1
|
Li J, Rahmani H, Abbasi Yeganeh F, Rastegarpouyani H, Taylor DW, Wood NB, Previs MJ, Iwamoto H, Taylor KA. Structure of the Flight Muscle Thick Filament from the Bumble Bee, Bombus ignitus, at 6 Å Resolution. Int J Mol Sci 2022; 24:377. [PMID: 36613818 PMCID: PMC9820631 DOI: 10.3390/ijms24010377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Four insect orders have flight muscles that are both asynchronous and indirect; they are asynchronous in that the wingbeat frequency is decoupled from the frequency of nervous stimulation and indirect in that the muscles attach to the thoracic exoskeleton instead of directly to the wing. Flight muscle thick filaments from two orders, Hemiptera and Diptera, have been imaged at a subnanometer resolution, both of which revealed a myosin tail arrangement referred to as “curved molecular crystalline layers”. Here, we report a thick filament structure from the indirect flight muscles of a third insect order, Hymenoptera, the Asian bumble bee Bombus ignitus. The myosin tails are in general agreement with previous determinations from Lethocerus indicus and Drosophila melanogaster. The Skip 2 region has the same unusual structure as found in Lethocerus indicus thick filaments, an α-helix discontinuity is also seen at Skip 4, but the orientation of the Skip 1 region on the surface of the backbone is less angled with respect to the filament axis than in the other two species. The heads are disordered as in Drosophila, but we observe no non-myosin proteins on the backbone surface that might prohibit the ordering of myosin heads onto the thick filament backbone. There are strong structural similarities among the three species in their non-myosin proteins within the backbone that suggest how one previously unassigned density in Lethocerus might be assigned. Overall, the structure conforms to the previously observed pattern of high similarity in the myosin tail arrangement, but differences in the non-myosin proteins.
Collapse
Affiliation(s)
- Jiawei Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Hamidreza Rahmani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Fatemeh Abbasi Yeganeh
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Hosna Rastegarpouyani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Dianne W. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Neil B. Wood
- Department of Molecular Physiology & Biophysics, University of Vermont, Larner College of Medicine, Burlington, VT 05405, USA
| | - Michael J. Previs
- Department of Molecular Physiology & Biophysics, University of Vermont, Larner College of Medicine, Burlington, VT 05405, USA
| | - Hiroyuki Iwamoto
- Scattering and Imaging Division, Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198, Japan
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| |
Collapse
|
2
|
Song Q, Zhou H, Han Q, Diao X. Toxic responses of Perna viridis hepatopancreas exposed to DDT, benzo(a)pyrene and their mixture uncovered by iTRAQ-based proteomics and NMR-based metabolomics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:48-57. [PMID: 28917945 DOI: 10.1016/j.aquatox.2017.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) and benzo(a)pyrene (BaP) are environmental estrogens (EEs) that are ubiquitous in the marine environment. In the present study, we integrated isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic and nuclear magnetic resonance (NMR)-based metabolomic approaches to explore the toxic responses of green mussel hepatopancreas exposed to DDT (10μg/L), BaP (10μg/L) and their mixture. The metabolic responses indicated that BaP primarily disturbed energy metabolism and osmotic regulation in the hepatopancreas of the male green mussel P. viridis. Both DDT and the mixture of DDT and BaP perturbed the energy metabolism and osmotic regulation in P. viridis. The proteomic responses revealed that BaP affected the proteins involved in energy metabolism, material transformation, cytoskeleton, stress responses, reproduction and development in green mussels. DDT exposure could change the proteins involved in primary metabolism, stress responses, cytoskeleton and signal transduction. However, the mixture of DDT and BaP altered proteins associated with material and energy metabolism, stress responses, signal transduction, reproduction and development, cytoskeleton and apoptosis. This study showed that iTRAQ-based proteomic and NMR-based metabolomic approaches could effectively elucidate the essential molecular mechanism of disturbances in hepatopancreas function of green mussels exposed to environmental estrogens.
