1
|
Dupuis O, Girardie J, Van Gaever M, Garnier P, Coq JO, Canu MH, Dupont E. Early Movement Restriction Affects FNDC5/Irisin and BDNF Levels in Rat Muscle and Brain. Int J Mol Sci 2024; 25:3918. [PMID: 38612728 PMCID: PMC11011789 DOI: 10.3390/ijms25073918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Interaction with the environment appears necessary for the maturation of sensorimotor and cognitive functions in early life. In rats, a model of sensorimotor restriction (SMR) from postnatal day 1 (P1) to P28 has shown that low and atypical sensorimotor activities induced the perturbation of motor behavior due to muscle weakness and the functional disorganization of the primary somatosensory and motor cortices. In the present study, our objective was to understand how SMR affects the muscle-brain dialogue. We focused on irisin, a myokine secreted by skeletal muscles in response to exercise. FNDC5/irisin expression was determined in hindlimb muscles and brain structures by Western blotting, and irisin expression in blood and cerebrospinal fluid was determined using an ELISA assay at P8, P15, P21 and P28. Since irisin is known to regulate its expression, Brain-Derived Neurotrophic Factor (BDNF) levels were also measured in the same brain structures. We demonstrated that SMR increases FNDC5/irisin levels specifically in the soleus muscle (from P21) and also affects this protein expression in several brain structures (as early as P15). The BDNF level was increased in the hippocampus at P8. To conclude, SMR affects FNDC5/irisin levels in a postural muscle and in several brain regions and has limited effects on BDNF expression in the brain.
Collapse
Affiliation(s)
- Orlane Dupuis
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369, URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France (J.G.); (E.D.)
| | - Julien Girardie
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369, URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France (J.G.); (E.D.)
| | - Mélanie Van Gaever
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369, URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France (J.G.); (E.D.)
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Des Sciences de Santé, F-21000 Dijon, France
- Département Génie Biologique, IUT, F-21000 Dijon, France
| | - Jacques-Olivier Coq
- Institut des Sciences du Mouvement, UMR7287, Aix-Marseille Université, F-13000 Marseille, France;
- Centre National de la Recherche Scientifique (CNRS), UMR7287, F-13000 Marseille, France
| | - Marie-Hélène Canu
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369, URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France (J.G.); (E.D.)
| | - Erwan Dupont
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369, URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France (J.G.); (E.D.)
| |
Collapse
|
2
|
Hager A, Mazurak V, Noga M, Gilmour SM, Mager DR. Skeletal muscle fibre morphology in childhood-insights into myopenia in pediatric liver disease. Appl Physiol Nutr Metab 2023; 48:730-750. [PMID: 37319441 DOI: 10.1139/apnm-2023-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
TAKE-HOME MESSAGE Skeletal muscle morphology in healthy children changes with age. Liver disease may preferentially affect type II fibres in adults with end-stage liver disease (ESLD). More research is needed on the effects of ESLD on muscle morphology in children.
Collapse
Affiliation(s)
- Amber Hager
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Vera Mazurak
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Michelle Noga
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Susan M Gilmour
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Division of Pediatric Gastroenterology & Nutrition/Transplant Services, The Stollery Children's Hospital, Alberta Health Services, Edmonton, AB, Canada
| | - Diana R Mager
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Williams G, Snow ET, West JM. Exposure to As(III) and As(V) changes the Ca²⁺-activation properties of the two major fibre types from the chelae of the freshwater crustacean Cherax destructor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:119-128. [PMID: 25014018 DOI: 10.1016/j.aquatox.2014.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
Arsenic is a known carcinogen found in the soil in gold mining regions at concentrations thousands of times greater than gold. Mining releases arsenic into the environment and surrounding water bodies. The main chemical forms of arsenic found in the environment are inorganic arsenite (As(III)) and arsenate (As(V)). Yabbies (Cherax destructor) accumulate arsenic at levels comparable to those in the sediment of their environment but the effect on their physiological function is not known. The effects of arsenic exposure (10 ppm sodium arsenite, AsNaO2 - 5.7 ppm As(III)) and 10 ppm arsenic acid, Na2HAsO4·7H2O - 2.6 ppm As(V)) for 40 days on the contractile function of the two major fibre types from the chelae were determined. After exposure, individual fibres were isolated from the chela, "skinned" (membrane removed) and attached to the force recording apparatus. Contraction was induced in solutions containing increasing [Ca(2+)] until a maximum Ca(2+)-activation was obtained. Submaximal force responses were plotted as a percentage of the maximum Ca(2+)-activated force. As(V) exposure resulted in lower levels of calcium required for activation than As(III) indicating an increased sensitivity to Ca(2+) after long term exposure to arsenate compared to arsenite. Myosin heavy chain and tropomyosin content in individual fibres was also decreased as a result of arsenic exposure. Single fibres exposed to As(V) produced significantly more force than muscle fibres from control animals. Long-term exposure of yabbies to arsenic alters the contractile function of the two major fibre types in the chelae.
