially expressed genes (DEGs) in the brain were investigated by transcriptomic analysis on an Illumina sequencing platform. The correlations of DAMs and DEGs were investigated using an integrated metabolomic and transcriptomic approach. RESULTS The results of behavioral tests and immunohistochemistry proved the alleviated effects of BHD on PD symptoms. A total of 14 and 36 DAMs were detected in the groups treated with low- (L group) and high-dose (H group) BHD respectively under the positive ion mode. Compared with the PD model group (M group), three enriched pathways including metabolic pathways, ABC transporters, and biosynthesis of amino acids were common in the L and H group. Transcriptomic analysis proved that BHD could regulate the expression of numerous genes, some of which were targeted by Ben-Ldopa such as Creb5, Gm45623, Ccer2, Cd180, Fosl2, Crip3, and Noxred1. Based on the integrated metabolomic and transcriptomic analysis, 7 metabolite-gene pairs were found in four comparisons, including C vs M, M vs P, M vs L, and M vs H, and 6 enriched pathways containing purine metabolism, glycine/serine/threonine metabolism, phenylalanine metabolism, carbon fixation in photosynthetic organisms, thiamine metabolism, and ABC transporters were overlapped. CONCLUSIONS Though the underlying pharmacological mechanism of BHD is still lacking, we provided evidence that BHD could improve dopaminergic neurons in MPTP-induced PD mice by regulating liver metabolism and brain transcriptome. The correlation between the liver and the brain was preliminarily revealed in this study.
Collapse
Affiliation(s)
- Jianran Hu
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Ping Li
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Hongyan Han
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Pengyu Ji
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China
| | - Xin Zhao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Fang Z, Ying Y, Jin W, Xu H. Quantitative analysis of effects of salvianic acid a combined with hydroxy safflower yellow a on rat endothelial cells after hypoxic injury using the combination index method. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Zheyu Fang
- Zhejiang Chinese Medical University, China
| | - Yuqi Ying
- Zhejiang Chinese Medical University, China
| | | | - Huaping Xu
- Zhejiang Chinese Medical University, China
| |
Collapse
|
3
|
Protective effects of effective ingredients of Danshen (Radix Salviae Miltiorrhizae) and Honghua (Flos Carthami) compatibility after rat hippocampal neurons induced by hypoxia injury. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30907-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Yan J, Thomson JK, Zhao W, Gao X, Huang F, Chen B, Liang Q, Song LS, Fill M, Ai X. Role of Stress Kinase JNK in Binge Alcohol-Evoked Atrial Arrhythmia. J Am Coll Cardiol 2018; 71:1459-1470. [PMID: 29598867 PMCID: PMC5903584 DOI: 10.1016/j.jacc.2018.01.060] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/03/2018] [Accepted: 01/23/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Excessive binge alcohol drinking has acute cardiac arrhythmogenic effects, including promotion of atrial fibrillation (AF), which underlies "Holiday Heart Syndrome." The mechanism that couples binge alcohol abuse with AF susceptibility remains unclear. We previously reported stress-activated c-Jun N-terminal kinase (JNK) signaling contributes to AF development. This is interesting because JNK is implicated in alcohol-caused organ malfunction beyond the heart. OBJECTIVES The purpose of this study was to detail how JNK promotes binge alcohol-evoked susceptibility to AF. METHODS The authors found binge alcohol-exposure leads to activated JNK, specifically JNK2. Furthermore, binge alcohol induces AF (24- vs. 1.8-Hz burst pacing-induced episodes per attempt per animal), higher incidence of diastolic intracellular Ca2+ activity (Ca2+ waves, sarcoplasmic reticulum [SR] Ca2+ leakage), and membrane voltage (Vm) and systolic Ca2+ release spatiotemporal heterogeneity (ΔtVm-Ca). These changes were completely eliminated by JNK inhibition both in vivo and in vitro. calmodulin kinase II (CaMKII) is a proarrhythmic molecule known to drive SR Ca2+ mishandling. RESULTS The authors report for the first time that binge alcohol activates JNK2, which subsequently phosphorylates the CaMKII protein, enhancing CaMKII-driven SR Ca2+ mishandling. CaMKII inhibition eliminates binge alcohol-evoked arrhythmic activities. CONCLUSIONS Our studies demonstrate that binge alcohol exposure activates JNK2 in atria, which then drives CaMKII activation, prompting aberrant Ca2+ waves and, thus, enhanced susceptibility to atrial arrhythmia. Our results reveal a previously unrecognized form of alcohol-driven kinase-on-kinase proarrhythmic crosstalk. Atrial JNK2 function represents a potential novel therapeutic target to treat and/or prevent AF.
