1
|
Rijal G. Understanding the Role of Fibroblasts following a 3D Tumoroid Implantation for Breast Tumor Formation. Bioengineering (Basel) 2021; 8:bioengineering8110163. [PMID: 34821729 PMCID: PMC8615023 DOI: 10.3390/bioengineering8110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
An understanding of the participation and modulation of fibroblasts during tumor formation and growth is still unclear. Among many speculates, one might be the technical challenge to reveal the versatile function of fibroblasts in tissue complexity, and another is the dynamics in tissue physiology and cell activity. The histology of most solid tumors shows a predominant presence of fibroblasts, suggesting that tumor cells recruit fibroblasts for breast tumor growth. In this review paper, therefore, the migration, activation, differentiation, secretion, and signaling systems that are associated with fibroblasts and cancer-associated fibroblasts (CAFs) after implantation of a breast tumoroid, i.e., a lab-generated tumor tissue into an animal, are discussed.
Collapse
Affiliation(s)
- Girdhari Rijal
- Department of Medical Laboratory Sciences and Public Health, Tarleton State University, a Member of Texas A & M University System, Fort Worth, TX 76104, USA
| |
Collapse
|
2
|
Morgan MM, Schuler LA, Ciciliano JC, Johnson BP, Alarid ET, Beebe DJ. Modeling chemical effects on breast cancer: the importance of the microenvironment in vitro. Integr Biol (Camb) 2020; 12:21-33. [PMID: 32118264 PMCID: PMC7060306 DOI: 10.1093/intbio/zyaa002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/18/2019] [Accepted: 02/01/2020] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that our ability to predict chemical effects on breast cancer is limited by a lack of physiologically relevant in vitro models; the typical in vitro breast cancer model consists of the cancer cell and excludes the mammary microenvironment. As the effects of the microenvironment on cancer cell behavior becomes more understood, researchers have called for the integration of the microenvironment into in vitro chemical testing systems. However, given the complexity of the microenvironment and the variety of platforms to choose from, identifying the essential parameters to include in a chemical testing platform is challenging. This review discusses the need for more complex in vitro breast cancer models and outlines different approaches used to model breast cancer in vitro. We provide examples of the microenvironment modulating breast cancer cell responses to chemicals and discuss strategies to help pinpoint what components should be included in a model.
Collapse
Affiliation(s)
- Molly M Morgan
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jordan C Ciciliano
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian P Johnson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Elaine T Alarid
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Steer A, Cordes N, Jendrossek V, Klein D. Impact of Cancer-Associated Fibroblast on the Radiation-Response of Solid Xenograft Tumors. Front Mol Biosci 2019; 6:70. [PMID: 31475157 PMCID: PMC6705217 DOI: 10.3389/fmolb.2019.00070] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/29/2019] [Indexed: 01/18/2023] Open
Abstract
Increasing evidence indicates that the heterogeneous tumor stroma supports therapy resistance at multiple levels. Fibroblasts, particularly cancer-associated fibroblasts (CAFs) are critical components of the tumor stroma. However, the impact of CAFs on the outcome of radiotherapy (RT) is poorly understood. Here, we investigated if and how fibroblasts/CAFs modulate the radiation response of malignant tumors by altering cancer cell radiosensitivity or radioresistance in vitro and in vivo. The influence of fibroblasts on cancer cell proliferation, cell death induction and long-term survival after RT was studied using different sets of fibroblasts and cancer cells in an indirect co-culture (2D) system to analyse potential paracrine interactions or a 3D model to study direct interactions. Paracrine signals from embryonic NIH-3T3 fibroblasts promoted MPR31.4 prostate and Py8119 breast cancer cell proliferation. Indirect co-culture with L929 skin fibroblasts induced higher levels of apoptosis in irradiated MPR31.4 cells, while they promoted proliferation of irradiated Py8119 cells. In addition, NIH-3T3 fibroblasts promoted long-term clonogenic survival of both tumor cell types upon irradiation in the 3D co-culture system when compared to non-irradiated controls. Also in vivo, co-implantation of cancer cells and fibroblasts resulted in different effects depending on the respective cell combinations used: co-implantation of MPR31.4 cells with NIH-3T3 fibroblasts or of Py8119 cells with L929 fibroblasts led to increased tumor growth and reduced radiation-induced tumor growth delay when compared to the respective tumors without co-implanted fibroblasts. Taken together, the impact of fibroblasts on cancer cell behavior and radiation sensitivity largely depended on the respective cell types used as they either exerted a pro-tumorigenic and radioresistance-promoting effect, an anti-tumorigenic effect, or no effect. We conclude that the plasticity of fibroblasts allows for such a broad spectrum of activities by the same fibroblast and that this plasticity is at least in part mediated by cancer cell-induced fibroblast activation toward CAFs.
Collapse
Affiliation(s)
- Alizée Steer
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Nils Cordes
- Faculty of Medicine, OncoRay-National Center for Radiation Research in Oncology, Technische Universität Dresden, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany.,German Cancer Research Center (DKFZ)-Partner Site Dresden, Heidelberg, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
4
|
Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2016; 44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells; (c) retention of the DNA parental template strand during divisions in some tissue systems, so that mutations are passed to the daughter differentiating cells and not retained in the parental cell; and (d) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the niche. DNA repair mainly occurs within a few days of irradiation, while stem cell competition requires weeks or many months depending on the tissue type. The aforementioned processes may contribute to the differences in carcinogenic radiation risk values between tissues, and may help to explain why a rapidly replicating tissue such as small intestine is less prone to such risk. The processes also provide a mechanistic insight relevant to the LNT model, and the relative and absolute risk models. The radiobiological knowledge also provides a scientific insight into discussions of the dose and dose-rate effectiveness factor currently used in radiological protection guidelines. In addition, the biological information contributes potential reasons for the age-dependent sensitivity to radiation carcinogenesis, including the effects of in-utero exposure.
Collapse
|
5
|
Abstract
Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model.
Collapse
|
6
|
Barcellos-Hoff MH, Mao JH. HZE Radiation Non-Targeted Effects on the Microenvironment That Mediate Mammary Carcinogenesis. Front Oncol 2016; 6:57. [PMID: 27014632 PMCID: PMC4786544 DOI: 10.3389/fonc.2016.00057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/28/2016] [Indexed: 01/06/2023] Open
Abstract
Clear mechanistic understanding of the biological processes elicited by radiation that increase cancer risk can be used to inform prediction of health consequences of medical uses, such as radiotherapy, or occupational exposures, such as those of astronauts during deep space travel. Here, we review the current concepts of carcinogenesis as a multicellular process during which transformed cells escape normal tissue controls, including the immune system, and establish a tumor microenvironment. We discuss the contribution of two broad classes of radiation effects that may increase cancer: radiation targeted effects that occur as a result of direct energy deposition, e.g., DNA damage, and non-targeted effects (NTE) that result from changes in cell signaling, e.g., genomic instability. It is unknown whether the potentially greater carcinogenic effect of high Z and energy (HZE) particle radiation is a function of the relative contribution or extent of NTE or due to unique NTE. We addressed this problem using a radiation/genetic mammary chimera mouse model of breast cancer. Our experiments suggest that NTE promote more aggressive cancers, as evidenced by increased growth rate, transcriptomic signatures, and metastasis, and that HZE particle NTE are more effective than reference γ-radiation. Emerging evidence suggest that HZE irradiation dampens antitumor immunity. These studies raise concern that HZE radiation exposure not only increases the likelihood of developing cancer but also could promote progression to more aggressive cancer with a greater risk of mortality.