Collapse
Affiliation(s)
- Gemma Williams
- School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood 3125, VIC, Australia
| | - Elizabeth T Snow
- School of Health Sciences, Faculty of Health University of Tasmania; Locked Bag 1320, Launceston 7250, TAS, Australia
| | - Jan M West
- School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood 3125, VIC, Australia.
| |
Collapse
|
4
|
Bojados M, Herbin M, Jamon M. Kinematics of treadmill locomotion in mice raised in hypergravity. Behav Brain Res 2013; 244:48-57. [PMID: 23352767 DOI: 10.1016/j.bbr.2013.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/14/2013] [Indexed: 11/28/2022]
Abstract
The study compared the motor performance of adult C57Bl/6J mice previously exposed to a 2G gravity environment during different periods of their development. 12 mice were housed in a large diameter centrifuge from the conception to Postnatal day 10 (P10). Another group of 10 mice was centrifuged form P10 to P30, and a third group of 9 mice was centrifuged from conception to P30. Their gait parameters, and kinematics of joint excursions were compared with 11 control mice, at the age of 2 months using a video-radiographic apparatus connected to a motorized treadmill. The mice that returned to Earth gravity level at the age of P10 showed a motor pattern similar to control mice. At variance the two groups that were centrifuged from P10 to P30 showed a different motor pattern with smaller and faster strides to walk at the same velocity as controls. On the other hand all the centrifuged mice showed significant postural changes, particularly with a more extended ankle joint, but the mice centrifuged during the whole experimental period differed even more. Our results showed that the exposure to hypergravity before P10 sufficed to modify the posture, suggesting that postural control starts before the onset of locomotion, whereas the gravity constraint perceived between P10 and P30 conditioned the tuning of quadruped locomotion with long term consequences. These results support the existence of a critical period in the acquisition of locomotion in mice.
Collapse
Affiliation(s)
- Mickael Bojados
- Aix-Marseille Univ, INSERM UMR 1106, 13385 Marseille, France
| | | | | |
Collapse
|
5
|
Bojados M, Jamon M. Exposure to hypergravity during specific developmental periods differentially affects metabolism and vestibular reactions in adult C57BL /6j mice. Eur J Neurosci 2011; 34:2024-34. [PMID: 22122506 DOI: 10.1111/j.1460-9568.2011.07919.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The development of the posturo-motor control of movement is conditioned by Earth's gravity. Missing or altered gravity during the critical periods of development delays development and induces durable changes in the vestibular, cerebellar, or muscular structures, but these are not consistently mirrored at a functional level. The differences in the time schedule of vestibular and motor development could contribute to this inconstancy. To investigate the influence of gravity on the development of vestibular and locomotor functions, we analysed the performance of adult mice subjected to hypergravity during the time covering either the vestibular or locomotor development. The mice were centrifuged at 2 g from embryonic day (E) 0 to postnatal day (P) 10 (PRE), from P10 to P30 (POST), from E0 to P30 (FULL), and from E7 to P21. Their muscular force, anxiety level, vestibular reactions, and aerobic capacity during treadmill training were then evaluated at the age of 2 and 6 months. The performance of young adults varied in relation to the period of exposure to hypergravity. The mice that acquired locomotion in hypergravity (POST and FULL) showed a lower forelimb force and delayed vestibular reactions. The mice centrifuged from conception to P10 (PRE) showed a higher aerobic capacity during treadmill training. The differences in muscular force and vestibular reactions regressed with age, but the metabolic changes persisted. These results confirmed that early exposure to hypergravity induces qualitative changes depending on the period of exposure. They validated, at a functional level, the existence of several critical periods for adaptation to gravity.
Collapse
Affiliation(s)
- Mickael Bojados
- Faculté de Médecine de la Timone, Aix-Marseille Université, Marseille Cedex, France.
| | | |
Collapse
|
6
|
Cannata DJ, Finkelstein DI, Gantois I, Teper Y, Drago J, West JM. Altered fast- and slow-twitch muscle fibre characteristics in female mice with a (S248F) knock-in mutation of the brain neuronal nicotinic acetylcholine receptor. J Muscle Res Cell Motil 2009; 30:73-83. [PMID: 19404753 DOI: 10.1007/s10974-009-9177-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the alpha4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca(2+) and Sr(2+) force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa(50) - pSr(50)) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.
