1
|
Berkenfeld K, Carneiro S, Corzo C, Laffleur F, Salar-Behzadi S, Winkeljann B, Esfahani G. Formulation strategies, preparation methods, and devices for pulmonary delivery of biologics. Eur J Pharm Biopharm 2024; 204:114530. [PMID: 39393712 DOI: 10.1016/j.ejpb.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Biological products, including vaccines, blood components, and recombinant therapeutic proteins, are derived from natural sources such as humans, animals, or microorganisms and are typically produced using advanced biotechnological methods. The success of biologics, particularly monoclonal antibodies, can be attributed to their favorable safety profiles and target specificity. However, their large molecular size presents significant challenges in drug delivery, particularly in overcoming biological barriers. Pulmonary delivery has emerged as a promising route for administering biologics, offering non-invasive delivery with rapid absorption, high systemic bioavailability, and avoidance of first-pass metabolism. This review first details the anatomy and physiological barriers of the respiratory tract and the associated challenges of pulmonary drug delivery (PDD). It further discusses innovations in PDD, the impact of particle size on drug deposition, and the use of secondary particles, such as nanoparticles, to enhance bioavailability and targeting. The review also explains various devices used for PDD, including dry powder inhalers (DPIs) and nebulizers, highlighting their advantages and limitations in delivering biologics. The role of excipients in improving the stability and performance of inhalation products is also addressed. Since dry powders are considered the suitable format for delivering biomolecules, particular emphasis is placed on the excipients used in DPI development. The final section of the article reviews and compares various dry powder manufacturing methods, clarifying their clinical relevance and potential for future applications in the field of inhalable drug formulation.
Collapse
Affiliation(s)
- Kai Berkenfeld
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Street 3, 53121 Bonn, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Simone Carneiro
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; RNhale GmbH, München 81371, Germany; Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Munich, German Center for Lung Research (DZL), 81377 Munich, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Golbarg Esfahani
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle 06120, Saale, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS).
| |
Collapse
|
2
|
Thalberg K. New theory to explain the effect of lactose fines on the performance of adhesive mixtures for inhalation. Int J Pharm 2024; 663:124549. [PMID: 39128621 DOI: 10.1016/j.ijpharm.2024.124549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
A new theory for the dispersibility enhancing effect of excipient fines for adhesive mixtures for inhalation is presented in this paper, while at the same time the shortcomings of current hypotheses are discussed. The proposed mechanism, denoted the 'viscoelastic damping effect', states that the presence of fines particles acts to dampen the collisions between carrier particles during mixing. As a consequence, fewer fine particles are 'irreversibly' pressed into the carriers, which in turn entails a higher fine particle fraction. The mechanism was demonstrated experimentally at different levels of added lactose fines by studying the influence of processing on fine particle fraction. This approach furthermore enabled quantification of the effect. All fine particles present in the blend (APIs and excipient fines) act together to exert the damping effect. The proposed mechanism is able to explain the main body of published data, including the effect of added excipient fines, the effect of an increased drug load, and the effect of removal of carrier fines. The viscoelastic damping mechanism is general in nature and conveys a broader and more general understanding of the behavior of adhesive mixtures for inhalation.
Collapse
Affiliation(s)
- Kyrre Thalberg
- Food and Pharma Division, Department of Process and Life Science Engineering, Lund University, Lund, Sweden; Emmace Consulting AB, Lund, Sweden.
| |
Collapse
|
3
|
Morton DAV, Barling D. Developing Dry Powder Inhaler Formulations. J Aerosol Med Pulm Drug Deliv 2024; 37:90-99. [PMID: 38640447 DOI: 10.1089/jamp.2024.29109.davm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
This section aims to provide a concise and contemporary technical perspective and reference resource covering dry powder inhaler (DPI) formulations. While DPI products are currently the leading inhaled products in terms of sales value, a number of confounding perspectives are presented to illustrate why they are considered surprisingly, and often frustratingly, poorly understood on a fundamental scientific level, and most challenging to design from first principles. At the core of this issue is the immense complexity of fine cohesive powder systems. This review emphasizes that the difficulty of successful DPI product development should not be underestimated and is best achieved with a well-coordinated team who respect the challenges and who work in parallel on device and formulation and with an appreciation of the handling environment faced by the patient. The general different DPI formulation types, which have evolved to address the challenges of aerosolizing fine cohesive drug-containing particles to create consistent and effective DPI products, are described. This section reviews the range of particle engineering processes that may produce micron-sized drug-containing particles and their subsequent assembly as either carrier-based or carrier-free compositions. The creation of such formulations is then discussed in the context of the material, bulk, interfacial and ultimately drug-delivery properties that are considered to affect formulation performance. A brief conclusion then considers the future DPI product choices, notably the issue of technology versus affordability in the evolving inhaler market.
Collapse
Affiliation(s)
- David A V Morton
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, Australia
| | - David Barling
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
4
|
Predicting in vitro lung deposition behavior of combined dry powder inhaler via rheological properties. Eur J Pharm Biopharm 2022; 181:195-206. [PMID: 36400254 DOI: 10.1016/j.ejpb.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Dry powder inhaler (DPI) for pulmonary delivery is currently the primary treatment for asthma and COPD (chronic obstructive pulmonary disease), an increasing number of combined DPIs (containing two or more drugs in one inhaler) have been developed to complement the effect of single DPIs. Based on our previous studies, the rheological properties can be a potential tool used to predict the in vitro lung deposition behavior of DPI formulations. However, it is unknown whether such a prediction model is suitable for combination systems. Therefore, this study aimed to verify the applicability of using powder rheological properties to predict in vitro drug deposition behavior in combined DPI formulations. Two drugs (fluticasone propionate and salmeterol xinafoate) and their combination of DPI formulations were prepared using fine lactose content (in the range of 1%-20%) as a variable. The physicochemical properties of the powder mixtures such as particle size and content uniformity were characterized. The rheological properties of the powder mixtures were measured by FT4 rheometer, the aerodynamic behavior of the DPI formulations was evaluated by a new generation impactor (NGI), and the effect of flowability and adhesion on the deposition of the fine particle fraction (FPF) was investigated by principal component analysis (PCA). The results showed that the combined DPI formulations with larger particle interaction forces have certain differences from the aerodynamic behavior of the single DPI formulations. The regularity of rheological properties affecting FPF revealed in single DPI is still applicable to combined DPI, the parameters basic flowability energy (BFE), representing flowability, and flow factor (ff), Cohesion representing adhesion, can be well linearly related to the FPF. The results of the principal component analysis showed that better flowability and suitable adhesion contributed to higher in vitro deposition of the drug in the formulation, and the contribution of adhesion (75.42%) was greater than that of flowability (24.58%). In conclusion, rheological properties is an effective tool for predicting the deposition behavior of DPI not only in single but also in combined DPIs.