Collapse
Affiliation(s)
| | - Jian-Hua Mao
- Lawrence Berkeley National Laboratory , Berkeley, CA , USA
| |
Collapse
|
7
|
Ebos JML. Prodding the Beast: Assessing the Impact of Treatment-Induced Metastasis. Cancer Res 2015; 75:3427-35. [PMID: 26229121 DOI: 10.1158/0008-5472.can-15-0308] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/02/2015] [Indexed: 11/16/2022]
Abstract
The arsenal of treatments for most cancers fit broadly into the categories of surgery, chemotherapy, radiation, and targeted therapy. All represent proven and successful strategies, yet each can trigger local (tumor) and systemic (host) processes that elicit unwanted, often opposing, influences on cancer growth. Under certain conditions, nearly all cancer treatments can facilitate metastatic spread, often in parallel (and sometimes in clear contrast) with tumor reducing benefits. The paradox of treatment-induced metastasis (TIM) is not new. Supporting preclinical studies span decades, but are often overlooked. With recent evidence of prometastatic effects following treatment with targeted agents blocking the tumor microenvironment, a closer inspection of this literature is warranted. The TIM phenomena may diminish the impact of effective therapies and play a critical role in eventual resistance. Alternatively, it may simply exemplify the gap between animal and human studies, and therefore have little impact for patient disease and treatment. This review will focus on the preclinical model systems used to evaluate TIM and explore the mechanisms that influence overall treatment efficacy. Understanding the role of TIM in established and emerging drug treatment strategies may help provide rationales for future drug combination approaches with antimetastatic agents to improve outcomes and reduce resistance.
Collapse
Affiliation(s)
- John M L Ebos
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York. Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York.
| |
Collapse
|
8
|
Pellicciotta I, Marciscano AE, Hardee ME, Francis D, Formenti S, Barcellos-Hoff MH. Development of a novel multiplexed assay for quantification of transforming growth factor-β (TGF-β). Growth Factors 2015; 33:79-91. [PMID: 25586866 DOI: 10.3109/08977194.2014.999367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Changes in activity or levels of transforming growth factor-β (TGF-β) are associated with a variety of diseases; however, measurement of TGF-β in biological fluids is highly variable. TGF-β is biologically inert when associated with its latency-associated peptide (LAP). Most available immunoassays require exogenous activation by acid/heat to release TGF-β from the latent complex. We developed a novel electrochemiluminescence-based multiplexed assay on the MesoScale Discovery® platform that eliminates artificial activation, simultaneously measures both active TGF-β1 and LAP1 and includes an internal control for platelet-derived TGF-β contamination in blood specimens. We optimized this assay to evaluate plasma levels as a function of activation type and clinical specimen preparation. We determined that breast cancer patients' plasma have higher levels of circulating latent TGF-β (LTGF-β) as measured by LAP1 than healthy volunteers (p < 0.0001). This assay provides a robust tool for correlative studies of LTGF-β levels with disease, treatment outcomes and toxicity with a broad clinical applicability.
Collapse
|
9
|
Munson J, Bonner M, Fried L, Hofmekler J, Arbiser J, Bellamkonda R. Identifying new small molecule anti-invasive compounds for glioma treatment. Cell Cycle 2014; 12:2200-9. [PMID: 24067366 DOI: 10.4161/cc.25334] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma is a disease with poor survival rates after diagnosis. Treatment of the disease involves debulking of the tumor, which is limited by the degree of invasiveness of the disease. Therefore, a treatment to halt the invasion of glioma is desirable for clinical implementation. There have been several candidate compounds targeting specific aspects of invasion, including cell adhesions, matrix degradation, and cytoskeletal rearrangement, but they have failed clinically for a variety of reasons. New targets against glioma invasion include upstream mediators of these classical targets in an effort to better inhibit invasion with more specificity for cancer. Included in these treatments is a new class of compounds inhibiting the generation of reactive oxygen species by targeting the NADPH oxidases. These compounds stand to inhibit multiple pathways, including nuclear factor kappa B and Akt. By conducting a screen of compounds thought to inhibit these pathways, a new compound to halt invasion was found that may have a beneficial effect against glioma, based on recent publications. Further, there are still limitations to the treatment of glioblastoma regardless of the discovery of new targets and compounds that should be addressed to better the therapies against this deadly cancer.
Collapse
Affiliation(s)
- Jennifer Munson
- Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology; Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
10
|
Barcellos-Hoff MH, Adams C, Balmain A, Costes SV, Demaria S, Illa-Bochaca I, Mao JH, Ouyang H, Sebastiano C, Tang J. Systems biology perspectives on the carcinogenic potential of radiation. JOURNAL OF RADIATION RESEARCH 2014; 55. [PMCID: PMC3941546 DOI: 10.1093/jrr/rrt211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This review focuses on recent experimental and modeling studies that attempt to define the physiological context in which high linear energy transfer (LET) radiation increases epithelial cancer risk and the efficiency with which it does so. Radiation carcinogenesis is a two-compartment problem: ionizing radiation can alter genomic sequence as a result of damage due to targeted effects (TE) from the interaction of energy and DNA; it can also alter phenotype and multicellular interactions that contribute to cancer by poorly understood non-targeted effects (NTE). Rather than being secondary to DNA damage and mutations that can initiate cancer, radiation NTE create the critical context in which to promote cancer. Systems biology modeling using comprehensive experimental data that integrates different levels of biological organization and time-scales is a means of identifying the key processes underlying the carcinogenic potential of high-LET radiation. We hypothesize that inflammation is a key process, and thus cancer susceptibility will depend on specific genetic predisposition to the type and duration of this response. Systems genetics using novel mouse models can be used to identify such determinants of susceptibility to cancer in radiation sensitive tissues following high-LET radiation. Improved understanding of radiation carcinogenesis achieved by defining the relative contribution of NTE carcinogenic effects and identifying the genetic determinants of the high-LET cancer susceptibility will help reduce uncertainties in radiation risk assessment.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University School of Medicine, 566 First Avenue, New York, NY 10016, USA
- Corresponding author. Department of Radiation Oncology, New York University School of Medicine, 450 East 29th Street, New York, NY 10016, USA. Tel: +1-212-263-3021;
| | - Cassandra Adams
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 Third Street, San Francisco, CA 94158, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 Third Street, San Francisco, CA 94158, USA
| | - Sylvain V. Costes
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS977, Berkeley CA 94720, USA
| | - Sandra Demaria
- Department of Pathology, New York University School of Medicine, 566 First Avenue, New York, NY 10016, USA
| | - Irineu Illa-Bochaca
- Department of Radiation Oncology, New York University School of Medicine, 566 First Avenue, New York, NY 10016, USA
| | - Jian Hua Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS977, Berkeley CA 94720, USA
| | - Haoxu Ouyang
- Department of Radiation Oncology, New York University School of Medicine, 566 First Avenue, New York, NY 10016, USA
| | - Christopher Sebastiano
- Department of Pathology, New York University School of Medicine, 566 First Avenue, New York, NY 10016, USA
| | - Jonathan Tang
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS977, Berkeley CA 94720, USA
| |
Collapse
|
11
|
Nuth M, Kennedy AR. Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress. Oncol Lett 2013; 6:35-42. [PMID: 23946774 PMCID: PMC3742521 DOI: 10.3892/ol.2013.1362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/20/2012] [Indexed: 11/06/2022] Open
Abstract
Ionizing radiation associated with highly energetic and charged heavy (HZE) particles poses a danger to astronauts during space travel. The aim of the present study was to evaluate the patterns of gene expression associated with cellular exposure to low-dose iron ion irradiation, in the presence and absence of L-selenomethionine (SeM). Human thyroid epithelial cells (HTori-3) were exposed to low-dose iron ion (1 GeV/n) irradiation at 10 or 20 cGy with or without SeM pretreatment. The cells were harvested 6 and 16 h post-irradiation and analyzed by the Affymetrix U133Av2 gene chip arrays. Genes exhibiting a 1.5-fold expression cut-off and 5% false discovery rate (FDR) were considered statistically significant and subsequently analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) for pathway analysis. Representative genes were further validated by real-time RT-PCR. Even at low doses of radiation from iron ions, global genome profiling of the irradiated cells revealed the upregulation of genes associated with the activation of stress-related signaling pathways (ubiquitin-mediated proteolysis, p53 signaling, cell cycle and apoptosis), which occurred in a dose-dependent manner. A 24-h pretreatment with SeM was shown to reduce the radiation effects by mitigating stress-related signaling pathways and downregulating certain genes associated with cell adhesion. The mechanism by which SeM prevents radiation-induced transformation in vitro may involve the suppression of the expression of genes associated with stress-related signaling and certain cell adhesion events.