Collapse
Affiliation(s)
- David J Cannata
- School of Life and Environmental Sciences, Deakin University, VIC, Australia.
| | | | | | | | | | | |
Collapse
|
7
|
Changes in postnatal skeletal muscle development induced by alternative immobilization model in female rat. Anat Sci Int 2009; 84:218-25. [PMID: 19225915 DOI: 10.1007/s12565-009-0016-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Accepted: 12/01/2008] [Indexed: 10/20/2022]
Abstract
The objective of this study was to adapt a model of hind limb immobilization to newly weaned female rats and to determine the morphology of shortened soleus and plantaris muscles. Female Wistar rats were divided into three groups: control zero (n = 3) and control and free (n = 8), animals aged 21 and 31 days, respectively, submitted to no intervention, and immobilized (n = 25), animals aged 21 days submitted to immobilization for 10 days and sacrificed at 31 days of age. The device used for immobilization had advantages such as easy connection, good fit, and low cost. The immobilized rats showed a reduction in muscle fiber area and in connective tissue. The adaptation of this immobilization model originally used for adult rats was an excellent alternative for newly weaned rats and was also efficient in inducing significant hind limb disuse.
Collapse
|
8
|
Vignaud A, Caruelle JP, Martelly I, Ferry A. Differential effects of post-natal development, animal strain and long term recovery on the restoration of neuromuscular function after neuromyotoxic injury in rat. Comp Biochem Physiol C Toxicol Pharmacol 2006; 143:1-8. [PMID: 16426897 DOI: 10.1016/j.cbpc.2005.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 09/07/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
We have analysed the effect of long term recovery, post-natal development and animal strain on the extent of restoration of neuromuscular function after neuromyotoxic injury in the rat (Rattus norvegicus). Muscle isometric contractile properties of soleus muscle in response to nerve stimulation were measured in situ in snake venom injured muscles and compared to contralateral uninjured muscles. We show here that neuromuscular function was not fully recovered until 24 weeks after injury in young adult (2-3 month old) Wistar rats. Moreover, the level of functional recovery 3 weeks after injury induced in juvenile rats (1 month old) was not globally different from that in younger adult, adult (10 month old) and older adult (24 month old) Wistar rats. Furthermore, the level of recovery of some contractile parameters differed between Wistar and Sprague-Dawley strains 3 weeks after injury. In conclusion, a very long time (>12 weeks) is required for full neuromuscular recovery following neuromyotoxic injury of young adult rats. Moreover, neuromuscular recovery during post-natal development is not markedly different from that during adult stage in the Wistar rat strain. Finally, some rat strain differences are observed in the recovery after injury of young adult rats.
Collapse
Affiliation(s)
- A Vignaud
- Laboratoire d'étude sur la croissance cellulaire, la régénération et la réparation tissulaires, FRE 2412 CNRS, Faculté des Sciences, Université Paris 12, France
| | | | | | | |
Collapse
|
9
|
Wade CE. Responses across the Gravity Continuum: Hypergravity to Microgravity. EXPERIMENTATION WITH ANIMAL MODELS IN SPACE 2005; 10:225-45. [PMID: 16101110 DOI: 10.1016/s1569-2574(05)10009-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In response to hypergravity, it appears that the larger the animal, the greater the response, if present. Therefore, the response of a rat exceeds that of a mouse in the same hypergravity environment. When investigated in the microgravity environment of space flight, this appears to hold true. The lack of definitive data obtained in space for either species makes the extrapolation of the continuum to levels below Earth-gravity problematic. However, in systems where responses are detected for both space flight and acceleration by centrifugation, a gravitational continuum is present supporting the "principle of continuity". For those and similar systems, it appears that the use of hypergravity could be used to predict responses to space flight.
Collapse
Affiliation(s)
- Charles E Wade
- Life Sciences Division, NASA - Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
10
|
Gregorevic P, Plant DR, Stupka N, Lynch GS. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration. J Physiol 2004; 558:549-60. [PMID: 15181161 PMCID: PMC1664957 DOI: 10.1113/jphysiol.2004.066217] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.