Collapse
Affiliation(s)
- Jiajie Yan
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois; Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Justin K Thomson
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Weiwei Zhao
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois; Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Xianlong Gao
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Fei Huang
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois
| | - Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Qingrong Liang
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Michael Fill
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois
| | - Xun Ai
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois; Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois.
| |
Collapse
|
5
|
Zhou X, Siu WS, Fung CH, Cheng L, Wong CW, Zhang C, Liu CL, Kwok HF, Lau CP, Wat E, Lau CBS, Leung PC, Ko CH, Hung LK. Pro-angiogenic effects of Carthami Flos whole extract in human microvascular endothelial cells in vitro and in zebrafish in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1256-1263. [PMID: 25172787 DOI: 10.1016/j.phymed.2014.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/01/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
AIM Carthami Flos (CF) is a Chinese herb traditionally used for cardiovascular disease and bone injury in China with pharmacological effects on improving blood circulation. The aim of this study was to investigate the angiogenic potential of CF whole extract (extracted by boiling with water, followed by ethanol) and the underlying mechanisms in human microvascular endothelial cells (HMEC-1) in vitro and in transgenic TG(fli1:EGFP)(y1)/+(AB) zebrafish with transgenic endothelial cells expressing EGFP (Enhanced Green Fluorescent Protein) in vivo. METHODS Effects of CF whole extract on cell proliferation, migration and tube formation in HMEC-1 cells in vitro were detected by MTT assay, wound healing assay and tube formation assay. Its angiogenic effect in zebrafish was investigated by monitoring the sprout number in the sub-intestinal vessel (SIV), and the underlying mechanisms were tested by quantitative real-time PCR. RESULTS CF whole extract increased cell proliferation, migration and tube formation in vitro in HMEC-1 cells. Its angiogenic effect was also confirmed in vivo in zebrafish by increasing the sprout number in the SIV. As determined by quantitative real-time PCR, CF whole extract up-regulated the expression of angiogenesis-related genes in zebrafish, including angiogenic and its associated growth factors and receptors (e.g. IGF1, CTGF, NRP2, and VEGFR3), transcription factor (e.g. HIF1A), matrix degradation and endothelial cell migration-related factors (e.g. MMP2, MMP9, TIMP2, PLG and PLAU), cell adhesion molecules (e.g. ITGAV, ITGB3, beta-catenin and PECAM1), tubule formation factors (e.g. ANGPT1, TIE-2, PDGFR-B, CDH5, S1PR1, FGF2, Shh, and TGFRB1), and blood vessel maturation/formation factor (e.g. Ephrin B2). CONCLUSIONS CF whole extract increased angiogenesis in HMEC-1 cells in vitro and in zebrafish in vivo with multiple mechanisms.
Collapse
Affiliation(s)
- Xuelin Zhou
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Wing-Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Chak-Hei Fung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Ling Cheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Chun-Wai Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Cheng Zhang
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Cheuk-Lun Liu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Hin-Fai Kwok
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Ching-Po Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Elaine Wat
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Chun-Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China.
| | - Leung-Kim Hung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
6
|
Ghayur MN. Traditional Chinese Medicine Research and Education in Canada. J Altern Complement Med 2009; 15:689-94. [DOI: 10.1089/acm.2008.0552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Choi YH, Do JS, Seo HJ, Hwang JK, Kim JH, Song EJ, Nam SY. Oral Administration of Aqueous Extract ofCarthami FlosInduces Macrophage Activation and Preferentially Potentiates Type 1 Helper T-Cell ResponseIn Vivo. Immunopharmacol Immunotoxicol 2008; 29:187-200. [PMID: 17849267 DOI: 10.1080/08923970701511892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In vivo immunomodulatory activity of aqueous extract of Carthami Flos (AECF) was investigated using a mouse model immunized with keyhole limpet hemocyanin. Serum level of Ag-specific IgG2a was significantly elevated by oral administration of AECF but not IgG1. However, no selective B-cell proliferation by AECF was observed in vivo. Ag-specific proliferation and IFN-gamma and IL-5 production of draining lymph node T cells also was higher in AECF-treated mice when compared with water-treated control mice. However, AECF failed to enhance nonspecific T-cell response under CD3 stimulation. These results led us to hypothesize that AECF potentiates Ag-specific T-cell response, possibly through activation of antigen presenting cells (APC) other than B cells. Functional assessment of splenic macrophages showed that AECF administration significantly enhances IL-12 production as well as APC activity for IFN-gamma production and STAT-4 activation by T cells. Collectively, these data strongly support that AECF preferentially potentiates immune response polarized toward TH1 and for which increased activation of macrophages is most likely to be responsible. The present data implicate a possible application of AECF to potentiate cellular immunity and, we hope, prevent intracellular infections.