Collapse
|
5
|
Zhou W, Wang Y, Wang X, Gao P, Lin C. The Economic Value of Water Ecology in Sponge City Construction Based on a Ternary Interactive System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15844. [PMID: 36497922 PMCID: PMC9737021 DOI: 10.3390/ijerph192315844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Ecological water resources occupy a vital position in the national economy; without sufficient ecological water resources, the construction and economic development of sponge cities would be seriously restricted. Appropriately, the Chinese government proposed that sponge city planning should be carried out in accordance with the number of available ecological water resources. The government therefore put forward the method of conservation and intensification to solve the problem of water shortage. This paper highlights the interactions between ecological water resources, sponge cities, and economic development in northern China, starting with the interaction and mechanism of action that concerns ecological water resource utilization, sponge cities, and economic development. In the empirical test, the dynamic changes of the three indicators were analyzed empirically using the panel data vector autoregression method, and the dynamic relationship of each factor was measured using generalized moment estimation. It was found that ecological water resources are a key factor in promoting regional economic development, and the relationship between ecological water resources and sponge cities is both supportive and constraining; therefore, the constraints that ecological water resources place on sponge cities also indirectly affects economic development. To disconnect the use of water and ecological resources from economic development, it is necessary to note the following: the feedback effect of economic development and the resolution of the contradiction between sponge cities, water, and ecological resource use.
Collapse
Affiliation(s)
- Wenzhao Zhou
- School of Management, Jilin University, Changchun 130025, China
- Dalian Branch, China Development Bank, Dalian 116001, China
| | - Yufei Wang
- Economic Information Center of Jilin Province, Changchun 130061, China
| | - Xi Wang
- Economic Research Institute of Jilin Academy of Social Sciences, Changchun 130032, China
| | - Peng Gao
- Qingdao Transportation Public Service Center, Qingdao Municipal Transport Bureau, Qingdao 266061, China
| | - Ciyun Lin
- School of Transportation, Jilin University, Changchun 130022, China
| |
Collapse
|
6
|
Salama R, Choi HJ, Almazi J, Traini D, Young P. Generic dry powder inhalers bioequivalence: Batch-to-batch variability insights. Drug Discov Today 2022; 27:103350. [PMID: 36096359 DOI: 10.1016/j.drudis.2022.103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022]
Abstract
Active pharmaceutical ingredient(s) [API(s)] of dry powder inhalers (DPIs) deposition and their fate in the respiratory system are influenced by a complex matrix of formulation, device, manufacturing and physiological variations. DPIs on the market have shown bioinequivalence between batches of the same product. Despite being clinically insignificant, they affect bioequivalence studies when a generic product is compared with the originator. This review discusses implications of batch-to-batch variability on bioequivalence study outcomes and shortcomings of current regulatory requirements. Possible formulation and manufacturing factors resulting in batch-to-batch variability highlight the inherent nature of this issue. Despite scholarly investigations and official regulatory guidance, there remains a need for reliable and realistic in vitro tests that accurately guide a representative reference product batch selection.
Collapse
Affiliation(s)
- Rania Salama
- Respiratory Technology Group, Woolcock Institute of Medical Research, Glebe 2037, NSW, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University 2109, NSW, Australia.
| | - Hong Jun Choi
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2007, NSW, Australia
| | - Juhura Almazi
- Respiratory Technology Group, Woolcock Institute of Medical Research, Glebe 2037, NSW, Australia
| | - Daniela Traini
- Respiratory Technology Group, Woolcock Institute of Medical Research, Glebe 2037, NSW, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University 2109, NSW, Australia
| | - Paul Young
- Respiratory Technology Group, Woolcock Institute of Medical Research, Glebe 2037, NSW, Australia; Macquarie Business School, Macquarie University 2109, NSW, Australia
| |
Collapse
|
7
|
Abiona O, Wyatt D, Koner J, Mohammed A. The Optimisation of Carrier Selection in Dry Powder Inhaler Formulation and the Role of Surface Energetics. Biomedicines 2022; 10:2707. [PMID: 36359226 PMCID: PMC9687551 DOI: 10.3390/biomedicines10112707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2023] Open
Abstract
This review examines the effects of particle properties on drug-carrier interactions in the preparation of a dry powder inhaler (DPI) formulation, including appropriate mixing technology. The interactive effects of carrier properties on DPI formulation performance make it difficult to establish a direct cause-and-effect relationship between any one carrier property and its effect on the performance of a DPI formulation. Alpha lactose monohydrate remains the most widely used carrier for DPI formulations. The physicochemical properties of α-lactose monohydrate particles, such as particle size, shape and solid form, are profoundly influenced by the method of production. Therefore, wide variations in these properties are inevitable. In this review, the role of surface energetics in the optimisation of dry powder inhaler formulations is considered in lactose carrier selection. Several useful lactose particle modification methods are discussed as well as the use of fine lactose and force control agents in formulation development. It is concluded that where these have been investigated, the empirical nature of the studies does not permit early formulation prediction of product performance, rather they only allow the evaluation of final formulation quality. The potential to leverage particle interaction dynamics through the use of an experimental design utilising quantifiable lactose particle properties and critical quality attributes, e.g., surface energetics, is explored, particularly with respect to when a Quality-by-Design approach has been used in optimisation.
Collapse
Affiliation(s)
- Olaitan Abiona
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK
| | - David Wyatt
- Aston Particle Technologies Ltd., Aston Triangle, Birmingham B4 7ET, UK
| | - Jasdip Koner
- Aston Particle Technologies Ltd., Aston Triangle, Birmingham B4 7ET, UK
| | - Afzal Mohammed
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
8
|
Sun Y, Yu D, Li J, Zhao J, Feng Y, Zhang X, Mao S. Elucidation of lactose fine size and drug shape on rheological properties and aerodynamic behavior of dry powders for inhalation. Eur J Pharm Biopharm 2022; 179:47-57. [PMID: 36029939 DOI: 10.1016/j.ejpb.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
Abstract
Pulmonary drug delivery has gained great attention in local or systemic diseases therapy, however it is still difficult to scale-up DPI production due to the complexity of interactions taking place in DPI systems and limited understanding between flowability and inter-particle interactions in DPI formulations. Therefore, finding some quantitative parameters related to DPI delivery performance for predicting the in vitro drug deposition behavior is essential. Therefore, this study introduces a potential model for predicting aerodynamic performance of carrier-based DPIs, as well to find more relevant fine powder size and optimal shape to improve aerodynamic performance. Using salbutamol sulfate as a model drug, Lactohale®206 as coarse carrier, Lactohale®300, Lactohale®230, and Lactohale®210 as third fine components individually, the mixtures were prepared at 1% (w/w) drug content accompanied with carriers and the third component (ranging from 3 - 7%), influence of lactose fines size on DPI formulation's rheological and aerodynamic properties was investigated. The optimum drug particle shape was also confirmed by computer fluid dynamics model. This study proved that pulmonary deposition efficiency could be improved by decreasing lactose fines size. Only fines in the size range of 0-11 μm have a good linear relationship with FPF, attributed to the fluidization energy enhancement and aggregates mechanism. Once exceeding 11 μm, fine lactose would act as a second carrier, with increased drug adhesion. Computational fluid dynamics (CFD) models indicated fibrous drug particles were beneficial to transfer to the deep lung. Furthermore, good correlations between rheological parameters and FPF of ternary mixtures with different lactose fines were established, and it was disclosed that the FPF was more dependent on interaction parameters than that of flowability.