Collapse
Affiliation(s)
- Manunya Nuth
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
12
|
Braunstein S, Nakamura JL. Radiotherapy-induced malignancies: review of clinical features, pathobiology, and evolving approaches for mitigating risk. Front Oncol 2013; 3:73. [PMID: 23565507 PMCID: PMC3615242 DOI: 10.3389/fonc.2013.00073] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/21/2013] [Indexed: 12/24/2022] Open
Abstract
One of the most significant effects of radiation therapy on normal tissues is mutagenesis, which is the basis for radiation-induced malignancies. Radiation-induced malignancies are late complications arising after radiotherapy, increasing in frequency among survivors of both pediatric and adult cancers. Genetic backgrounds harboring germline mutations in tumor suppressor genes are recognized risk factors. Some success has been found with using genome wide association studies to identify germline polymorphisms associated with susceptibility. The insights generated by genetics, epidemiology, and the development of experimental models are defining potential strategies to offer to individuals at risk for radiation-induced malignancies. Concurrent technological efforts are developing novel radiotherapy delivery to reduce irradiation of normal tissues, and thereby, to mitigate the risk of radiation-induced malignancies. The goal of this review is to discuss epidemiologic, modeling, and radiotherapy delivery data, where these lines of research intersect and their potential impact on patient care.
Collapse
Affiliation(s)
- Steve Braunstein
- Department of Radiation Oncology, University of California San FranciscoSan Francisco, CA, USA
| | - Jean L. Nakamura
- Department of Radiation Oncology, University of California San FranciscoSan Francisco, CA, USA
| |
Collapse
|
13
|
Barcellos-Hoff MH. New biological insights on the link between radiation exposure and breast cancer risk. J Mammary Gland Biol Neoplasia 2013; 18:3-13. [PMID: 23325014 DOI: 10.1007/s10911-013-9272-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/07/2013] [Indexed: 12/11/2022] Open
Abstract
Radiation exposure is a well-documented risk factor for breast cancer in women. Compelling epidemiological evidence in different exposed populations around the world demonstrate that excess breast cancer increases with radiation doses above 10 cGy. Both frequency and type of breast cancer are affected by prior radiation exposure. Many epidemiological studies suggest that radiation risk is inversely related to age at exposure; exposure during puberty poses the greatest risk while exposures past the menopause appear to carry very low risk. These observations are supported by experimental studies in mice and rats, which together provide the basis for the pubertal 'window of susceptibility' hypothesis for carcinogenic exposure. One line of experimental investigation suggests that the pubertal epithelium is more sensitive because DNA damage responses are less efficient, an other suggests that radiation affects stem cells self-renewal. A recent line of investigation suggests that the irradiated microenvironment mediates cancer risk. Studying the biological basis for radiation effects provides potential routes for protection in vulnerable populations, which include survivors of childhood cancers, as well as insights into the biology for certain types of sporadic cancer.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University School of Medicine, 566 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
14
|
Abstract
Radiation-induced (RI) secondary cancers were not a major clinical concern even as little as 15 years ago. However, advances in cancer diagnostics, therapy, and supportive care have saved numerous lives and many former cancer patients are now living for 5, 10, 20, and more years beyond their initial diagnosis. The majority of these patients have received radiotherapy as a part of their treatment regimen and are now beginning to develop secondary cancers arising from normal tissue exposure to damaging effects of ionizing radiation. Because historically patients rarely survived past the extended latency periods inherent to these RI cancers, very little effort was channeled towards the research leading to the development of therapeutic agents intended to prevent or ameliorate oncogenic effects of normal tissue exposure to radiation. The number of RI cancers is expected to increase very rapidly in the near future, but the field of cancer biology might not be prepared to address important issues related to this phenomena. One such issue is the ability to accurately differentiate between primary tumors and de novo arising secondary tumors in the same patient. Another issue is the lack of therapeutic agents intended to reduce such cancers in the future. To address these issues, large-scale epidemiological studies must be supplemented with appropriate animal modeling studies. This work reviews relevant mouse (Mus musculus) models of inbred and F1 animals and methodologies of induction of most relevant radiation-associated cancers: leukemia, lymphoma, and lung and breast cancers. Where available, underlying molecular pathologies are included.
Collapse
Affiliation(s)
- Leena Rivina
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA.
| | | |
Collapse
|
15
|
Mouse models for efficacy testing of agents against radiation carcinogenesis—a literature review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 10:107-43. [PMID: 23271302 PMCID: PMC3564133 DOI: 10.3390/ijerph10010107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/26/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022]
Abstract
As the number of cancer survivors treated with radiation as a part of their therapy regimen is constantly increasing, so is concern about radiation-induced cancers. This increases the need for therapeutic and mitigating agents against secondary neoplasias. Development and efficacy testing of these agents requires not only extensive in vitro assessment, but also a set of reliable animal models of radiation-induced carcinogenesis. The laboratory mouse (Mus musculus) remains one of the best animal model systems for cancer research due to its molecular and physiological similarities to man, small size, ease of breeding in captivity and a fully sequenced genome. This work reviews relevant M. musculus inbred and F1 hybrid animal models and methodologies of induction of radiation-induced leukemia, thymic lymphoma, breast, and lung cancer in these models. Where available, the associated molecular pathologies are also included.
Collapse
|
16
|
Artacho-Cordón A, Artacho-Cordón F, Ríos-Arrabal S, Calvente I, Núñez MI. Tumor microenvironment and breast cancer progression: a complex scenario. Cancer Biol Ther 2012; 13:14-24. [PMID: 22336584 DOI: 10.4161/cbt.13.1.18869] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is now widely accepted that the development and progression of a tumor toward the malignant phenotype is highly dependent on interactions between tumor cells and the tumor microenvironment. Different components of the tumor microenvironment may have stimulatory or inhibitory effects on tumor progression by regulating the gene expression repertoire in tumor cells and stromal cells. This review analyzes novel research findings on breast cancer progression, discussing acquisition of the metastatic phenotype in breast disease in relation to different aspects of cross-talk among components of the tumor microenvironment. Knowledge of the interaction of all of these factors would contribute to elucidating the mechanisms that disrupt regulatory/signaling cascades and downstream effects in breast cancer.