Collapse
Affiliation(s)
- Paul Gregorevic
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
11
|
Ogata T, Oishi Y, Roy RR, Ohmori H. Endogenous expression and developmental changes of HSP72 in rat skeletal muscles. J Appl Physiol (1985) 2003; 95:1279-86. [PMID: 12909603 DOI: 10.1152/japplphysiol.00353.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present study was to determine whether endogenous factor(s) contributes to the expression of heat shock proteins (HSPs) during the early developmental stages of rat skeletal muscles. HSP72 was expressed in both the soleus and plantaris muscles at embryonic day 22 (E22). On the basis of myosin heavy chain (MHC) immunohistochemistry, HSP72 was specifically expressed in slow type I fibers in both muscles. These slow fibers were observed throughout the entire cross section of the soleus muscle and only in the deep region (close to the bone) of the plantaris muscle. These results indicate that the expression of HSP72 is related to endogenous factors associated with type I fibers, because E22 rats have minimal exogenous influences and the soleus and plantaris muscles of E22 rats have similar metabolic and contractile profiles at this stage of development. We then examined the changes in HSP72 and heat shock cognate (HSC) 73 in the same two muscles from E22 to postnatal day 56 via Western blotting. The level of HSP72 in the soleus muscle gradually increased in parallel with the increment in the type I MHC isoform. Compared with the soleus, only a small amount of HSP72 could be detected in the plantaris muscle throughout the developmental period. For both muscles, HSC73 reached levels observed in adult muscles at postnatal day 3, and these levels were unchanged thereafter. These results indicate that the expression of HSP72, but not HSC73, is influenced by both endogenous and exogenous factors during the embryonic and early developmental periods.
Collapse
Affiliation(s)
- Tomonori Ogata
- Health and Sport Science, University of Tsukuba, Ibaraki 305-8574, Japan
| | | | | | | |
Collapse
|
12
|
Andruchov O, Andruchova O, Wang Y, Galler S. Functional differences in type-I fibres from two slow skeletal muscles of rabbit. Pflugers Arch 2003; 446:752-9. [PMID: 12898259 DOI: 10.1007/s00424-003-1143-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Revised: 05/23/2003] [Accepted: 06/06/2003] [Indexed: 11/27/2022]
Abstract
The present study addressed the question of whether the slow fibres of mammalian skeletal muscle, containing the myosin heavy chain MHCI (type-I fibres), are a functionally homogeneous population. We compared various properties of Ca(2+)-activated, skinned, type-I fibres from the soleus and semitendinosus muscles of a rabbit. Soleus type-I fibres showed significantly faster kinetics of stretch activation, measured as the time-to-peak of the stretch-induced, delayed force increase, t(3), than semitendinosus fibres (1239+/-438 ms, n=136, vs. 1600+/-409 ms, n=208 respectively) (means+/-SD, 22 degrees C). Similarly, the speed of unloaded shortening at 15 degrees C was faster in soleus than in semitendinosus fibres [0.79+/-0.16 fibre lengths (FL) s(-1), n=44, vs. 0.65+/-0.15 FL s(-1), n=35 respectively]. The kinetics of stretch activation were more temperature sensitive in semitendinosus than in soleus fibres. Finally, the generation of steady-state isometric force was more sensitive to Ca(2+) in semitendinosus than in soleus fibres: [pCa(50) (-log [Ca(2+)] for half-maximal activation) at 22 degrees C: 6.29+/-0.15, n=28, vs. 6.19+/-0.10, n=18 respectively]. These results suggest strongly that there is no functional homogeneity within type-I fibres of different muscles. The observed differences might reflect the existence of more than one functionally different slow myosin heavy chain isoforms or other modifications of contractile proteins.
Collapse
Affiliation(s)
- Oleg Andruchov
- Institut für Zoologie, Universität Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | | | | | | |
Collapse
|
13
|
Inobe M, Inobe I, Adams GR, Baldwin KM, Takeda S. Effects of microgravity on myogenic factor expressions during postnatal development of rat skeletal muscle. J Appl Physiol (1985) 2002; 92:1936-42. [PMID: 11960943 DOI: 10.1152/japplphysiol.00742.2001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To clarify the role of gravity in the postnatal development of skeletal muscle, we exposed neonatal rats at 7 days of age to microgravity. After 16 days of spaceflight, tibialis anterior, plantaris, medial gastrocnemius, and soleus muscles were removed from the hindlimb musculature and examined for the expression of MyoD-family transcription factors such as MyoD, myogenin, and MRF4. For this purpose, we established a unique semiquantitative method, based on RT-PCR, using specific primers tagged with infrared fluorescence. The relative expression of MyoD in the tibialis anterior and plantaris muscles and that of myogenin in the plantaris and soleus muscles were significantly reduced (P < 0.001) in the flight animals. In contrast, MRF4 expression was not changed in any muscle. These results suggest that MyoD and myogenin, but not MRF4, are sensitive to gravity-related stimuli in some skeletal muscles during postnatal development.