Collapse
Affiliation(s)
- Ying Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Duo Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiayi Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianan Zhao
- School of Chemical Engineering, Oklahoma State University, Stillwater 74074, USA
| | - Yu Feng
- School of Chemical Engineering, Oklahoma State University, Stillwater 74074, USA
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
9
|
Stankovic-Brandl M, Zellnitz S, Wirnsberger P, Kobler M, Paudel A. The Influence of Relative Humidity and Storage Conditions on the Physico-chemical Properties of Inhalation Grade Fine Lactose. AAPS PharmSciTech 2021; 23:1. [PMID: 34791545 DOI: 10.1208/s12249-021-02159-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022] Open
Abstract
Dry powder inhalers (DPIs) are favorable devices for the delivery of dry formulations to the lungs; still, they largely fail to deliver higher doses of active pharmaceutical ingredient (API) to the lower airways. Addition of fine particles of excipient (fines) to the blend of API and carrier was shown to improve aerosolization performance. Lactose monohydrate is ubiquitous excipient used for this purpose. Lactose exists in a thermodynamically stable crystalline form; however, processes like milling, sieving, or even mixing may induce alteration of crystalline structure and introduce amorphous domains, which could further affect the physico-chemical properties of the material. Therefore, the aim of this work is a detailed characterization of two commercially available types of inhalation grade fine lactose powders (Inhalac 400 and Inhalac 500) prepared using different air-jet milling parameters, with a focus on impact of storage conditions on material properties. We found that the different milling parameters resulted in variable particle size distribution (PSD), and thus surface areas, variable initial amorphous content, cohesivity, flowability, and moisture sorption of materials. In addition, exposure of fine powders to higher humidity reduced the amorphous content present in the materials, but also affected agglomeration tendency and dispersion behavior of both powders. We believe the obtained findings to be important for the aerosolization performance of carrier-based DPIs containing fines and thus need to be duly considered during formulation development.
Collapse
|
10
|
Farizhandi AAK, Alishiri M, Lau R. Machine learning approach for carrier surface design in carrier-based dry powder inhalation. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Sun Y, Qin L, Li J, Su J, Song R, Zhang X, Guan J, Mao S. Elucidating the Effect of Fine Lactose Ratio on the Rheological Properties and Aerodynamic Behavior of Dry Powder for Inhalation. AAPS JOURNAL 2021; 23:55. [PMID: 33856568 DOI: 10.1208/s12248-021-00582-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
Dry powder inhaler (DPI) is recognized as the first choice for lung diseases' treatment. However, it lacks a universal way for DPI formulation development. Fine lactose is commonly added in DPIs to improve delivery performance; however, the fine ratio-dependent mechanism is unclear. Therefore, the objective of this study is to explore the influence of fine lactose ratio on DPI powder properties and aerodynamic behavior, and the fine lactose ratio-dependent mechanism involved during powder fluidization and lung deposition. Here salbutamol sulfate was used as a model drug, Lactohale® 206 as coarse carrier, and Lactohale® 300 as fine component; the mixtures were prepared at 1% drug content, with fine content up to 20%. It was shown that with the fine addition, flowability of the mixtures was improved, interaction among particles was increased, and the presence of fines could help to improve DPI's aerosolization performance. When the fines added were less than 3%, the "active site" hypothesis played a leading role. When the added fines were over 3% but less than 10%, fluidization enhancement mechanism was more important. After the added fines reaching 10%, aggregate mechanism started to dominate. However, FPF cannot be further increased once the fines reached 20%. Moreover, the correlations between FPF and dynamic powder parameters were verified in ternary mixtures, and cohesion had a greater impact on FPF than that of flowability. In conclusion, adding lactose fines is an effective way to improve lung deposition of DPI, with the concrete mechanism lactose fine ratio dependent.
Collapse
Affiliation(s)
- Ying Sun
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Lu Qin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jiayi Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jian Su
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Ruxiao Song
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
12
|
Roulon S, Soulairol I, Lavastre V, Payre N, Cazes M, Delbreilh L, Alié J. Production of Reproducible Filament Batches for the Fabrication of 3D Printed Oral Forms. Pharmaceutics 2021; 13:pharmaceutics13040472. [PMID: 33807390 PMCID: PMC8066748 DOI: 10.3390/pharmaceutics13040472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Patients need medications at a dosage suited to their physiological characteristics. Three-dimensional printing (3DP) technology by fused-filament fabrication (FFF) is a solution for manufacturing medication on demand. The aim of this work was to identify important parameters for the production of reproducible filament batches used by 3DP for oral formulations. Amiodarone hydrochloride, an antiarrhythmic and insoluble drug, was chosen as a model drug because of dosage adaptation need in children. Polyethylene oxide (PEO) filaments containing amiodarone hydrochloride were produced by hot-melt extrusion (HME). Different formulation storage conditions were investigated. For all formulations, the physical form of the drug following HME and fused-deposition modeling (FDM) 3D-printing processes were assessed using thermal analysis and X-ray powder diffraction (XRPD). Filament mechanical properties, linear mass density and surface roughness, were investigated by, respectively, 3-point bending, weighing, and scanning electron microscopy (SEM). Analysis results showed that the formulation storage condition before HME-modified filament linear mass density and, therefore, the oral forms masses from a batch to another. To obtain constant filament apparent density, it has been shown that a constant and reproducible drying condition is required to produce oral forms with constant mass.
Collapse
Affiliation(s)
- Stéphane Roulon
- Normandy University, UNIROUEN Normandie, INSA Rouen, CNRS, Group of Materials Physics, Av. Université, 76801 St Etienne du Rouvray CEDEX, France
- Solid State Characterization and 3D Printing Service, Sanofi R&D, 371 rue du Pr. Joseph Blayac, 34080 Montpellier CEDEX 4, France; (V.L.); (N.P.); (M.C.)