Collapse
|
17
|
Vidi PA, Chandramouly G, Gray M, Wang L, Liu E, Kim JJ, Roukos V, Bissell MJ, Moghe PV, Lelièvre SA. Interconnected contribution of tissue morphogenesis and the nuclear protein NuMA to the DNA damage response. J Cell Sci 2012; 125:350-61. [PMID: 22331358 DOI: 10.1242/jcs.089177] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Epithelial tissue morphogenesis is accompanied by the formation of a polarity axis--a feature of tissue architecture that is initiated by the binding of integrins to the basement membrane. Polarity plays a crucial role in tissue homeostasis, preserving differentiation, cell survival and resistance to chemotherapeutic drugs among others. An important aspect in the maintenance of tissue homeostasis is genome integrity. As normal tissues frequently experience DNA double-strand breaks (DSBs), we asked how tissue architecture might participate in the DNA damage response. Using 3D culture models that mimic mammary glandular morphogenesis and tumor formation, we show that DSB repair activity is higher in basally polarized tissues, regardless of the malignant status of cells, and is controlled by hemidesmosomal integrin signaling. In the absence of glandular morphogenesis, in 2D flat monolayer cultures, basal polarity does not affect DNA repair activity but enhances H2AX phosphorylation, an early chromatin response to DNA damage. The nuclear mitotic apparatus protein 1 (NuMA), which controls breast glandular morphogenesis by acting on the organization of chromatin, displays a polarity-dependent pattern and redistributes in the cell nucleus of basally polarized cells upon the induction of DSBs. This is shown using high-content analysis of nuclear morphometric descriptors. Furthermore, silencing NuMA impairs H2AX phosphorylation--thus, tissue polarity and NuMA cooperate to maintain genome integrity.
Collapse
Affiliation(s)
- Pierre-Alexandre Vidi
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The prognostic value of tumour-stroma ratio in triple-negative breast cancer. Eur J Surg Oncol 2012; 38:307-13. [PMID: 22264965 DOI: 10.1016/j.ejso.2012.01.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/21/2011] [Accepted: 01/03/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Triple-negative cancer constitutes one of the most challenging groups of breast cancer given its aggressive clinical behaviour, poor outcome and lack of targeted therapy. Until now, profiling techniques have not been able to distinguish between patients with a good and poor outcome. Recent studies on tumour-stroma, found it to play an important role in tumour growth and progression. OBJECTIVE To evaluate the prognostic value of the tumour-stroma ratio (TSR) in triple-negative breast cancer. METHODS One hundred twenty four consecutive triple-negative breast cancer patients treated in our hospital were selected and evaluated. For each patient the Haematoxylin-Eosin (H&E) stained histological sections were evaluated for percentage of stroma. Patients with less than 50% stroma were classified as stroma-low and patients with ≥ 50% stroma were classified as stroma-high. RESULTS Of 124 triple-negative breast cancer patients, 40% had a stroma-high and 60% had a stroma-low tumour. TSR was assessed by two investigators (kappa 0.74). The 5-years relapse-free period (RFP) and overall survival (OS) were 85% and 89% in the stroma-low and 45% and 65% in the stroma-high group. In a multivariate cox-regression analysis, stroma amount remained an independent prognostic variable for RFP (HR 2.39; 95% CI 1.07-5.29; p = 0.033) and OS (HR 3.00; 95% CI 1.08-8.32; 0.034). CONCLUSION TSR is a strong independent prognostic variable in triple-negative breast cancer. It is simple to determine, reproducible and can be easily incorporated into routine histological examination. This parameter can help optimize risk stratification and might lead to future targeted therapies.
Collapse
|
19
|
Barcellos-Hoff MH. Stromal mediation of radiation carcinogenesis. J Mammary Gland Biol Neoplasia 2010; 15:381-7. [PMID: 21181431 PMCID: PMC3068291 DOI: 10.1007/s10911-010-9197-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 12/09/2010] [Indexed: 01/07/2023] Open
Abstract
Ionizing radiation is a well-established carcinogen in human breast and rodent mammary gland. This review addresses evidence that radiation elicits the critical stromal context for cancer, affecting not only frequency but the type of cancer. Recent data from the breast tumors of women treated with radiation therapy and the cellular mechanisms evident in experimental models suggest that radiation effects on stromal-epithelial interactions and tissue composition are a major determinant of cancer development.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Departments of Radiation Oncology and Cell Biology, New York University School of Medicine, 566 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
20
|
Barcellos-Hoff MH, Nguyen DH. Radiation carcinogenesis in context: how do irradiated tissues become tumors? HEALTH PHYSICS 2009; 97:446-457. [PMID: 19820454 PMCID: PMC2761885 DOI: 10.1097/hp.0b013e3181b08a10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
It is clear from experimental studies that genotype is an important determinant of cancer susceptibility in general, and for radiation carcinogenesis specifically. It has become increasingly clear that genotype influences not only the ability to cope with DNA damage but also influences the cooperation of other tissues, like the vasculature and immune system, necessary for the establishment of cancer. Our experimental data and that of others suggest that the carcinogenic action of ionizing radiation (IR) can also be considered a two-compartment problem: while IR can alter genomic sequence as a result of DNA damage, it can also induce signals that alter multicellular interactions and phenotypes that underpin carcinogenesis. Rather than being accessory or secondary to genetic damage, we propose that such non-targeted radiation effects create the critical context that promotes cancer development. This review focuses on experimental studies that clearly define molecular mechanisms by which cell interactions contribute to cancer in different organs, and addresses how non-targeted radiation effects may similarly act though the microenvironment. The definition of non-targeted radiation effects and their dose dependence could modify the current paradigms for radiation risk assessment since radiation non-targeted effects, unlike DNA damage, are amenable to intervention. The implications of this perspective in terms of reducing cancer risk after exposure are discussed.
Collapse
Affiliation(s)
| | - David H. Nguyen
- Graduate program in Molecular Endocrinology, University of California, Berkeley, 94720;
| |
Collapse
|
21
|
Weber TJ, Opresko LK, Waisman DM, Newton GJ, Quesenberry RD, Bollinger N, Moore RJ, Smith RD. Regulation of the Low-Dose Radiation Paracrine-Specific Anchorage-Independent Growth Response by Annexin A2. Radiat Res 2009; 172:96-105. [DOI: 10.1667/rr1220.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Li MX, Xiao ZQ, Liu YF, Chen YH, Li C, Zhang PF, Li MY, Li F, Peng F, Duan CJ, Yi H, Yao HX, Chen ZC. Quantitative proteomic analysis of differential proteins in the stroma of nasopharyngeal carcinoma and normal nasopharyngeal epithelial tissue. J Cell Biochem 2009; 106:570-9. [PMID: 19142861 DOI: 10.1002/jcb.22028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The importance of stromal cells and the factors that they expressed during cancer initiation and progression have been highlighted by recent literature. To identify the stromal proteins involved in nasopharyngeal carcinoma (NPC) carcinogenesis, we assessed differences in protein expression of the stroma from NPC and normal nasopharyngeal epithelium tissues (NNET) using a quantitative proteomic approach combined with laser capture microdissection (LCM). LCM was performed to purify stromal cells from the NPC and NNET, respectively. The differential proteins between the pooled microdissected tumor and normal stroma were analyzed by two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry (MS). Twenty differential proteins were identified, and the expression and location of two differential proteins (L-plastin and S100A9) were further confirmed by Western blotting and immunohistochemical analysis. Our results will be helpful to study the role of stroma in the NPC carcinogenesis, as well as discover the interaction between NPC cells and their surrounding microenvironment.