Collapse
Affiliation(s)
- Manabu Inobe
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | |
Collapse
|
14
|
Vinay L, Brocard F, Clarac F. Differential maturation of motoneurons innervating ankle flexor and extensor muscles in the neonatal rat. Eur J Neurosci 2000; 12:4562-6. [PMID: 11122369 DOI: 10.1046/j.0953-816x.2000.01321.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The first postnatal week is a critical period for the development of posture in the rat. The use of ankle extensor muscles in postural reactions increases during this period. Changes in excitability of motoneurons are probably an important factor underlying this maturation. The aim of this study was to identify whether variations in the maturation exist between motor pools innervating antagonistic muscles. Intracellular recordings in the in vitro brain stem-spinal cord preparation of neonatal rats (from postnatal day 0-5) were used to examine the developmental changes in excitability of motoneurons innervating the ankle flexors (F-MNs) and the antigravity ankle extensors (E-MNs). No significant difference in resting potential, action potential threshold, input resistance or rheobase was observed at birth. The age-related increase in rheobase was more pronounced for F-MNs than for E-MNs. The development of discharge properties of E-MNs lagged behind that of F-MNs. More F-MNs than E-MNs were able to fire repetitively in response to current injection at birth. F-MNs discharged at a higher frequency than E-MNs at all ages. Differences in the duration of action potential afterhyperpolarization accounted, at least partly, for the differences in discharge frequency between E-MNs and F-MNs at birth, and for the age-related increase in firing rate. These results suggest that E-MNs are more immature at birth than F-MNs and that there is a differential development of motoneurons innervating antagonistic muscles. This may be a critical factor in the development of posture and locomotion.
Collapse
Affiliation(s)
- L Vinay
- CNRS, UniversitA d'Aix-Marseille II Dévelopement et Pathologie du Mouvement, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | |
Collapse
|
15
|
Vinay L, Brocard F, Pflieger JF, Simeoni-Alias J, Clarac F. Perinatal development of lumbar motoneurons and their inputs in the rat. Brain Res Bull 2000; 53:635-47. [PMID: 11165799 DOI: 10.1016/s0361-9230(00)00397-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rat is quite immature at birth and a rapid maturation of motor behavior takes place during the first 2 postnatal weeks. Lumbar motoneurons undergo a rapid development during this period. The last week before birth represents the initial stages of motoneuron differentiation, including regulation of the number of cells and the arrival of segmental and first supraspinal afferents. At birth, motoneurons are electrically coupled and receive both appropriate and inappropriate connections from the periphery; the control from supraspinal structures is weak and exerted mainly through polysynaptic connections. During the 1st postnatal week, inappropriate sensori-motor contacts and electrical coupling disappear, the supraspinal control increases gradually and myelin formation is responsible for an increased conduction velocity in both descending and motor axons. Both N-methyl-D-aspartate (NMDA) and non-NMDA receptors are transiently overexpressed in the neonatal spinal cord. The contribution of non-NMDA receptors to excitatory amino acid transmission increases with age. Activation of gamma-aminobutyric acid(A) and glycine receptors leads to membrane depolarization in embryonic motoneurons but to hyperpolarization in older motoneurons. The firing properties of motoneurons change with development: they are capable of more repetitive firing at the end of the 1st postnatal week than before birth. However, maturation does not proceed simultaneously in the motor pools innervating antagonistic muscles; for instance, the development of repetitive firing of ankle extensor motoneurons lags behind that of flexor motoneurons. The spontaneous embryonic and neonatal network-driven activity, detected at the levels of motoneurons and primary afferent terminals, may play a role in neuronal maturation and in the formation and refinement of sensorimotor connections.
Collapse
Affiliation(s)
- L Vinay
- CNRS, Développement et Pathologie du Mouvement, Marseille, France.
| | | | | | | | | |
Collapse
|
16
|
Berchtold MW, Brinkmeier H, Müntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 2000; 80:1215-65. [PMID: 10893434 DOI: 10.1152/physrev.2000.80.3.1215] [Citation(s) in RCA: 617] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise. Additionally, the muscle fibers are arranged in compartments that often function as largely independent muscular subunits. All muscle fibers use Ca(2+) as their main regulatory and signaling molecule. Therefore, contractile properties of muscle fibers are dependent on the variable expression of proteins involved in Ca(2+) signaling and handling. Molecular diversity of the main proteins in the Ca(2+) signaling apparatus (the calcium cycle) largely determines the contraction and relaxation properties of a muscle fiber. The Ca(2+) signaling apparatus includes 1) the ryanodine receptor that is the sarcoplasmic reticulum Ca(2+) release channel, 2) the troponin protein complex that mediates the Ca(2+) effect to the myofibrillar structures leading to contraction, 3) the Ca(2+) pump responsible for Ca(2+) reuptake into the sarcoplasmic reticulum, and 4) calsequestrin, the Ca(2+) storage protein in the sarcoplasmic reticulum. In addition, a multitude of Ca(2+)-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and calpain. These Ca(2+)-binding proteins may either exert an important role in Ca(2+)-triggered muscle contraction under certain conditions or modulate other muscle activities such as protein metabolism, differentiation, and growth. Recently, several Ca(2+) signaling and handling molecules have been shown to be altered in muscle diseases. Functional alterations of Ca(2+) handling seem to be responsible for the pathophysiological conditions seen in dystrophinopathies, Brody's disease, and malignant hyperthermia. These also underline the importance of the affected molecules for correct muscle performance.