- Correspondence: (S.R.); (L.D.); (J.A.); Tel.: +336-2150-4482 (S.R.); +332-3295-5084 (L.D.); +334-9977-5896 (J.A.)
| | - Ian Soulairol
- Department of Pharmacy, Nimes University Hospital, 30900 Nimes CEDEX 9, France;
- Department of galenic pharmacy and biomaterials, ENSCM, College of pharmacy, University of Montpellier, 34090 Montpellier CEDEX 5, France
| | - Valérie Lavastre
- Solid State Characterization and 3D Printing Service, Sanofi R&D, 371 rue du Pr. Joseph Blayac, 34080 Montpellier CEDEX 4, France; (V.L.); (N.P.); (M.C.)
| | - Nicolas Payre
- Solid State Characterization and 3D Printing Service, Sanofi R&D, 371 rue du Pr. Joseph Blayac, 34080 Montpellier CEDEX 4, France; (V.L.); (N.P.); (M.C.)
| | - Maxime Cazes
- Solid State Characterization and 3D Printing Service, Sanofi R&D, 371 rue du Pr. Joseph Blayac, 34080 Montpellier CEDEX 4, France; (V.L.); (N.P.); (M.C.)
| | - Laurent Delbreilh
- Normandy University, UNIROUEN Normandie, INSA Rouen, CNRS, Group of Materials Physics, Av. Université, 76801 St Etienne du Rouvray CEDEX, France
- Correspondence: (S.R.); (L.D.); (J.A.); Tel.: +336-2150-4482 (S.R.); +332-3295-5084 (L.D.); +334-9977-5896 (J.A.)
| | - Jean Alié
- Solid State Characterization and 3D Printing Service, Sanofi R&D, 371 rue du Pr. Joseph Blayac, 34080 Montpellier CEDEX 4, France; (V.L.); (N.P.); (M.C.)
- Correspondence: (S.R.); (L.D.); (J.A.); Tel.: +336-2150-4482 (S.R.); +332-3295-5084 (L.D.); +334-9977-5896 (J.A.)
| |
Collapse
|
13
|
Tamadondar MR, Salehi K, Abrahamsson P, Rasmuson A. The role of fine excipient particles in adhesive mixtures for inhalation. AIChE J 2021. [DOI: 10.1002/aic.17150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohammad R. Tamadondar
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| | - Kian Salehi
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| | | | - Anders Rasmuson
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
14
|
Micron-size lactose manufactured under high shear and its dispersion efficiency as carrier for Salbutamol Sulphate. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Školáková T, Souchová L, Patera J, Pultar M, Školáková A, Zámostný P. Prediction of drug-polymer interactions in binary mixtures using energy balance supported by inverse gas chromatography. Eur J Pharm Sci 2019; 130:247-259. [DOI: 10.1016/j.ejps.2019.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 11/30/2022]
|
16
|
Evaluation of carrier size and surface morphology in carrier-based dry powder inhalation by surrogate modeling. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Jetzer MW, Schneider M, Morrical BD, Imanidis G. Investigations on the Mechanism of Magnesium Stearate to Modify Aerosol Performance in Dry Powder Inhaled Formulations. J Pharm Sci 2018; 107:984-998. [DOI: 10.1016/j.xphs.2017.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/27/2022]
|
18
|
Jetzer M, Morrical B, Schneider M, Edge S, Imanidis G. Probing the particulate microstructure of the aerodynamic particle size distribution of dry powder inhaler combination products. Int J Pharm 2018; 538:30-39. [DOI: 10.1016/j.ijpharm.2017.12.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 11/29/2022]
|
19
|
Shalash AO, Elsayed MMA. A New Role of Fine Excipient Materials in Carrier-Based Dry Powder Inhalation Mixtures: Effect on Deagglomeration of Drug Particles During Mixing Revealed. AAPS PharmSciTech 2017; 18:2862-2870. [PMID: 28421352 DOI: 10.1208/s12249-017-0767-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022] Open
Abstract
The potential of fine excipient materials to improve the performance of carrier-based dry powder inhalation mixtures is well acknowledged. The mechanisms underlying this potential are, however, open to question till date. Elaborate understanding of these mechanisms is a requisite for rational rather than empirical development of ternary dry powder inhalation mixtures. While effects of fine excipient materials on drug adhesion to and detachment from surfaces of carrier particle have been extensively investigated, effects on other processes, such as carrier-drug mixing, capsule/blister/device filling, or aerosolization in inhaler devices, have received little attention. We investigated the influence of fine excipient materials on the outcome of the carrier-drug mixing process. We studied the dispersibility of micronized fluticasone propionate particles after mixing with α-lactose monohydrate blends comprising different fine particle concentrations. Increasing the fine (D < 10.0 μm) excipient fraction from 1.84 to 8.70% v/v increased the respirable drug fraction in the excipient-drug mixture from 56.42 to 67.80% v/v (p < 0.05). The results suggest that low concentrations of fine excipient particles bind to active sites on and fill deep crevices in coarse carrier particles. As the concentration of fine excipient particles increases beyond that saturating active sites, they fill the spaces between and adhere to the surfaces of coarse carrier particles, creating projections and micropores. They thereby promote deagglomeration of drug particles during carrier-drug mixing. The findings pave the way for a comprehensive understanding of contributions of fine excipient materials to the performance of carrier-based dry powder inhalation mixtures.
Collapse
|
20
|
Lau M, Young PM, Traini D. Investigation into the Manufacture and Properties of Inhalable High-Dose Dry Powders Produced by Comilling API and Lactose with Magnesium Stearate. AAPS PharmSciTech 2017; 18:2248-2259. [PMID: 28070849 DOI: 10.1208/s12249-016-0708-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/26/2016] [Indexed: 11/30/2022] Open
Abstract
The aim of the study was to understand the impact of different concentrations of the additive material, magnesium stearate (MGST), and the active pharmaceutical ingredient (API), respectively, on the physicochemical properties and aerosol performance of comilled formulations for high-dose delivery. Initially, blends of API/lactose with different concentrations of MGST (1-7.5% w/w) were prepared and comilled by the jet-mill apparatus. The optimal concentration of MGST in comilled formulations was investigated, specifically for agglomerate structure and strength, particle size, uniformity of content, surface coverage, and aerosol performance. Secondly, comilled formulations with different API (1-40% w/w) concentrations were prepared and similarly analyzed. Comilled 5% MGST (w/w) formulation resulted in a significant improvement in in vitro aerosol performance due to the reduction in agglomerate size and strength compared to the formulation comilled without MGST. Higher concentrations of MGST (7.5% w/w) led to reduction in aerosol performance likely due to excessive surface coverage of the micronized particles by MGST, which led to failure in uniformity of content and an increase in agglomerate strength and size. Generally, comilled formulations with higher concentrations of API increased the agglomerate strength and size, which subsequently caused a reduction in aerosol performance. High-dose delivery was achieved at API concentration of >20% (w/w). The study provided a platform for the investigation of aerosol performance and physicochemical properties of other API and additive materials in comilled formulations for the emerging field of high-dose delivery by dry powder inhalation.