Collapse
Affiliation(s)
- Mei-Xiang Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Barcellos-Hoff MH, Akhurst RJ. Transforming growth factor-beta in breast cancer: too much, too late. Breast Cancer Res 2009; 11:202. [PMID: 19291273 PMCID: PMC2687712 DOI: 10.1186/bcr2224] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The contribution of transforming growth factor (TGF)β to breast cancer has been studied from a myriad perspectives since seminal studies more than two decades ago. Although the action of TGFβ as a canonical tumor suppressor in breast is without a doubt, there is compelling evidence that TGFβ is frequently subverted in a malignant plexus that drives breast cancer. New knowledge that TGFβ regulates the DNA damage response, which underlies cancer therapy, reveals another facet of TGFβ biology that impedes cancer control. Too much TGFβ, too late in cancer progression is the fundamental motivation for pharmaceutical inhibition.
Collapse
|
24
|
Lin HJL, Zuo T, Chao JR, Peng Z, Asamoto LK, Yamashita SS, Huang THM. Seed in soil, with an epigenetic view. Biochim Biophys Acta Gen Subj 2008; 1790:920-4. [PMID: 19162126 DOI: 10.1016/j.bbagen.2008.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 12/17/2022]
Abstract
It is becoming increasingly evident that discrete genetic alterations in neoplastic cells alone cannot explain multistep carcinogenesis whereby tumor cells are able to express diverse phenotypes during the complex phases of tumor development and progression. The epigenetic model posits that the host microenvironment exerts an initial, inhibitory constraint on tumor growth that is followed by acceleration of tumor progression through complex cell-matrix interactions. This review emphasizes the epigenetic aspects of breast cancer development in light of such interactions between epithelial cells ("seed") and the tumor microenvironment ("soil"). Our recent research findings suggest that epigenetic perturbations induced by the tumor microenvironment may play a causal role in promoting breast cancer development. It is believed that abrogation of these initiators could offer a promising therapeutic strategy.
Collapse
|
25
|
Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet 2008; 25:30-8. [PMID: 19054589 DOI: 10.1016/j.tig.2008.10.012] [Citation(s) in RCA: 450] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/30/2008] [Accepted: 10/31/2008] [Indexed: 12/23/2022]
Abstract
Increasing evidence indicates that tumor-stromal cell interactions have a crucial role in tumor initiation and progression. These interactions modify cellular compartments, leading to the co-evolution of tumor cells and their microenvironment. Although the importance of microenvironmental alterations in tumor development is recognized, the molecular mechanisms underlying these changes are only now beginning to be understood. Epigenetic and gene expression changes have consistently been reported in cancer-associated stromal cells and the influence of the host genotype on tumorigenesis is also well documented. However, the presence of clonally selected somatic genetic alterations within the tumor microenvironment has been controversial. A thorough understanding of the co-evolution of these two cellular compartments will require carefully executed molecular studies combined with mathematical modeling.
Collapse
Affiliation(s)
- Kornelia Polyak
- Dana-Farber Cancer Institute, 44 Binney Street, D740C, Boston, MA 02115, USA.
| | | | | |
Collapse
|
26
|
Wels J, Kaplan RN, Rafii S, Lyden D. Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 2008; 22:559-74. [PMID: 18316475 DOI: 10.1101/gad.1636908] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cancer environment is comprised of tumor cells as well as a wide network of stromal and vascular cells participating in the cellular and molecular events necessary for invasion and metastasis. Tumor secretory factors can activate the migration of host cells, both near to and far from the primary tumor site, as well as promote the exodus of cells to distant tissues. Thus, the migration of stromal cells and tumor cells among specialized microenvironments takes place throughout tumor and metastatic progression, providing evidence for the systemic nature of a malignancy. Investigations of the tumor-stromal and stromal-stromal cross-talk involved in cellular migration in cancer may lead to the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jared Wels
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10021, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Breast cancer is not a single disease, but rather is composed of distinct subtypes associated with different clinical outcomes. Understanding this heterogeneity is key for the development of targeted cancer-preventative and -therapeutic interventions. Current models explaining inter- and intratumoral diversity are the cancer stem cell and the clonal evolution hypotheses. Although tumor initiation and progression are predominantly driven by acquired genetic alterations, recent data implicate a role for microenvironmental and epigenetic changes as well. Comprehensive unbiased studies of tumors and patient populations have significantly advanced our molecular understanding of breast cancer, but translating these findings into clinical practice remains a challenge.
Collapse
Affiliation(s)
- Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| |
Collapse
|
28
|
Casey TM, Eneman J, Crocker A, White J, Tessitore J, Stanley M, Harlow S, Bunn JY, Weaver D, Muss H, Plaut K. Cancer associated fibroblasts stimulated by transforming growth factor beta1 (TGF-beta 1) increase invasion rate of tumor cells: a population study. Breast Cancer Res Treat 2007; 110:39-49. [PMID: 17674196 DOI: 10.1007/s10549-007-9684-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 07/09/2007] [Indexed: 11/25/2022]
Abstract
Cancer associated fibroblasts (CAFs) are believed to promote tumor growth and progression. Our objective was to measure the effect of TGF-beta1 on fibroblasts isolated from invasive breast cancer patients. Fibroblasts were isolated from tissue obtained at surgery from patients with invasive breast cancer (CAF; n = 28) or normal reduction mammoplasty patients (normal; n = 10). Myofibroblast activation was measured by counting cells immunostained for smooth muscle alpha actin (ACTA2) in cultures +/- TGF-beta 1. Conditioned media (CM) was collected for invasion assays and RNA was isolated from cultures incubated in media +/- TGF-beta1 for 24 h. Q-PCR was used to measure expression of cyclin D1, fibronectin, laminin, collagen I, urokinase, stromelysin-1, and ACTA2 genes. Invasion rate was measured in chambers plated with MDA-MB-231 cells and exposed to CM in the bottom chamber; the number of cells that invaded into the bottom chamber was counted. Wilcox Rank Sum tests were used to evaluate differences in CAFs and normal fibroblasts and the effect of TGF-beta 1. There was no difference in percent myofibroblasts or invasion rate between normal and CAF cultures. However, TGF-beta1 significantly increased the percent of myofibroblasts (P < 0.01) and invasion rate (P = 0.02) in CAF cultures. Stromelysin-1 expression was significantly higher in normal versus CAF cultures (P < 0.01). TGF-beta 1 significantly increased ACTA2 expression in both normal and CAF cultures (P < 0.01). Expression of fibronectin and laminin was significantly increased by TGF-beta in CAF cultures (P < 0.01). CAFs were measurably different from normal fibroblasts in response to TGF-beta 1, suggesting that TGF-beta stimulates changes in CAFs that foster tumor invasion.