Collapse
Affiliation(s)
- Youn-Hwa Choi
- Department of Biological Science, School of Science and Technology, Jeonju University, Jeonju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhao J, Huang X, Tang W, Ren P, Xing Z, Tian X, Zhu Z, Wang Y. Effect of oriental herbal prescription Guan-Xin-Er-Hao on coronary flow in healthy volunteers and antiapoptosis on myocardial ischemia-reperfusion in rat models. Phytother Res 2007; 21:926-31. [PMID: 17582591 DOI: 10.1002/ptr.2194] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ischemic heart disease (IHD) is the main cause of death and a major public health problem in the world. The traditional herbal medicinal formula Guan-Xin-Er-Hao (GXEH) has been used in China and East Asia for the treatment of coronary heart disease, however, the underlying cardioprotection mechanisms remain unclear. To make clear the antiischemic mechanism involved, GXEH was orally administered to 15 healthy volunteers. Heart rates (HR), blood pressure and coronary flow (CF) velocity before and 1 h after a single oral dose of GXEH were observed and compared. It was demonstrated that the oral administration of GXEH increased CF acutely in a dose-dependent manner without modification of systemic hemodynamic parameters. Moreover, the myocardial protection function of GXEH was also experimentally examined in ischemia-reperfusion (I/R) rat models. Apoptosis was measured quantitatively by the terminal transferase UTP nick end-labeling (TUNEL) method and confirmed by caspase-3 activity. The infarct size and TUNEL-positive cells of GXEH-treated group (20 g/kg) were reduced significantly, which was consistent with the decreased caspase-3 activity. These suggest that GXEH protects hearts from ischemia injury by increasing CF and reduces infarct size by inhibiting myocardial apoptosis.
Collapse
Affiliation(s)
- Jianlei Zhao
- Laboratory of Ethnopharmacology and Department of Integrated Chinese and Western Medicine, West China Hospital, Sichuan University Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Li R, Guo M, Zhang G, Xu X, Li Q. Neuroprotection of nicotiflorin in permanent focal cerebral ischemia and in neuronal cultures. Biol Pharm Bull 2006; 29:1868-72. [PMID: 16946500 DOI: 10.1248/bpb.29.1868] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nicotiflorin is a single component extracted from traditional Chinese medicine Flos Carthami. In this study, we investigated its neuroprotection in permanent focal cerebral ischemia model in rats, and in an in vitro model of ischemia. At doses of 2.5, 5 and 10 mg/kg, nicotiflorin administered immediately after the onset of ischemia markedly reduced brain infarct volume and neurological deficits. For primarily cultured neurons suffered 2 h hypoxia followed by 24 h reoxygenation, nicotiflorin significantly attenuated cell death and reduced LDH release. Morphological observation also directly confirmed its protective effect on neuron. These results provided strong pharmacological basis for its potential therapeutic role in cerebral ischemic illness.