Collapse
|
21
|
Dry powder inhaler performance of spray dried mannitol with tailored surface morphologies as carrier and salbutamol sulphate. Int J Pharm 2017; 524:351-363. [DOI: 10.1016/j.ijpharm.2017.03.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 11/21/2022]
|
22
|
Kaialy W. On the effects of blending, physicochemical properties, and their interactions on the performance of carrier-based dry powders for inhalation - A review. Adv Colloid Interface Sci 2016; 235:70-89. [PMID: 27291646 DOI: 10.1016/j.cis.2016.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/04/2016] [Accepted: 05/28/2016] [Indexed: 11/25/2022]
Abstract
Blending drug and carrier powders to produce homogeneous drug-carrier adhesive mixtures is a key step in the production of dry powder inhaler (DPI) formulations. Although the blending conditions can result in different conclusions or probably change the outcome of a study entirely if being selected differently, there is a scarcity of data on the influence of blending processes on the physicochemical properties of bulk powder formulations and the follow-on effects on DPI performance. This paper provides an overview of the interactions between variables related to blending conditions (e.g. blending equipment, time, speed and sequence as well as environmental humidity) and powder physicochemical properties (e.g. size distribution, shape distribution, density, anomeric composition, electrostatic charge, surface, and bulk properties), and their effects on the performance of adhesive mixtures for inhalation in terms of drug content homogeneity, drug-carrier adhesion, and drug aerosolisation behaviour. The relevance of carrier payload, batch size and segregation was also discussed. Challenges and future directions were identified. This review therefore contributes towards a better understanding of the blending process, powder physicochemical properties, and their interlinked effects on the fundamental understanding of adhesive mixtures for inhalation. The knowledge gained is essential to ensure optimum blending and thereby controlled functionality of DPIs.
Collapse
|
23
|
Hagen E, Løding FS, Mattsson S, Tho I. Use of interactive mixtures to obtain mini-tablets with high dose homogeneity for paediatric drug delivery. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Jones MD, Buckton G. Comparison of the cohesion-adhesion balance approach to colloidal probe atomic force microscopy and the measurement of Hansen partial solubility parameters by inverse gas chromatography for the prediction of dry powder inhalation performance. Int J Pharm 2016; 509:419-430. [PMID: 27265314 DOI: 10.1016/j.ijpharm.2016.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
The abilities of the cohesive-adhesive balance approach to atomic force microscopy (AFM) and the measurement of Hansen partial solubility parameters by inverse gas chromatography (IGC) to predict the performance of carrier-based dry powder inhaler (DPI) formulations were compared. Five model drugs (beclometasone dipropionate, budesonide, salbutamol sulphate, terbutaline sulphate and triamcinolone acetonide) and three model carriers (erythritol, α-lactose monohydrate and d-mannitol) were chosen, giving fifteen drug-carrier combinations. Comparison of the AFM and IGC interparticulate adhesion data suggested that they did not produce equivalent results. Comparison of the AFM data with the in vitro fine particle delivery of appropriate DPI formulations normalised to account for particle size differences revealed a previously observed pattern for the AFM measurements, with a slightly cohesive AFM CAB ratio being associated with the highest fine particle fraction. However, no consistent relationship between formulation performance and the IGC data was observed. The results as a whole highlight the complexity of the many interacting variables that can affect the behaviour of DPIs and suggest that the prediction of their performance from a single measurement is unlikely to be successful in every case.
Collapse
Affiliation(s)
- Matthew D Jones
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom; Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom.
| | - Graham Buckton
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| |
Collapse
|
25
|
Peng T, Lin S, Niu B, Wang X, Huang Y, Zhang X, Li G, Pan X, Wu C. Influence of physical properties of carrier on the performance of dry powder inhalers. Acta Pharm Sin B 2016; 6:308-18. [PMID: 27471671 PMCID: PMC4951591 DOI: 10.1016/j.apsb.2016.03.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/09/2016] [Accepted: 03/02/2016] [Indexed: 11/28/2022] Open
Abstract
Dry powder inhalers (DPIs) offer distinct advantages as a means of pulmonary drug delivery and have attracted much attention in the field of pharmaceutical science. DPIs commonly contain micronized drug particles which, because of their cohesiveness and strong propensity to aggregate, have poor aerosolization performance. Thus carriers with a larger particle size are added to address this problem. However, the performance of DPIs is profoundly influenced by the physical properties of the carrier, particularly their particle size, morphology/shape and surface roughness. Because these factors are interdependent, it is difficult to completely understand how they individually influence DPI performance. The purpose of this review is to summarize and illuminate how these factors affect drug–carrier interaction and influence the performance of DPIs.
Collapse
Key Words
- API, active pharmaceutical ingredient
- CLF, coarse lactose fines
- Carrier
- DPI, dry powder inhaler
- Dry powder inhaler
- ED, emission dose
- ER, elongation ratio
- FLF, fine lactose fines
- FPF, fine particle fraction
- FR, flatness ratio
- Fshape, shape factor
- Fsurface, surface factor
- MFV, minimum fluidization velocity
- Morphology
- PDD, pulmonary drug delivery
- Particle size
- Performance
- RO, roundness
- Surface roughness
- dae, aerodynamic diameter
- pMDI, pressurized metered-dose inhaler
Collapse
Affiliation(s)
- Tingting Peng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shiqi Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xinyi Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xuejuan Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ge Li
- Guangzhou Neworld Pharm. Co. Ltd., Guangzhou 51006, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Corresponding authors at: School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China. Tel.: +86 20 39943427/+86 20 39943117; fax: +86 20 39943115.School of Pharmaceutical Sciences, Sun Yat-Sen UniversityGuangzhou510006China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Research Center for Drug Delivery Systems, Guangzhou 510006, China
- Corresponding authors at: School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China. Tel.: +86 20 39943427/+86 20 39943117; fax: +86 20 39943115.School of Pharmaceutical Sciences, Sun Yat-Sen UniversityGuangzhou510006China
| |
Collapse
|
26
|
Tan BMJ, Chan LW, Heng PWS. Improving Dry Powder Inhaler Performance by Surface Roughening of Lactose Carrier Particles. Pharm Res 2016; 33:1923-35. [PMID: 27091033 DOI: 10.1007/s11095-016-1928-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/13/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE This study investigated the impact of macro-scale carrier surface roughness on the performance of dry powder inhaler (DPI) formulations. METHODS Fluid-bed processing and roller compaction were explored as processing methods to increase the surface roughness (Ra) of lactose carrier particles. DPI formulations containing either (a) different concentrations of fine lactose at a fixed concentration of micronized drug (isoniazid) or (b) various concentrations of drug in the absence of fine lactose were prepared. The fine particle fraction (FPF) and aerodynamic particle size of micronized drug of all formulations were determined using the Next Generation Impactor. RESULTS Fluid-bed processing resulted in a modest increase in the Ra from 562 to 907 nm while roller compaction led to significant increases in Ra > 1300 nm. The roller compacted carriers exhibited FPF > 35%, which were twice that of the smoothest carriers. The addition of up to 5%, w/w of fine lactose improved the FPF of smoother carriers by 60-200% whereas only < 30% increase was observed in the rough carriers. Analysis of the FPF in tandem with shifts in the mass median aerodynamic diameter of dispersed drug suggested that the finest drug particles were entrapped on rougher surfaces while larger drug particles were dispersed in the air. CONCLUSIONS The results showed that the processing of lactose carrier particles by roller compaction was immensely beneficial to improving DPI performance, primarily due to increased surface roughness at the macro-scale.