Collapse
Affiliation(s)
- Theresa M Casey
- Department of Animal Science, Michigan State University, B290 Anthony Hall, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lebret SC, Newgreen DF, Thompson EW, Ackland ML. Induction of epithelial to mesenchymal transition in PMC42-LA human breast carcinoma cells by carcinoma-associated fibroblast secreted factors. Breast Cancer Res 2007; 9:R19. [PMID: 17311675 PMCID: PMC1851381 DOI: 10.1186/bcr1656] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 01/23/2007] [Accepted: 02/20/2007] [Indexed: 11/12/2022] Open
Abstract
Background Breast carcinoma is accompanied by changes in the acellular and cellular components of the microenvironment, the latter typified by a switch from fibroblasts to myofibroblasts. Methods We utilised conditioned media cultures, Western blot analysis and immunocytochemistry to investigate the differential effects of normal mammary fibroblasts (NMFs) and mammary cancer-associated fibroblasts (CAFs) on the phenotype and behaviour of PMC42-LA breast cancer cells. NMFs were obtained from a mammary gland at reduction mammoplasty, and CAFs from a mammary carcinoma after resection. Results We found greater expression of myofibroblastic markers in CAFs than in NMFs. Medium from both CAFs and NMFs induced novel expression of α-smooth muscle actin and cytokeratin-14 in PMC42-LA organoids. However, although conditioned media from NMFs resulted in distribution of vimentin-positive cells to the periphery of PMC42-LA organoids, this was not seen with CAF-conditioned medium. Upregulation of vimentin was accompanied by a mis-localization of E-cadherin, suggesting a loss of adhesive function. This was confirmed by visualizing the change in active β-catenin, localized to the cell junctions in control cells/cells in NMF-conditioned medium, to inactive β-catenin, localized to nuclei and cytoplasm in cells in CAF-conditioned medium. Conclusion We found no significant difference between the influences of NMFs and CAFs on PMC42-LA cell proliferation, viability, or apoptosis; significantly, we demonstrated a role for CAFs, but not for NMFs, in increasing the migratory ability of PMC42-LA cells. By concentrating NMF-conditioned media, we demonstrated the presence of factor(s) that induce epithelial-mesenchymal transition in NMF-conditioned media that are present at higher levels in CAF-conditioned media. Our in vitro results are consistent with observations in vivo showing that alterations in stroma influence the phenotype and behaviour of surrounding cells and provide evidence for a role for CAFs in stimulating cancer progression via an epithelial-mesenchymal transition. These findings have implications for our understanding of the roles of signalling between epithelial and stromal cells in the development and progression of mammary carcinoma.
Collapse
Affiliation(s)
| | - Donald F Newgreen
- The Murdoch Children's Research Institute, Flemington Road, Parkville, Melbourne, 3050, Australia
| | - Erik W Thompson
- Department of Surgery, University of Melbourne, Grattan Street, Parkville Melbourne, 3050, Australia
- St. Vincent's Institute of Medical Research, Victoria Parade, Fitzroy, Melbourne, 3065, Australia
- Bernard O'Brien Institute for Microsurgery, Fitzroy Street, Fitzroy, Melborune, 3065, Australia
| | - M Leigh Ackland
- Deakin University, Burwood Highway, Burwood, Melbourne, 3125, Australia
| |
Collapse
|
30
|
Abstract
Radiation rapidly and persistently alters the soluble and insoluble components of the tissue microenvironment. This affects the cell phenotype, tissue composition and the physical interactions and signalling between cells. These alterations in the microenvironment can contribute to carcinogenesis and alter the tissue response to anticancer therapy. Examples of these responses and their implications are discussed with a view to therapeutic intervention.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
31
|
Tsai KKC, Chuang EYY, Little JB, Yuan ZM. Cellular mechanisms for low-dose ionizing radiation-induced perturbation of the breast tissue microenvironment. Cancer Res 2005; 65:6734-44. [PMID: 16061655 DOI: 10.1158/0008-5472.can-05-0703] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiation exposure is an important form of environmental carcinogen and has been associated with increased risk of breast cancer. Epigenetic events, especially those involving alterations in the breast stromal microenvironment, may play an important role in radiation-induced carcinogenesis but remain not well understood. We here show that human mammary stromal fibroblasts respond to protracted low-dose ionizing radiation exposures by displaying a senescence-like phenotype. Using a three-dimensional coculture system to model the interactions of different mammary cell types with their neighbors and with their environment, we provide a direct experimental proof that ionizing radiation-induced senescence-like fibroblasts significantly perturb the mammary stromal microenvironment, which is highlighted by impaired formation of pseudopodia networks due to marked cytoskeletal alterations in senescence-like fibroblasts and increased extracellular matrix degradation because of the up-regulation of multiple secreted matrix metalloproteinases. Within such a perturbed environment, mammary ductal morphogenesis is completely disrupted and epithelial cells instead grow into enlarged cystic structures, which further develop and become disorganized cell masses on inactivation of cellular death pathways. Breast carcinoma cells growing in such an environment are enabled to fully express their malignant potential as evidenced by the alpha6beta4 integrin/phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway-dependent invasive growth. Our results suggest that ionizing radiation, in addition to causing gene mutations in epithelial cells, can contribute to breast carcinogenesis by perturbing the tissue microenvironment that leads to dysregulated cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- Kelvin K C Tsai
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
32
|
Chepko G, Slack R, Carbott D, Khan S, Steadman L, Dickson RB. Differential alteration of stem and other cell populations in ducts and lobules of TGFα and c-Myc transgenic mouse mammary epithelium. Tissue Cell 2005; 37:393-412. [PMID: 16137731 DOI: 10.1016/j.tice.2005.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 06/02/2005] [Accepted: 06/29/2005] [Indexed: 12/23/2022]
Abstract
Genes associated with proliferation are active in stem and progenitor cells, and their over-expression can promote cancer. Two such genes, c-Myc and TGFalpha, promote morphologically dissimilar mammary tumors in transgenic mice. We investigated whether their over-expression affects population size and cell cycle activity in stem and other cell populations in non-neoplastic mammary epithelia. Results indicated that both cell population and cell cycle regulation are cell type- and microenvironment-specific. To create a tool for identifying and categorizing the five cellular phenotypes by light microscopy, we adapted previously established ultrastructural criteria. Using nulliparous MMTV-c-myc or MT-tgfalpha mice, we determined and compared the relative sizes the putative stem, progenitor and differentiated cell populations. PCNA staining was used to compare the portion of each cell population in the cell cycle. Cell population sizes were analyzed relative to: (1) their location in ducts versus lobules (microenvironment), (2) genotype, and (3) cell type. Population sizes differed significantly by genotype, depending on microenvironment (p=0.0008), by genotype, depending on cell type (p<0.0001), and by microenvironment, depending on cell type (p=0.03). The number of cycling cells was also affected by all three factors, confirming that the interplay of cell type, gene expression and three-dimensional organization are very important in tissue morphogenesis and function. We describe a structure in mammary epithelium consistent with that of a stem cell niche, and show that it is altered in MMTV-c-myc and likely altered in MT TGFalpha transgenic epithelia.