Collapse
Affiliation(s)
- M W Berchtold
- Department of Molecular Cell Biology, Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
17
|
Dearolf JL, McLellan WA, Dillaman RM, Frierson D, Pabst DA. Precocial development of axial locomotor muscle in bottlenose dolphins (Tursiops truncatus). J Morphol 2000; 244:203-15. [PMID: 10815003 DOI: 10.1002/(sici)1097-4687(200006)244:3<203::aid-jmor5>3.0.co;2-v] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At birth, the locomotor muscles of precocial, terrestrial mammals are similar to those of adults in both mass, as a percent of total body mass, and fiber-type composition. It is hypothesized that bottlenose dolphins (Tursiops truncatus), marine mammals that swim from the instant of birth, will also exhibit precocial development of locomotor muscles. Body mass data from neonatal and adult dolphins are used to calculate Grand's (1992) Neural and Muscular Indices of Development. Using these indices, the bottlenose dolphin is a Condition "3.5" neonate, where Condition 4 is the documented extreme of precocial development in terrestrial mammals. Moreover, myosin ATPase (alkaline preincubation) analyses of the epaxial locomotor m. extensor caudae lateralis show that neonatal dolphins have fiber-type profiles very similar to those of adults. Thus, based on mass and myosin ATPase activity, muscle development in dolphins is precocial. However, succinic dehydrogenase and Nile red histochemistry demonstrate that neonatal dolphin muscle has mitochondrial and lipid distributions different from those found in adults. These data suggest that neonates have a lower aerobic capacity than adults. Dolphin neonates may compensate for an apparent lack of aerobic stamina in two ways: 1) by being positively buoyant, with a relatively increased investment of their total body mass in blubber, and 2) by "free-riding" off their mothers. This study investigates quantitatively the development of a dolphin locomotor muscle and offers suggestions about adaptations required for a completely aquatic existence.
Collapse
Affiliation(s)
- J L Dearolf
- Department of Biological Sciences and Center for Marine Science Research, University of North Carolina at Wilmington, Wilmington, North Carolina 28403, USA
| | | | | | | | | |
Collapse
|
18
|
West JM, Williams NA, Luff AR, Walker DW. Effect of tibial bone resection on the development of fast- and slow-twitch skeletal muscles in foetal sheep. J Muscle Res Cell Motil 2000; 21:209-22. [PMID: 10952169 DOI: 10.1023/a:1005676312176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To determine if longitudinal bone growth affects the differentiation of fast- and slow-twitch muscles, the tibial bone was sectioned at 90 days gestation in foetal sheep so that the lower leg was permanently without structural support. At 140 days (term is approximately 147 days) the contractile properties of whole muscles, activation profiles of single fibres and ultrastructure of fast- and slow-twitch muscles from the hindlimbs were studied. The contractile and activation profiles of the slow-twitch soleus muscles were significantly affected by tibial bone resection (TIBX). The soleus muscles from the TIBX hindlimbs showed: (1) a decrease in the time to peak of the twitch responses from 106.2 +/- 10.7 ms (control, n = 4) to 65.1 +/- 2.48 ms (TIBX, n = 5); (2) fatigue profiles more characteristic of those observed in the fast-twitch muscles: and (3) Ca2+ - and Sr2+ -activation profiles of skinned fibres similar to those from intact hindlimbs at earlier stages of gestation. In the FDL, TIBX did not significantly change whole muscle twitch contraction time, the fatigue profile or the Ca2+ - and Sr2+ -activation profiles of skinned fibres. Electron microscopy showed an increased deposition of glycogen in both soleus and FDL muscles. This study shows that the development of the slow-twitch phenotype is impeded in the absence of the physical support normally provided by the tibial bone. We suggest that longitudinal stretch is an important factor in allowing full expression of the slow-twitch phenotype.
