1
|
Redox-controlled proton gating in bovine cytochrome c oxidase. PLoS One 2013; 8:e63669. [PMID: 23696843 PMCID: PMC3656056 DOI: 10.1371/journal.pone.0063669] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/04/2013] [Indexed: 11/19/2022] Open
Abstract
Cytochrome c oxidase is the terminal enzyme in the electron transfer chain of essentially all organisms that utilize oxygen to generate energy. It reduces oxygen to water and harnesses the energy to pump protons across the mitochondrial membrane in eukaryotes and the plasma membrane in prokaryotes. The mechanism by which proton pumping is coupled to the oxygen reduction reaction remains unresolved, owing to the difficulty of visualizing proton movement within the massive membrane-associated protein matrix. Here, with a novel hydrogen/deuterium exchange resonance Raman spectroscopy method, we have identified two critical elements of the proton pump: a proton loading site near the propionate groups of heme a, which is capable of transiently storing protons uploaded from the negative-side of the membrane prior to their release into the positive side of the membrane and a conformational gate that controls proton translocation in response to the change in the redox state of heme a. These findings form the basis for a postulated molecular model describing a detailed mechanism by which unidirectional proton translocation is coupled to electron transfer from heme a to heme a 3, associated with the oxygen chemistry occurring in the heme a 3 site, during enzymatic turnover.
Collapse
|
2
|
Pardo A, De Lacey AL, Fernández VM, Fan HJ, Fan Y, Hall MB. Density functional study of the catalytic cycle of nickel–iron [NiFe] hydrogenases and the involvement of high-spin nickel(II). J Biol Inorg Chem 2006; 11:286-306. [PMID: 16511689 DOI: 10.1007/s00775-005-0076-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
In light of recent experiments suggesting high-spin (HS) Ni(II) species in the catalytic cycle of [NiFe] hydrogenase, a series of models of the Ni(II) forms Ni-SI(I,II), SI-CO and Ni-R(I,II,III) were examined in their high-spin states via density functional calculations. Because of its importance in the catalytic cycle, the Ni-C form was also included in this study. Unlike the Ni(II) forms in previous studies, in which a low-spin (LS) state was assumed and a square-planar structure found, the optimized geometries of these HS Ni(II) forms resemble those observed in the crystal structures: a distorted tetrahedral to distorted pyramidal coordination for the NiS4. This resemblance is particularly significant because the LS state is 20-30 kcal/mol less stable than the HS state for the geometry of the crystal structure. If these Ni(II) forms in the enzyme are not high spin, a large change in geometry at the active site is required during the catalytic cycle. Furthermore, only the HS state for the CO-inhibited form SI-CO has CO stretching frequencies that match the experimental results. As in the previous work, these new results show that the heterolytic cleavage reaction of dihydrogen (where H2 is cleaved with the metal acting as a hydride acceptor and a cysteine as the proton acceptor) has a lower energy barrier and is more exothermic when the active site is oxidized to Ni(III). The enzyme models described here are supported by a calibrated correlation of the calculated and measured CO stretching frequencies of the forms of the enzyme. The correlation coefficient for the final set of models of the forms of [NiFe] hydrogenase is 0.8.
Collapse
Affiliation(s)
- Alejandro Pardo
- Instituto de Catalisis, CSIC, c/ Marie Curie s/n, Campus de Cantoblanco, 28049, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
3
|
Papa S, Capitanio N, Capitanio G, Palese LL. Protonmotive cooperativity in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:95-105. [PMID: 15282180 DOI: 10.1016/j.bbabio.2004.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 04/21/2004] [Accepted: 04/23/2004] [Indexed: 10/26/2022]
Abstract
Cooperative linkage of solute binding at separate binding sites in allosteric proteins is an important functional attribute of soluble and membrane bound hemoproteins. Analysis of proton/electron coupling at the four redox centers, i.e. Cu(A), heme a, heme a(3) and Cu(B), in the purified bovine cytochrome c oxidase in the unliganded, CO-liganded and CN-liganded states is presented. These studies are based on direct measurement of scalar proton translocation associated with oxido-reduction of the metal centers and pH dependence of the midpoint potential of the redox centers. Heme a (and Cu(A)) exhibits a cooperative proton/electron linkage (Bohr effect). Bohr effect seems also to be associated with the oxygen-reduction chemistry at the heme a(3)-Cu(B) binuclear center. Data on electron transfer in cytochrome c oxidase are also presented, which, together with structural data, provide evidence showing the occurrence of direct electron transfer from Cu(A) to the binuclear center in addition to electron transfer via heme a. A survey of structural and functional data showing the essential role of cooperative proton/electron linkage at heme a in the proton pump of cytochrome c oxidase is presented. On the basis of this and related functional and structural information, variants for cooperative mechanisms in the proton pump of the oxidase are examined.