Collapse
Affiliation(s)
- G Chepko
- Department of Oncology, Georgetown University, Lombardi Comprehensive Cancer Center, NRB W 401 3970 Reservoir Road NW, Washington, DC 20057, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Barcellos-Hoff MH, Medina D. New highlights on stroma-epithelial interactions in breast cancer. Breast Cancer Res 2004; 7:33-6. [PMID: 15642180 PMCID: PMC1064117 DOI: 10.1186/bcr972] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although the stroma in which carcinomas arise has been previously regarded as a bystander to the clonal expansion and acquisition of malignant characteristics of tumor cells, it is now generally acknowledged that stromal changes are required for the establishment of cancer. In the present article, we discuss three recent publications that highlight the complex role the stroma has during the development of cancer and the potential for targeting the stroma by therapeutic approaches.
Collapse
|
34
|
Affiliation(s)
- Theoharis C Theoharides
- Departments of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine and New England Medical Center, 136 Harrison Avenue, Boston, MA 02111, USA.
| | | |
Collapse
|
35
|
Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A 2004; 101:4966-71. [PMID: 15051869 PMCID: PMC387357 DOI: 10.1073/pnas.0401064101] [Citation(s) in RCA: 609] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The study of normal breast epithelial morphogenesis and carcinogenesis in vivo has largely used rodent models. Efforts at studying mammary morphogenesis and cancer with xenotransplanted human epithelial cells have failed to recapitulate the full extent of development seen in the human breast. We have developed an orthotopic xenograft model in which both the stromal and epithelial components of the reconstructed mammary gland are of human origin. Genetic modification of human stromal cells before the implantation of ostensibly normal human mammary epithelial cells resulted in the outgrowth of benign and malignant lesions. This experimental model allows for studies of human epithelial morphogenesis and differentiation in vivo and underscores the critical role of heterotypic interactions in human breast development and carcinogenesis.
Collapse
Affiliation(s)
- Charlotte Kuperwasser
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Park CC, Henshall-Powell RL, Erickson AC, Talhouk R, Parvin B, Bissell MJ, Barcellos-Hoff MH. Ionizing radiation induces heritable disruption of epithelial cell interactions. Proc Natl Acad Sci U S A 2003; 100:10728-33. [PMID: 12960393 PMCID: PMC196872 DOI: 10.1073/pnas.1832185100] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.
Collapse
Affiliation(s)
- Catherine C Park
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Erickson AC, Barcellos-Hoff MH. The not-so innocent bystander: the microenvironment as a therapeutic target in cancer. Expert Opin Ther Targets 2003; 7:71-88. [PMID: 12556204 DOI: 10.1517/14728222.7.1.71] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The microenvironment in which cancer arises is often regarded as a bystander to the clonal expansion and acquisition of malignant characteristics of the tumour. However, a major function of the microenvironment is to suppress cancer, and its disruption is required for the establishment of cancer. In addition, tumour cells can further distort the microenvironment to promote growth, recruit non-malignant cells that provide physiological resources, and facilitate invasion. In this review, the authors discuss the contribution of the microenvironment, i.e., the stroma and its resident vasculature, inflammatory cells, growth factors and the extracellular matrix (ECM), in the development of cancer, and focus on two components as potential therapeutic targets in breast cancer. First, the ECM, which imparts crucial signalling via integrins and other receptors, is a first-line barrier to invasion, modulates aggressive behaviour and may be manipulated to provide novel impediments to tumour growth. Second, the authors discuss the involvement of TGF-beta1 as an example of one of many growth factors that can regulate ECM composition and degradation and that play complex roles in cancer. Compared to the variable routes taken by cells to become cancers, the response of tissues to cancer is relatively consistent. Therefore, controlling and eliminating cancer may be more readily achieved indirectly via the tissue microenvironment.
Collapse
Affiliation(s)
- Anna C Erickson
- Life Sciences Division, Building 74-174, 1 Cyclotron Road, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
38
|
Minter LM, Dickinson ES, Naber SP, Jerry DJ. Epithelial cell cycling predicts p53 responsiveness to γ-irradiation during post-natal mammary gland development. Development 2002; 129:2997-3008. [PMID: 12050146 DOI: 10.1242/dev.129.12.2997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The tumor suppressor gene, TP53, plays a major role in surveillance and repair of radiation-induced DNA damage. In multiple cell types, including mammary epithelial cells, abrogation of p53 (encoded by Trp53) function is associated with increased tumorigenesis. We examined γ-irradiated BALB/c-Trp53+/+ and -Trp53–/– female mice at five stages of post-natal mammary gland development to determine whether radiation-induced p53 activity is developmentally regulated. Our results show that p53-mediated responses are attenuated in glands from irradiated virgin and lactating mice, as measured by induction of p21/WAF1 (encoded by Cdkn1a) and apoptosis, while irradiated early- and mid-pregnancy glands exhibit robust p53 activity. There is a strong correlation between p53-mediated apoptosis and the degree of cellular proliferation, independent of the level of differentiation. In vivo, proliferation is intimately influenced by steroid hormones. To determine whether steroid hormones directly modulate p53 activity, whole organ cultures of mammary glands were induced to proliferate using estrogen plus progesterone or epidermal growth factor plus transforming growth factor-α and p53 responses to γ-irradiation were measured. Regardless of mitogens used, proliferating mammary epithelial cells show comparable p53 responses to γ-irradiation, including expression of nuclear p53 and p21/WAF1 and increased levels of apoptosis, compared to non-proliferating irradiated control cultures. Our study suggests that differences in radiation-induced p53 activity during post-natal mammary gland development are influenced by the proliferative state of the gland, and may be mediated indirectly by the mitogenic actions of steroid hormones in vivo.
Collapse
Affiliation(s)
- Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
39
|
Imagawa W, Pedchenko VK, Helber J, Zhang H. Hormone/growth factor interactions mediating epithelial/stromal communication in mammary gland development and carcinogenesis. J Steroid Biochem Mol Biol 2002; 80:213-30. [PMID: 11897505 DOI: 10.1016/s0960-0760(01)00188-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Epithelial/mesenchymal interactions begin during embryonic development of the mammary gland and continue throughout mammary gland development into adult life. Stromal and epithelial growth factors that may mediate interactions between these compartments of the mammary gland are reviewed. Since mammogenic hormones are the primary regulators of mammary gland development, special consideration is given to hormonal regulation of growth factors in order to explore the integration of hormones and growth factors in the regulation of mammary gland growth and neoplasia. Examination of hormonal regulation of the fibroblast growth factor (FGF)-7/FGFR2-IIIb receptor system in the mammary gland reveals that mammogenic hormones differentially regulate the synthesis of stromal growth factors and their epithelial receptors. These effects serve to optimize the action of estrogen and progesterone on mammary gland development and illustrate that the ratio of these two hormones is critical in regulating this growth factor axis. The role of stromal/epithelial mitogenic microenvironments in modulating the genotype and phenotype of preneoplastic and neoplastic lesions by chemical carcinogens is discussed. Finally, changes in growth factor expression during mammary tumor progression are described to illustrate the relative roles that stromally-derived and epithelial-derived growth factors may play during progression to hormone independent tumor growth.
Collapse
Affiliation(s)
- Walter Imagawa
- Department of Molecular and Integrative Physiology, Kansas Cancer Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160-7417, USA.
| | | | | | | |
Collapse
|
40
|
Costes S, Barcellos-Hoff MH. Radiation quality and tissue-specific microenvironments following exposure to 1 GeV/amu Fe. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2002; 30:865-870. [PMID: 12530433 DOI: 10.1016/s0273-1177(02)00410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper summarizes quantitative in vivo laminin immunofluorescence analysis of mammary glands and skin epithelial structures from mice exposed to 1 GeV/amu Fe ions. Digital confocal microscopic images were quantified and linked to the rough "core-penumbra" Fe track physical description. Comparison to gamma-ray sparsely ionizing radiation suggested the core of the Fe track being responsible for a biological response only seen with energetic Fe particles. Conclusions for modeling in vivo responses to radiation were then implied.