Collapse
Affiliation(s)
- Bernice Mei Jin Tan
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Lai Wah Chan
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
27
|
Raut NS, Jamaiwar S, Umekar MJ, Kotagale NR. Effect of compression pressure on inhalation grade lactose as carrier for dry powder inhalations. Int J Pharm Investig 2016; 6:39-46. [PMID: 27014618 PMCID: PMC4787061 DOI: 10.4103/2230-973x.176474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Introduction: This study focused on the potential effects of compression forces experienced during lactose (InhaLac 70, 120, and 230) storage and transport on the flowability and aerosol performance in dry powder inhaler formulation. Materials and Methods: Lactose was subjected to typical compression forces 4, 10, and 20 N/cm2. Powder flowability and particle size distribution analysis of un-compressed and compressed lactose was evaluated by Carr's index, Hausner's ratio, the angle of repose and by laser diffraction method. Aerosol performance of un-compressed and compressed lactose was assessed in dispersion studies using glass twin-stage-liquid-impenger at flow rate 40-80 L/min. Results: At compression forces, the flowability of compressed lactose was observed same or slightly improved. Furthermore, compression of lactose caused a decrease in in vitro aerosol dispersion performance. Conclusion: The present study illustrates that, as carrier size increases, a concurrent decrease in drug aerosolization performance was observed. Thus, the compression of the lactose fines onto the surfaces of the larger lactose particles due to compression pressures was hypothesized to be the cause of these observed performance variations. The simulations of storage and transport in an industrial scale can induce significant variations in formulation performance, and it could be a source of batch-to-batch variations.
Collapse
Affiliation(s)
- Neha Sureshrao Raut
- Department of Quality Assurance, Shrimati Kishoritai Bhoyar College of Pharmacy, Nagpur, Maharashtra, India
| | - Swapnil Jamaiwar
- Department of Quality Assurance, Shrimati Kishoritai Bhoyar College of Pharmacy, Nagpur, Maharashtra, India
| | - Milind Janrao Umekar
- Department of Quality Assurance, Shrimati Kishoritai Bhoyar College of Pharmacy, Nagpur, Maharashtra, India
| | - Nandkishor Ramdas Kotagale
- Department of Quality Assurance, Shrimati Kishoritai Bhoyar College of Pharmacy, Nagpur, Maharashtra, India
| |
Collapse
|
28
|
Tucker I, Das S, Stewart P. A view on the less-than-rational development of drug delivery systems – The example of dry powder inhalers. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Mathematical approach for understanding deagglomeration behaviour of drug powder in formulations with coarse carrier. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2015.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Shalash AO, Molokhia AM, Elsayed MM. Insights into the roles of carrier microstructure in adhesive/carrier-based dry powder inhalation mixtures: Carrier porosity and fine particle content. Eur J Pharm Biopharm 2015; 96:291-303. [DOI: 10.1016/j.ejpb.2015.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
|
31
|
Weers JG, Miller DP. Formulation Design of Dry Powders for Inhalation. J Pharm Sci 2015; 104:3259-88. [DOI: 10.1002/jps.24574] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 11/09/2022]
|
32
|
Extrinsic lactose fines improve dry powder inhaler formulation performance of a cohesive batch of budesonide via agglomerate formation and consequential co-deposition. Int J Pharm 2015; 478:53-59. [DOI: 10.1016/j.ijpharm.2014.11.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/08/2014] [Accepted: 11/08/2014] [Indexed: 11/21/2022]
|
33
|
Singh DJ, Jain RR, Soni PS, Abdul S, Darshana H, Gaikwad RV, Menon MD. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler. J Aerosol Med Pulm Drug Deliv 2014; 28:254-67. [PMID: 25517187 DOI: 10.1089/jamp.2014.1146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dry powder inhalers (DPI) are generally formulated by mixing micronized drug particles with coarse lactose carrier particles to assist powder handling during the manufacturing and powder aerosol delivery during patient use. METHODS In the present study, surface modified lactose (SML) particles were produced using force control agents, and their in vitro performance on dry powder inhaler (DPI) formulation of Fluticasone propionate was studied. With a view to reduce surface passivation of high surface free energy sites on the most commonly used DPI carrier, α- lactose monohydrate, effects of various force control agents such as Pluronic F-68, Cremophor RH 40, glyceryl monostearate, polyethylene glycol 6000, magnesium stearate, and soya lecithin were studied. RESULTS DPI formulations prepared with SML showed improved flow properties, and atomic force microscopy (AFM) studies revealed decrease in surface roughness. The DSC and X-ray diffraction patterns of SML showed no change in the crystal structure and thermal behavior under the experimental conditions. The fine particle fraction (FPF) values of lactose modified with Pluronic F-68, Cremophor RH 40, glyceryl monostearate were improved, with increase in concentration up to 0.5%. Soya lecithin and PEG 6000 modified lactose showed decrease in FPF value with increase in concentration. Increase in FPF value was observed with increasing concentration of magnesium stearate. Two different DPI devices, Rotahaler(®) and Diskhaler(®), were compared to evaluate the performance of SML formulations. FPF value of all SML formulations were higher using both devices as compared to the same formulations prepared using untreated lactose. One month stability of SML formulations at 40°C/75% RH, in permeable polystyrene tubes did not reveal any significant changes in FPF values. CONCLUSION SML particles can help in reducing product development hindrances and improve inhalational properties of DPI.
Collapse
Affiliation(s)
- Deepak J Singh
- 1 Department of Pharmaceutics, Bombay College of Pharmacy , Mumbai, India
| | - Rajesh R Jain
- 1 Department of Pharmaceutics, Bombay College of Pharmacy , Mumbai, India
| | - P S Soni
- 2 Board of Radiation and Isotope Technology and Medical Cyclotron Facility , Parel, Mumbai, India
| | - Samad Abdul
- 3 Department of Medicine, Bombay Veterinary College , Parel, Mumbai, India
| | - Hegde Darshana
- 1 Department of Pharmaceutics, Bombay College of Pharmacy , Mumbai, India
| | - Rajiv V Gaikwad
- 3 Department of Medicine, Bombay Veterinary College , Parel, Mumbai, India
| | - Mala D Menon
- 1 Department of Pharmaceutics, Bombay College of Pharmacy , Mumbai, India
| |
Collapse
|
34
|
Kaialy W, Nokhodchi A. Dry powder inhalers: physicochemical and aerosolization properties of several size-fractions of a promising alterative carrier, freeze-dried mannitol. Eur J Pharm Sci 2014; 68:56-67. [PMID: 25497318 DOI: 10.1016/j.ejps.2014.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 11/24/2022]
Abstract
The purpose of this work was to evaluate the physicochemical and inhalation characteristics of different size fractions of a promising carrier, i.e., freeze-dried mannitol (FDM). FDM was prepared and sieved into four size fractions. FDMs were then characterized in terms of micromeritic, solid-state and bulk properties. Dry powder inhaler (DPI) formulations were prepared using salbutamol sulphate (SS) and then evaluated in terms of drug content homogeneity and in vitro aerosolization performance. The results showed that the crystalline state of mannitol was maintained following freeze-drying for all size fractions of FDM. All FDM particles showed elongated morphology and contained mixtures of α-, β- and δ-mannitol. In comparison to small FDM particles, FDMs with larger particle sizes demonstrated narrower size distributions, higher bulk and tap densities, lower porosities and better flowability. Regardless of particle size, all FDMs generated a significantly higher (2.2-2.9-fold increase) fine particle fraction (FPF, 37.5 ± 0.9%-48.6 ± 2.8%) of SS in comparison to commercial mannitol. The FPFs of SS were related to the shape descriptors of FDM particles; however, FPFs did not prove quantitative apparent relationships with either particle size or powder bulk descriptors. Large FDM particles were more favourable than smaller particles because they produced DPI formulations with better flowability, better drug content homogeneity, lower amounts of the drug depositing on the throat and contained lower fine-particle-mannitol. Optimized stable DPI formulations with superior physicochemical and pharmaceutical properties can be achieved using larger particles of freeze-dried mannitol (FDM).