Collapse
Affiliation(s)
- Runping Li
- Department of Diving Medicine, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | | | | | | | | |
Collapse
|
10
|
Li R, Guo M, Zhang G, Xu X, Li Q. Nicotiflorin reduces cerebral ischemic damage and upregulates endothelial nitric oxide synthase in primarily cultured rat cerebral blood vessel endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2006; 107:143-50. [PMID: 16806761 DOI: 10.1016/j.jep.2006.04.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 04/21/2006] [Accepted: 04/29/2006] [Indexed: 05/09/2023]
Abstract
Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Flos Carthami. In the current study, we investigated the neuroprotective effect of nicotiflorin on a transient focal cerebral ischemia-reperfusion model in rats. Nicotiflorin (2.5-10 mg/kg) administered after onset of ischemia markedly reduced brain infarct volume by 24.5-63.2% and neurological deficits. Also the effect of nicotiflorin on endothelial nitric oxide synthase (eNOS) activity, mRNA and protein expression after hypoxia-reoxygenation (H-R) treatment was investigated in an in vitro model mimic cerebrum ischemia-reperfusion in vivo. After total 4 h hypoxia and 12 h reoxygenation, eNOS activity, mRNA and protein levels in the primarily cultured rat cerebral blood vessel endothelial cells treated with nicotiflorin (25-100 microg/ml) 2 h after onset of hypoxia were significantly higher than eNOS activity, mRNA and protein levels in the pure H-R cells and also higher than eNOS activity, mRNA and protein levels in cells cultured under normoxic conditions. The results demonstrated that nicotiflorin had a protective effect against cerebral ischemic damage. The results also gave an important elucidation for the mechanism underlying the protective effect at the cellular level.
Collapse
Affiliation(s)
- Runping Li
- Department of Diving Medicine, Faculty of Navy Medicine, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Siow YL, Gong Y, Au-Yeung KKW, Woo CWH, Choy PC, O K. Emerging issues in traditional Chinese medicine. Can J Physiol Pharmacol 2005; 83:321-34. [PMID: 15877107 DOI: 10.1139/y05-029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Traditional Chinese medicine (TCM) has many beneficial effects and has been practiced for several thousand years. It is known to treat the cause of a disease rather than to alleviate its symptoms. Based on a belief that TCM is natural, safe, and of lower cost, consumers worldwide are spending more out-of-pocket money on this form of therapy. This increased spending, and reports of adverse reactions, has drawn the attention of many regulatory agencies. Scientists have called for more evidence-based and scientific research on the risks and benefits of TCM. In Canada, the Natural Health Product Regulations came into effect January 2004. TCM herbal product manufacturers will need to provide products of reputable quality to the market. Many will apply modern technology and good science to support their products. The issues facing producers, scientists, and consumers alike are quality control and assessment, standardization of bioactive components, mechanisms of actions, and integration of the evolved modern Chinese medicine into the healthcare system. Solid science, better regulation of the final product, and better education of consumers are necessary to extract the best of TCM to complement existing conventional medicine to deliver the best healthcare.Key words: bioactive components, chromatographic fingerprinting, integration, mechanisms, Natural Health Product (NHP) Regulations, standardization, traditional Chinese medicine.
Collapse
Affiliation(s)
- Yaw L Siow
- Department of Physiology, Faculty of Medicine, National Centre for Agri-Food Research in Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Park WH, Ahn JC, Kim HM, Lee YC, Kim CH. Effects of a Korean herbal formulation, Silsosangami, consisting of seven medicinal herbs, and its seven herbs on endotoxin-induced experimental thrombosis in rats. Phytother Res 2004; 18:224-9. [PMID: 15103669 DOI: 10.1002/ptr.1429] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A traditional Korean medicine, Silsosangami (SSG), consisting of seven different herbs of Typhae Pollen, Pteropi Faeces, Paeoniae Radicis rubra, Cnidii Rhizoma, Persicae Semen, Carthami Flos and Curcumae Tuber, has been reported to have a hypolipidemic effect in human subjects. In the present study, the inhibitory effects of SSG on a thrombosis in rats, induced by endotoxin treatment were examined. The anti-thrombic properties of SSG were also investigated with respect to blood parameters. The extracts of SSG and five of the seven herbs, except Cnidii Rhizoma and Carthami Flos, inhibited both endotoxin-induced disseminated intravascular coagulation (DIC) and thrombosis in rats. The extract also inhibited the endotoxin-induced decrease in blood platelets and fibrinogen, and the endotoxin-induced increase in fibrin degradation products (FDP) on disseminated intravascular coagulation in normal rats. In conclusion, the artificially induced, protective effects of SSG on ischemic infarction might be related to their inhibitory effects on DIC, platelet coagulation and thrombotic action.