Collapse
Affiliation(s)
- S Costes
- National Cancer Institute, Ft. Detrick, Frederick, MD 21702, USA
| | | |
Collapse
|
41
|
Barcellos-Hoff MH, Brooks AL. Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability. Radiat Res 2001; 156:618-27. [PMID: 11604083 DOI: 10.1667/0033-7587(2001)156[0618:esttma]2.0.co;2] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cell growth, differentiation and death are directed in large part by extracellular signaling through the interactions of cells with other cells and with the extracellular matrix; these interactions are in turn modulated by cytokines and growth factors, i.e. the microenvironment. Here we discuss the idea that extracellular signaling integrates multicellular damage responses that are important deterrents to the development of cancer through mechanisms that eliminate abnormal cells and inhibit neoplastic behavior. As an example, we discuss the action of transforming growth factor beta (TGFB1) as an extracellular sensor of damage. We propose that radiation-induced bystander effects and genomic instability are, respectively, positive and negative manifestations of this homeostatic process. Bystander effects exhibited predominantly after a low-dose or a nonhomogeneous radiation exposure are extracellular signaling pathways that modulate cellular repair and death programs. Persistent disruption of extracellular signaling after exposure to relatively high doses of ionizing radiation may lead to the accumulation of aberrant cells that are genomically unstable. Understanding radiation effects in terms of coordinated multicellular responses that affect decisions regarding the fate of a cell may necessitate re-evaluation of radiation dose and risk concepts and provide avenues for intervention.
Collapse
Affiliation(s)
- M H Barcellos-Hoff
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
42
|
Laconi S, Pani P, Pillai S, Pasciu D, Sarma DS, Laconi E. A growth-constrained environment drives tumor progression invivo. Proc Natl Acad Sci U S A 2001; 98:7806-11. [PMID: 11427708 PMCID: PMC35423 DOI: 10.1073/pnas.131210498] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2001] [Accepted: 05/01/2001] [Indexed: 12/21/2022] Open
Abstract
We recently have shown that selective growth of transplanted normal hepatocytes can be achieved in a setting of cell cycle block of endogenous parenchymal cells. Thus, massive proliferation of donor-derived normal hepatocytes was observed in the liver of rats previously given retrorsine (RS), a naturally occurring alkaloid that blocks proliferation of resident liver cells. In the present study, the fate of nodular hepatocytes transplanted into RS-treated or normal syngeneic recipients was followed. The dipeptidyl peptidase type IV-deficient (DPPIV(-)) rat model for hepatocyte transplantation was used to distinguish donor-derived cells from recipient cells. Hepatocyte nodules were chemically induced in Fischer 344, DPPIV(+) rats; livers were then perfused and larger (>5 mm) nodules were separated from surrounding tissue. Cells isolated from either tissue were then injected into normal or RS-treated DPPIV(-) recipients. One month after transplantation, grossly visible nodules (2--3 mm) were seen in RS-treated recipients transplanted with nodular cells. They grew rapidly, occupying 80--90% of the host liver at 2 months, and progressed to hepatocellular carcinoma within 4 months. By contrast, no liver nodules developed within 6 months when nodular hepatocytes were injected into the liver of recipients not exposed to RS, although small clusters of donor-derived cells were present in these animals. Taken together, these results directly point to a fundamental role played by the host environment in modulating the growth and the progression rate of altered cells during carcinogenesis. In particular, they indicate that conditions associated with growth constraint of the host tissue can drive tumor progression in vivo.
Collapse
Affiliation(s)
- S Laconi
- Department of Medical Sciences and Biotechnology, University of Cagliari, 09125 Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Barcellos-Hoff MH. It takes a tissue to make a tumor: epigenetics, cancer and the microenvironment. J Mammary Gland Biol Neoplasia 2001; 6:213-21. [PMID: 11501581 DOI: 10.1023/a:1011317009329] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
How do normal tissues limit the development of cancer? This review discusses the evidence that normal cells effectively restrict malignant behavior, and that such tissue forces must be subjugated to establish a tumor. The action of ionizing radiation will be specifically discussed regarding the disruption of the microenvironment that promotes the transition from preneoplastic to neoplastic growth. Unlike the highly unpredictable nature of genetic mutations, the response of normal cells to radiation damage follows an epigenetic program similar to wound healing and other damage responses. Our hypothesis is that the persistent disruption of the microenvironment in irradiated tissue compromises its ability to suppress carcinogenesis.
Collapse
Affiliation(s)
- M H Barcellos-Hoff
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| |
Collapse
|
44
|
Park CC, Bissell MJ, Barcellos-Hoff MH. The influence of the microenvironment on the malignant phenotype. MOLECULAR MEDICINE TODAY 2000; 6:324-9. [PMID: 10904250 DOI: 10.1016/s1357-4310(00)01756-1] [Citation(s) in RCA: 296] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Normal tissue homeostasis is maintained by dynamic interactions between epithelial cells and their microenvironment. As tissue becomes cancerous, there are reciprocal interactions between neoplastic cells, adjacent normal cells such as stroma and endothelium, and their microenvironments. The current dominant paradigm wherein multiple genetic lesions provide both the impetus for, and the Achilles heel of, cancer might be inadequate to understand cancer as a disease process. In the following brief review, we will use selected examples to illustrate the influence of the microenvironment in the evolution of the malignant phenotype. We will also discuss recent studies that suggest novel therapeutic interventions might be derived from focusing on microenvironment and tumor cells interactions.
Collapse
Affiliation(s)
- C C Park
- Joint Center for Radiation Therapy, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
45
|
Abstract
The identification of breast cancer susceptibility genes, such as BRCA1, BRCA2, ATM, and p53, has been accompanied by the examination of the effects of radiation in combination with genetic mutations at these loci. Women at high risk for developing breast cancer may respond differently than the general population to low- and high-dose radiation exposures associated with screening and treatment. Epidemiologic studies are being performed to investigate the effects of radiation on subsequent breast cancer development in genetically predisposed individuals. Mouse strains with specific genetic modifications are being created to study the consequence of both inherited mutations and radiation on mammary gland carcinogenesis. Finally, studies investigating DNA damage-response pathways after radiation exposure are being performed. Recent work on the effects of several known or suspected breast cancer susceptibility genes, alone or in combination with radiation, is presented here, and directions for future research are considered.
Collapse
Affiliation(s)
- L M Bennett
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
46
|
Abstract
The mammary fat pad is essential for development of the mammary epithelium, providing signals that mediate ductal morphogenesis and, probably, alveolar differentiation. The "cleared" fat pad is often used as a transplantation site. Considering the crucial role of the fat pad, its properties have received relatively little attention from researchers in the field. Some of the questions whose investigation is pertinent to understanding both normal mammary development and carcinogenesis are outlined in this commentary in the spirit of stimulating enquiry into this important subject. It is clear from a brief perusal of the available literature that until studies are specifically designed to clearly differentiate between functional effects of the fibrous and the adipose stroma, more substantive information about their differential effects on mammary development and tumorigenesis will not be forthcoming.
Collapse
|