Collapse
Affiliation(s)
- Waseem Kaialy
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Ali Nokhodchi
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| |
Collapse
|
35
|
Sim S, Margo K, Parks J, Howell R, Hebbink GA, Orlando L, Larson I, Leslie P, Ho L, Morton DA. An insight into powder entrainment and drug delivery mechanisms from a modified Rotahaler®. Int J Pharm 2014; 477:351-60. [DOI: 10.1016/j.ijpharm.2014.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/04/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
|
36
|
Ramachandran V, Murnane D, Hammond RB, Pickering J, Roberts KJ, Soufian M, Forbes B, Jaffari S, Martin GP, Collins E, Pencheva K. Formulation Pre-screening of Inhalation Powders Using Computational Atom–Atom Systematic Search Method. Mol Pharm 2014; 12:18-33. [DOI: 10.1021/mp500335w] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vasuki Ramachandran
- Institute
of Particle Science and Engineering, Institute of Process Research
and Development, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Darragh Murnane
- School
of Life and Medical Sciences, University of Hertfordshire, Hertfordshire AL10 9AB, U.K
| | - Robert B. Hammond
- Institute
of Particle Science and Engineering, Institute of Process Research
and Development, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Jonathan Pickering
- Institute
of Particle Science and Engineering, Institute of Process Research
and Development, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Kevin J. Roberts
- Institute
of Particle Science and Engineering, Institute of Process Research
and Development, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Majeed Soufian
- Institute
of Particle Science and Engineering, Institute of Process Research
and Development, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Ben Forbes
- Institute
of Pharmaceutical Sciences, King’s College, London SE1 9NH, U.K
| | - Sara Jaffari
- Institute
of Pharmaceutical Sciences, King’s College, London SE1 9NH, U.K
| | - Gary P. Martin
- Institute
of Pharmaceutical Sciences, King’s College, London SE1 9NH, U.K
| | | | | |
Collapse
|
37
|
Muralidharan P, Hayes D, Mansour HM. Dry powder inhalers in COPD, lung inflammation and pulmonary infections. Expert Opin Drug Deliv 2014; 12:947-62. [PMID: 25388926 DOI: 10.1517/17425247.2015.977783] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The number of pulmonary diseases that are effectively treated by aerosolized medicine continues to grow. AREAS COVERED These diseases include chronic obstructive pulmonary disease (COPD), lung inflammatory diseases (e.g., asthma) and pulmonary infections. Dry powder inhalers (DPIs) exhibit many unique advantages that have contributed to the incredible growth in the number of DPI pharmaceutical products. To improve the performance, there are a relatively large number of DPI devices available for different inhalable powder formulations. The relationship between formulation and inhaler device features on performance of the drug-device combination product is critical. Aerosol medicine products are drug-device combination products. Device design and compatibility with the formulation are key drug-device combination product aspects in delivering drugs to the lungs as inhaled powders. In addition to discussing pulmonary diseases, this review discusses DPI devices, respirable powder formulation and their interactions in the context of currently marketed DPI products used in the treatment of COPD, asthma and pulmonary infections. EXPERT OPINION There is a growing line of product options available for patients in choosing inhalers for treatment of respiratory diseases. Looking ahead, combining nanotechnology with optimized DPI formulation and enhancing device design presents a promising future for DPI development.
Collapse
Affiliation(s)
- Priya Muralidharan
- The University of Arizona, College of Pharmacy, Skaggs Pharmaceutical Sciences Center , 1703 E. Mabel St, Tucson, AZ 85721 , USA +1 520 626 2768 ; +1 520 6262 7355 ;
| | | | | |
Collapse
|
38
|
Kinnunen H, Hebbink G, Peters H, Shur J, Price R. Defining the critical material attributes of lactose monohydrate in carrier based dry powder inhaler formulations using artificial neural networks. AAPS PharmSciTech 2014; 15:1009-20. [PMID: 24831088 DOI: 10.1208/s12249-014-0108-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/06/2014] [Indexed: 11/30/2022] Open
Abstract
The study aimed to establish a function-based relationship between the physical and bulk properties of pre-blended mixtures of fine and coarse lactose grades with the in vitro performance of an adhesive active pharmaceutical ingredient (API). Different grades of micronised and milled lactose (Lactohale (LH) LH300, LH230, LH210 and Sorbolac 400) were pre-blended with coarse grades of lactose (LH100, LH206 and Respitose SV010) at concentrations of 2.5, 5, 10 and 20 wt.%. The bulk and rheological properties and particle size distributions were characterised. The pre-blends were formulated with micronised budesonide and in vitro performance in a Cyclohaler device tested using a next-generation impactor (NGI) at 90 l/min. Correlations between the lactose properties and in vitro performance were established using linear regression and artificial neural network (ANN) analyses. The addition of milled and micronised lactose fines with the coarse lactose had a significant influence on physical and rheological properties of the bulk lactose. Formulations of the different pre-blends with budesonide directly influenced in vitro performance attributes including fine particle fraction, mass median aerodynamic diameter and pre-separator deposition. While linear regression suggested a number of physical and bulk properties may influence in vitro performance, ANN analysis suggested the critical parameters in describing in vitro deposition patterns were the relative concentrations of lactose fines % < 4.5 μm and % < 15 μm. These data suggest that, for an adhesive API, the proportion of fine particles below % < 4.5 μm and % < 15 μm could be used in rational dry powder inhaler formulation design.