Collapse
Affiliation(s)
- J M West
- Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
19
|
Adams GR, Haddad F, McCue SA, Bodell PW, Zeng M, Qin L, Qin AX, Baldwin KM. Effects of spaceflight and thyroid deficiency on rat hindlimb development. II. Expression of MHC isoforms. J Appl Physiol (1985) 2000; 88:904-16. [PMID: 10710385 DOI: 10.1152/jappl.2000.88.3.904] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both slow-twitch and fast-twitch muscles are undifferentiated after birth as to their contractile protein phenotype. Thus we examined the separate and combined effects of spaceflight (SF) and thyroid deficiency (TD) on myosin heavy chain (MHC) gene expression (protein and mRNA) in muscles of neonatal rats (7 and 14 days of age at launch) exposed to SF for 16 days. Spaceflight markedly reduced expression of the slow, type I MHC gene by approximately 55%, whereas it augmented expression of the fast IIx and IIb MHCs in antigravity skeletal muscles. In fast muscles, SF caused subtle increases in the fast IIb MHC relative to the other adult MHCs. In contrast, TD prevented the normal expression of the fast MHC phenotype, particularly the IIb MHC, whereas TD maintained expression of the embryonic/neonatal MHC isoforms; this response occurred independently of gravity. Collectively, these results suggest that normal expression of the type I MHC gene requires signals associated with weight-bearing activity, whereas normal expression of the IIb MHC requires an intact thyroid state acting independently of the weight-bearing activities typically encountered during neonatal development of laboratory rodents. Finally, MHC expression in developing muscles is chiefly regulated by pretranslational processes based on the tight relationship between the MHC protein and mRNA data.
Collapse
Affiliation(s)
- G R Adams
- Department of Physiology and Biophysics, University of California, Irvine, California 92697-4560, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Brocard F, Vinay L, Clarac F. Development of hindlimb postural control during the first postnatal week in the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 117:81-9. [PMID: 10536235 DOI: 10.1016/s0165-3806(99)00101-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of the postural control of hindlimbs was investigated during the first postnatal week in the rat. The whole body was tilted in a vertical plane with the nose up. The proportion of animals producing a complete extension of both hindlimbs increased with age until the end of the first postnatal week. Motor responses were evoked by the pitch tilt already at birth with a slight extension of the hips, the knees and the ankles remaining bent in most cases. The extension produced at the ankle level increased gradually during the first postnatal week. This was correlated with a change in the EMG activity recorded from the triceps surae muscles (ankle extensors) during this postural reaction. There was a gradual acquisition of a tonic pattern. Characteristics of EMG responses changed significantly with age demonstrating an important increase in the use of triceps surae muscles in this postural task. These data demonstrate that the first postnatal week is a critical period for the development of postural reactions in the hindlimbs. They also suggest the existence of a proximo-distal gradient in the maturation of postural control. The mechanisms responsible for this reflex and for the maturation of posture are discussed.
Collapse
Affiliation(s)
- F Brocard
- CNRS, UPR Neurobiologie et Mouvements (UPR 9011), 31 chemin Joseph Aiguier, F-13402, Marseille, France
| | | | | |
Collapse
|
21
|
West JM, Barclay CJ, Luff AR, Walker DW. Developmental changes in the activation properties and ultrastructure of fast- and slow-twitch muscles from fetal sheep. J Muscle Res Cell Motil 1999; 20:249-64. [PMID: 10471989 DOI: 10.1023/a:1005433809414] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
At early stages of muscle development, skeletal muscles contract and relax slowly, regardless of whether they are destined to become fast- or slow-twitch. In this study, we have characterised the activation profiles of developing fast- and slow-twitch muscles from a precocial species, the sheep, to determine if the activation profiles of the muscles are characteristically slow when both the fast- and slow-twitch muscles have slow isometric contraction profiles. Single skinned muscle fibres from the fast-twitch flexor digitorum longus (FDL) and slow-twitch soleus muscles from fetal (gestational ages 70, 90, 120 and 140 days; term 147 days) and neonatal (8 weeks old) sheep were used to determine the isometric force-pCa (pCa = -log10[Ca2+]) and force-pSr relations during development. Fast-twitch mammalian muscles generally have a greatly different sensitivity to Ca2+ and Sr2+ whereas slow-twitch muscles have a similar sensitivity to these divalent cations. At all ages studied, the force-pCa and force-pSr relations of the FDL muscle were widely separated. The mean separation of the mid-point of the curves (pCa50-pSr50) was approximately 1.1. This is typical of adult fast-twitch muscle. The force-pCa and force-pSr curves for soleus muscle were also widely separated at 70 and 90 days gestation (pCa50-pSr50 approximately 0.75); between 90 days and 140 days this separation decreased significantly to approximately 0.2. This leads to a paradoxical situation whereby at early stages of muscle development the fast muscles have contraction dynamics of slow muscles but the slow muscles have activation profiles more characteristic of fast muscles. The time course for development of the FDL and soleus is different, based on sarcomere structure with the soleus muscle developing clearly defined sarcomere structure earlier in gestation than the FDL. At 70 days gestation the FDL muscle had no clearly defined sarcomeres. Force (N cm-2) increased almost linearly between 70 and 140 days gestation in both muscle types and there was no difference between the Ca(2+)- and Sr(2+)-activated force throughout development.