Collapse
Affiliation(s)
- Won-Hwan Park
- Department of Biochemistry, Molecular Biology and Diagnosis, Dongguk University COM and National Research Laboratory for Glycobiology, Korean Ministry of Science and Technology, KyungJu, Korea
| | | | | | | | | |
Collapse
|
13
|
Park WH, Shin SS, Lee YC, Kim CH. The inhibitory effects of Silso-San-Gami on atherosclerosis in KHC rabbits. Thromb Res 2004; 113:235-41. [PMID: 15140588 DOI: 10.1016/j.thromres.2004.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2003] [Revised: 03/12/2004] [Accepted: 03/15/2004] [Indexed: 11/28/2022]
Abstract
Silsosangami is a dried decoction of a mixture of seven Korean herbal medicines, consisting of Typhae pollen, Pteropi faeces, Paeoniae radicis rubra, Cnidii rhizoma, Persicae semen, Carthami flos, and Curcumae tuber. The inhibitory effect of this traditional herbal medicine, Silsosangami-water extract (SSG), on the progression of the atherosclerotic diseases was examined using the spontaneous familial hypercholesterolemia (FH) model, Kurosawa and Kusanagi-hypercholesterolemic (KHC) rabbits. Changes in blood chemistry, pathology and low-density lipoprotein (LDL) oxidation were measured in a control group and a SSG-administrated group. In the control group, the area of atheromatous aortic plaques progressed between 4 weeks (30.43%) and 8 weeks (47.48%). This progressin of atherosclerotic disease was not observed in the SSG-treated group between 4 weeks (22.65%) and 8 weeks (23.23%). Antioxidative effects on LDL were observed in the SSG group at 12 and 14 weeks. SSG improved hypercholestrolemia in the KHC rabbits. These results suggest that SSG has inhibitory effects on the development of atheromatous plaques in spontaneous FH model rabbits. The antioxidative effects of SSG on LDL appear to be the source of the beneficial effects observed in this study.
Collapse
Affiliation(s)
- Won-Hwan Park
- Department of Biochemistry, Molecular Biology and Diagnostics, Dongguk University College of Oriental Medicine and National Research Laboratory for Glycobiology, Korean Ministry of Science and Technology, Kyungju City, Kyungbuk, South Korea
| | | | | | | |
Collapse
|
14
|
Au-Yeung KK, Zhu DY, O K, Siow YL. Inhibition of stress-activated protein kinase in the ischemic/reperfused heart: role of magnesium tanshinoate B in preventing apoptosis. Biochem Pharmacol 2001; 62:483-93. [PMID: 11448459 DOI: 10.1016/s0006-2952(01)00686-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The activation of stress-activated protein (SAP) kinase may lead to an induction of apoptosis that is responsible for part of the cardiomyocyte death in reperfusion injury. The objective of the present study was to investigate the mechanism by which magnesium tanshinoate B (MTB), a bioactive compound isolated from Danshen, prevents apoptosis in cardiomyocytes in the ischemic/reperfused heart. Isolated adult rat hearts were perfused by the Langendorff mode with medium containing MTB prior to the induction of normothermic global ischemia. At the end of the 30-min ischemic period, the heart was reperfused with the same medium with or without MTB for an additional 20 min. In the MTB-treated ischemic/reperfused heart, the number of apoptotic nuclei was reduced by 2.5-fold in comparison to that in untreated ischemic/reperfused controls [23 +/- 4 vs 57 +/- 7 (mean +/- SD) TUNEL-positive cells, respectively, N = 3-4, P < 0.001]. SAP kinase activity was elevated 1.7-fold in ischemic/reperfused rat hearts [35.6 +/- 3.8 vs 21.2 +/- 3.3 (control) (mean +/- SEM) relative densitometric units, N = 4-6, P < 0.05]. Treatment with MTB abolished this elevation in SAP kinase activity (25.0 +/- 5.2 relative densitometric units), which was also decreased by 40% in the nucleus. When the heart was subjected to ischemia alone, there was no significant change in SAP kinase activity in the presence or absence of MTB. MTB did not appear to affect the p38 mitogen-activated protein kinase activity in this model system. In conclusion, MTB was shown to have cardioprotective activity against apoptosis, probably through the inhibition of SAP kinase activity.
Collapse
Affiliation(s)
- K K Au-Yeung
- Department of Pharmacology, Faculty of Medicine, The University of Hong Kong, 1/F, Li Shu Fan Building, 5 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | | | | |
Collapse
|