Collapse
|
39
|
A proposed definition of the ‘activity’ of surface sites on lactose carriers for dry powder inhalation. Eur J Pharm Sci 2014; 56:102-4. [DOI: 10.1016/j.ejps.2014.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/28/2014] [Accepted: 02/22/2014] [Indexed: 11/21/2022]
|
40
|
Grasmeijer F, de Boer AH. The dispersion behaviour of dry powder inhalation formulations cannot be assessed at a single inhalation flow rate. Int J Pharm 2014; 465:165-8. [DOI: 10.1016/j.ijpharm.2014.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/11/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|
41
|
Grasmeijer F, Lexmond AJ, van den Noort M, Hagedoorn P, Hickey AJ, Frijlink HW, de Boer AH. New mechanisms to explain the effects of added lactose fines on the dispersion performance of adhesive mixtures for inhalation. PLoS One 2014; 9:e87825. [PMID: 24489969 PMCID: PMC3905031 DOI: 10.1371/journal.pone.0087825] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
Fine excipient particles or ‘fines’ have been shown to improve the dispersion performance of carrier-based formulations for dry powder inhalation. Mechanistic formulation studies have focussed mainly on explaining this positive effect. Previous studies have shown that higher drug contents may cause a decrease in dispersion performance, and there is no reason why this should not be true for fines with a similar shape, size and cohesiveness as drug particles. Therefore, the effects on drug detachment of ‘fine lactose fines’ (FLF, X50 = 1.95 µm) with a similar size and shape as micronised budesonide were studied and compared to those of ‘coarse lactose fines’ (CLF, X50 = 3.94 µm). Furthermore, interactions with the inhalation flow rate, the drug content and the mixing order were taken into account. The observed effects of FLF are comparable to drug content effects in that the detached drug fraction was decreased at low drug content and low flow rates but increased at higher flow rates. At high drug content the effects of added FLF were negligible. In contrast, CLF resulted in higher detached drug fractions at all flow rates and drug contents. The results from this study suggest that the effects of fines may be explained by two new mechanisms in addition to those previously proposed. Firstly, fines below a certain size may increase the effectiveness of press-on forces or cause the formation of strongly coherent fine particle networks on the carrier surface containing the drug particles. Secondly, when coarse enough, fines may prevent the formation of, or disrupt such fine particle networks, possibly through a lowering of their tensile strength. It is recommended that future mechanistic studies are based on the recognition that added fines may have any effect on dispersion performance, which is determined by the formulation and dispersion conditions.
Collapse
Affiliation(s)
- Floris Grasmeijer
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Anne J. Lexmond
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Maarten van den Noort
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Paul Hagedoorn
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Anthony J. Hickey
- Center for Aerosol and Nanomaterials Engineering, RTI International, Research Triangle Park, North Carolina, United States of America
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Anne H. de Boer
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Das SC, Behara SRB, Morton DA, Larson I, Stewart PJ. Importance of particle size and shape on the tensile strength distribution and de-agglomeration of cohesive powders. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2013.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Grasmeijer F, Hagedoorn P, Frijlink HW, de Boer AH. Drug content effects on the dispersion performance of adhesive mixtures for inhalation. PLoS One 2013; 8:e71339. [PMID: 23967195 PMCID: PMC3743805 DOI: 10.1371/journal.pone.0071339] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/02/2013] [Indexed: 11/19/2022] Open
Abstract
The drug content in adhesive mixtures for inhalation is known to influence their dispersion performance, but the direction and magnitude of this influence depends on other variables. In the past decades several mechanisms have been postulated to explain this finding and a number of possible interacting variables have been identified. Still, the role of drug content in the formulation of adhesive mixtures for inhalation, which includes its significance as an interacting variable to other parameters, is poorly understood. Therefore, the results from a series of drug detachment experiments are presented in which the effect of drug content and its dependence on flow rate, the mixing time and the type of drug is studied. Furthermore, it is investigated whether the effect depends on the range within which the drug content is changed. Quantitative and qualitative multiple order interactions are observed between these variables, which may be explained by a shifting balance between three different mechanisms. The results therefore demonstrate that accounting for (multiple order) interactions between variables has to be part of quality by design activities and the rational design of future experiments.
Collapse
Affiliation(s)
- Floris Grasmeijer
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Kaialy W, Nokhodchi A. Engineered mannitol ternary additives improve dispersion of lactose-salbutamol sulphate dry powder inhalations. AAPS JOURNAL 2013; 15:728-43. [PMID: 23591748 DOI: 10.1208/s12248-013-9476-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/18/2013] [Indexed: 12/18/2022]
Abstract
The aim of this study was to evaluate the influence of novel engineered fine mannitol particles (4.7%, w/w) on the performance of lactose-salbutamol sulphate dry powder inhaler (DPI) formulations to obtain promising aerosolisation properties. The results showed that the more elongated the fine mannitol particles, the weaker the drug-carrier adhesion, the better the drug content homogeneity, the higher the amount of drug expected to be delivered to the lower airways and the higher the total DPI formulation desirability. Linear relationships were established showing that mannitol particles with a more elongated shape generated powders with broader size distributions and that were less uniform in shape. The weaker the drug-carrier adhesion, the higher the fine particle fraction of the drug is upon aerosolisation. It is believed that more elongated fine mannitol particles reduce the number of drug-carrier and drug-drug physical contact points and increase the ability of the drug particles to travel into the lower airways. Additionally, a lower drug-carrier contact area, lower drug-carrier press-on forces and easier drug-carrier detachment are suggested in the case of formulations containing more elongated fine mannitol particles. Ternary 'drug-coarse carrier-elongated fine ternary component' DPI formulations were more favourable than both 'drug-coarse carrier' and 'drug-elongated coarse carrier' binary formulations. This study provides a comprehensive approach for formulators to overcome the undesirable properties of dry powder inhalers, as both improved aerosolisation performance and reasonable flow characteristics were obtained using only a small amount of elongated engineered fine mannitol particles.
Collapse
Affiliation(s)
- Waseem Kaialy
- Chemistry and Drug Delivery Group, Medway School of Pharmacy, University of Kent, ME4 4TB, Kent, UK.
| | | |
Collapse
|
45
|
Preparation and characterization of physically modified glass beads used as model carriers in dry powder inhalers. Int J Pharm 2013; 447:132-8. [DOI: 10.1016/j.ijpharm.2013.02.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 11/23/2022]
|
46
|
Adi S, Adi H, Chan HK, Tong Z, Yang R, Yu A. Effects of mechanical impaction on aerosol performance of particles with different surface roughness. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2012.02.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Muhammad SAFS, Tang P, Chan HK, Dehghani F. The effect of lactose micro-spherical crystals prepared by conditioning with supercritical fluid on salbutamol sulphate inhalation performance. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2012.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Cordts E, Steckel H. Capabilities and limitations of using powder rheology and permeability to predict dry powder inhaler performance. Eur J Pharm Biopharm 2012; 82:417-23. [DOI: 10.1016/j.ejpb.2012.07.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/20/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
|
49
|
Shrimpton JS, Danby M. Effect of poly-dispersity on the stability of agglomerates subjected to simple fluid strain fields. POWDER TECHNOL 2012. [DOI: 10.1016/j.powtec.2012.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
El-Gendy N, Selvam P, Soni P, Berkland C. Development of Budesonide Nanocluster Dry Powder Aerosols: Preformulation. J Pharm Sci 2012; 101:3434-44. [DOI: 10.1002/jps.23197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/17/2012] [Accepted: 04/27/2012] [Indexed: 12/18/2022]
|