Collapse
MESH Headings
- Animals
- Calcium/pharmacology
- Chelating Agents/pharmacology
- Edetic Acid/analogs & derivatives
- Edetic Acid/pharmacology
- Egtazic Acid/pharmacology
- Female
- Fetus/chemistry
- Fetus/physiology
- Isometric Contraction/drug effects
- Isometric Contraction/physiology
- Magnesium/pharmacology
- Microscopy, Electron
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Fast-Twitch/ultrastructure
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/physiology
- Muscle Fibers, Slow-Twitch/ultrastructure
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/physiology
- Myofibrils/physiology
- Myofibrils/ultrastructure
- Potassium/pharmacology
- Sarcomeres/physiology
- Sarcomeres/ultrastructure
- Sheep
- Strontium/pharmacology
Collapse
Affiliation(s)
- J M West
- Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
22
|
Putman CT, Düsterhöft S, Pette D. Changes in satellite cell content and myosin isoforms in low-frequency-stimulated fast muscle of hypothyroid rat. J Appl Physiol (1985) 1999; 86:40-51. [PMID: 9887111 DOI: 10.1152/jappl.1999.86.1.40] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic low-frequency stimulation was used to study the effects of enhanced contractile activity on satellite cell content and myosin isoform expression in extensor digitorum longus muscles from hypothyroid rats. As verified by immunohistochemical staining for desmin, vimentin, and myosin heavy chain (MHC) isoforms and by histological analysis, stimulation induced a transformation of existing fast fibers toward slower fibers without signs of fiber deterioration or regeneration. Immunohistochemically detected increases in MHC I and MHC IIa isoforms, as well as reduced numbers of fibers expressing the faster MHC isoforms, mirrored the rearrangement of the thick-filament composition. These changes, especially the upregulation of MHC IIa, were accompanied by an induction of developmental MHC isoforms in the transforming adult fibers. Satellite cell content rose 2.6-, 3.0-, and 3.7-fold over that of corresponding controls (P < 0.05 in all cases) in 5-, 10-, and 20-day-stimulated muscles, respectively. Hypothyroidism alone had no effect on satellite cell content but resulted in a significant reduction in fiber size. The relative satellite cell contents increased (P < 0.05) from 3.8% in euthyroid control muscles to 7.9, 11.5, and 13.8% in the 5-, 10-, and 20-day-stimulated hypothyroid muscles, respectively. In 20-day-stimulated muscles, the relative satellite cell content reached an almost twofold higher level than that of normal slow-twitch soleus muscle. This increase occurred concomitantly with a rise in myonuclear density, most probably because of the fusion of satellite cells with existing fibers.
Collapse
Affiliation(s)
- C T Putman
- Faculty of Biology, University of Constance, D-78457 Constance, Germany
| | | | | |
Collapse
|
23
|
|
24
|
Picquet F, Stevens L, Butler-Browne GS, Mounier Y. Differential effects of a six-day immobilization on newborn rat soleus muscles at two developmental stages. J Muscle Res Cell Motil 1998; 19:743-55. [PMID: 9836145 DOI: 10.1023/a:1005434917351] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Our objective was to determine the effects of a six-day immobilization on the musculoskeletal system of the rat during postnatal development at two key periods when the states of innervation are known to be different. This work was undertaken on the soleus muscle since it is well known that postural slow muscles show marked changes after a period of disuse. Thus, the soleus muscle was immobilized in a shortened position either when the innervation was polyneuronal or monosynaptic, respectively from 6 to 12 and from 17 to 23 days. The muscle modifications were followed by ATPase staining and myosin heavy chain (MyHC) isoform identification using monoclonal antibodies and SDS-PAGE. The functional properties of skinned fibre bundles were established by calcium/strontium (Ca/Sr) activation characteristics. In control muscles the maturation was characterized by a progressive increase of adult MyHCs (I and IIA) concomitant with a decrease in both the MyHC neo and the Ca affinity. Between 6 to 12 days, immobilization of the limb induced an increase in histochemical type IIC fibres. Using antibodies we identified new fibre types, classified as a function of their MyHC isoform co-expression. We observed an increase in expression of both MyHC neo and Ca affinity. From 17 to 23 days, the immobilization induced an increase in Ca affinity and marked changes in the MyHC isoform composition: disappearance of MyHC neo and expression of the fast MyHC IIB isoform, which in normal conditions is never expressed in the soleus muscle. We conclude that an immobilization imposed during polyneuronal innervation delays the postnatal maturation of the soleus muscle, whereas when the immobilization is performed under monosynaptic innervation the muscle evolves towards a fast phenotype using a default pathway for MyHC expression.
Collapse
Affiliation(s)
- F Picquet
- Laboratoire de Plasticité Neuromusculaire, Université des Sciences et Technologies de Lille, Villeneuve D'Ascq, France
| | | | | | | |
Collapse
|