Collapse
Affiliation(s)
- Qinqin Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Qian Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Odintsova NA, Dyachuk VA, Nezlin LP. Muscle and neuronal differentiation in primary cell culture of larval Mytilus trossulus (Mollusca: Bivalvia). Cell Tissue Res 2010; 339:625-37. [PMID: 20140457 DOI: 10.1007/s00441-009-0918-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 12/14/2009] [Indexed: 12/31/2022]
Abstract
Molluscan in vitro technology allows the study of the differentiation of isolated cells undergoing experimental manipulations. We have used the immunofluorescence technique and laser scanning microscopy to investigate the organization of muscle proteins (actin, myosin, paramyosin, and twitchin) and the localization of neurotransmitters (serotonin and FMRFamide) in cultured mussel larval cells. Differentiation into muscle and neuron-like cells occurs during the cultivation of mussel cells from premyogenic and prenervous larval stages. Muscle proteins are colocalized in contractile cells through all stages of cultivation. The cultivation of mussel cells on various substrates and the application of integrin receptor blockers suggest that an integrin-dependent mechanism is involved in cell adhesion and differentiation. Dissociated mussel cells aggregate and become self-organized in culture. After 20 days of cultivation, they form colonies in which serotonin- and FMRFamide-immunoreactive cells are located centrally, whereas muscle cells form a contractile network at the periphery. The pattern of thick and thin filaments in cultivated mussel cells changes according to the scenario of muscle arrangement in vivo: initially, a striated pattern of muscle filaments forms but is then replaced by a smooth muscle pattern with a diffuse distribution of muscle proteins, typical of muscles of adult molluscs. Myogenesis in molluscs thus seems to be a highly dynamic and potentially variable process. Such a "flexible" developmental program can be regarded as a prerequisite for the evolution of the wide variety of striated and smooth muscles in larval and adult molluscs.
Collapse
|
4
|
Dyachuk V, Odintsova N. Development of the larval muscle system in the mussel Mytilus trossulus (Mollusca, Bivalvia). Dev Growth Differ 2009; 51:69-79. [DOI: 10.1111/j.1440-169x.2008.01081.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
6
|
Plotnikov SV, Karpenko AA, Odintsova NA. Comparative characteristic of Mytilus muscle cells developed in vitro and in vivo. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 298:77-85. [PMID: 12884269 DOI: 10.1002/jez.a.10274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mussel cells from premyogenic larval stages are capable of differentiation into smooth muscle cells in vitro. However, the behavior and protein composition of these cells are not completely identical to those of smooth muscle cells of adult mussels. In this study we compared some properties of mussel muscle cells forming from cells of trochophore (premyogenic larval stage) in vitro with those of muscle cells of veliger and adult mussel. We found a substantial difference between the contractile apparatus protein composition of veliger muscle and cultivated cells. Myorod, one of the molecular markers of the phenotype of mollusc smooth muscle cells (Shelud'ko et al., 1999, Comp Biochem Physiol 122:277-285), is not a constituent of the contractile apparatus of veliger muscle. At the same time the protein composition of contractile apparatus in cultivated cells was similar to that of adult Mytilus muscles. There were only few quantitative differences between them. The contractile activity of cultivated cells was changing in time. The kinetic parameters of first spontaneous contractions were similar to those of phasic contractions, while their period was close to that of tonic contractions. After 50-55 hrs cultivation the cells produced both phasic and tonic contractions, but the character of contractile activity of cultivated cells was regulated after six days of cultivation only. However, there were no muscle cells in vitro, whose contractile activity was similar to that of veliger muscle cells. So, we concluded that properties of muscle cells forming from premyogenic larval mussel cells in culture are similar to those of muscle cells of the adult mussel, but not of veliger.
Collapse
Affiliation(s)
- Serguei V Plotnikov
- Institute of Marine Biology, Far East Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia.
| | | | | |
Collapse
|
7
|
Royuela M, Paniagua R, Rivier F, Hugon G, Robert A, Mornet D. Presence of invertebrate dystrophin-like products in obliquely striated muscle of the leech, Pontobdella muricata (Annelida, Hirudinea). THE HISTOCHEMICAL JOURNAL 1999; 31:603-8. [PMID: 10579629 DOI: 10.1023/a:1003855108802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dystrophin is a 427-kDa cytoskeletal protein, which occurs in scant amounts in vertebrate muscle and nerve cells. No previous references to dystrophin or associated proteins in invertebrates at the protein level have been found, while two recent studies investigated the presence of genes encoding proteins homologous to dystrophin in sea urchin and other invertebrates such as Drosophila melanogaster. In this study, the possible presence and distribution of dystrophin-like proteins were studied in different invertebrate muscle cell types and species through Western blot analysis and light and electron microscope immunohistochemistry using a panel of antibodies whose specificities have been determined in vertebrates. Crude protein extracts of leech Pontobdella muricata were analysed by Western blotting. The revealed protein band, with 140 kDa molecular weight, was related to dystrophin, utrophin or dystrophin-related protein-2 (DRP2) according to the specificities of the antibodies used to detect them. The immunofluorescence study showed positive immunoreactions in obliquely striated muscle of this hyrudinean. The immunoelectron microscopy study confirmed specific immunogold labelling beneath the sarcolemma of muscle cells. We thus assume that this protein is an invertebrate dystrophin-like product that is referred to as IDLp140. The potential functions of this invertebrate dystrophin-like protein in invertebrate muscles are discussed relative to previous data in vertebrate tissues.
Collapse
Affiliation(s)
- M Royuela
- Department of Cell Biology and Genetics, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | |
Collapse
|