Collapse
Affiliation(s)
- Sergio Papa
- Department of Biomedical Science, Faculty of Medicine, University of Foggia, Foggia, Italy.
| | | | | | | |
Collapse
|
4
|
Forte E, Scandurra FM, Richter OMH, D'Itri E, Sarti P, Brunori M, Ludwig B, Giuffrè A. Proton uptake upon anaerobic reduction of the Paracoccus denitrificans cytochrome c oxidase: a kinetic investigation of the K354M and D124N mutants. Biochemistry 2004; 43:2957-63. [PMID: 15005632 DOI: 10.1021/bi035863u] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kinetics and stoichiometry of the redox-linked protonation of the soluble Paracoccus denitrificans cytochrome c oxidase were investigated at pH = 7.2-7.5 by multiwavelength stopped-flow spectroscopy, using the pH indicator phenol red. We compared the wild-type enzyme with the K354M and the D124N subunit I mutants, in which the K- and D-proton-conducting pathways are impaired, respectively. Upon anaerobic reduction by Ru-II hexamine, the wild-type enzyme binds 3.3 +/- 0.6 H(+)/aa(3), i.e., approximately 1 H(+) in excess over beef heart oxidase under similar conditions and the D124N mutant 3.2 +/- 0.5 H(+)/aa(3). In contrast, in the K354M mutant, in which the reduction of heme a(3)-Cu(B) is severely impaired, approximately 0.8 H(+) is promptly bound synchronously with the reduction of heme a, followed by a much slower protonation associated with the retarded reduction of the heme a(3)-Cu(B) site. These results indicate that complete reduction of heme a (and Cu(A)) is coupled to the uptake of approximately 0.8 H(+), which is independent of both H(+)-pathways, whereas the subsequent reduction of the heme a(3)-Cu(B) site is associated with the uptake of approximately 2.5 H(+) transferred (at least partially) through the K-pathway. On the basis of these results, the possible involvement of the D-pathway in the redox-linked protonation of cytochrome c oxidase is discussed.
Collapse
Affiliation(s)
- Elena Forte
- Department of Biochemical Sciences and CNR Institute of Molecular Biology and Pathology, University of Rome La Sapienza, I-00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Capitanio N, Capitanio G, De Nitto E, Boffoli D, Papa S. Proton transfer reactions associated with the reaction of the fully reduced, purified cytochrome C oxidase with molecular oxygen and ferricyanide. Biochemistry 2003; 42:4607-12. [PMID: 12705823 DOI: 10.1021/bi0206208] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A study is presented on proton transfer associated with the reaction of the fully reduced, purified bovine heart cytochrome c oxidase with molecular oxygen or ferricyanide. The proton consumption associated with aerobic oxidation of the four metal centers changed significantly with pH going from approximately 3.0 H(+)/COX at pH 6.2-6.3 to approximately 1.2 H(+)/COX at pH 8.0-8.5. Rereduction of the metal centers was associated with further proton uptake which increased with pH from approximately 1.0 H(+)/COX at pH 6.2-6.3 to approximately 2.8 H(+)/COX at pH 8.0-8.5. Anaerobic oxidation of the four metal centers by ferricyanide resulted in the net release of 1.3-1.6 H(+)/COX in the pH range 6.2-8.2, which were taken up by the enzyme on rereduction of the metal centers. The proton transfer elicited by ferricyanide represents the net result of deprotonation/protonation reactions linked to anaerobic oxidoreduction of the metal centers. Correction for the ferricyanide-induced pH changes of the proton uptake observed in the oxidation and rereduction phase of the reaction of the reduced oxidase with oxygen gave a measure of the proton consumption in the reduction of O(2) to 2H(2)O. The results show that the expected stoichiometric proton consumption of 4H(+) in the reduction of O(2) to 2H(2)O is differently associated, depending on the actual pH, with the oxidation and reduction phase of COX. Two H(+)/COX are initially taken up in the reduction of O(2) to two OH(-) groups bound to the binuclear Fe a(3)-Cu(B) center. At acidic pHs the third and fourth protons are also taken up in the oxidative phase with formation of 2H(2)O. At alkaline pHs the third and fourth protons are taken up with formation of 2H(2)O only upon rereduction of COX.
Collapse
Affiliation(s)
- Nazzareno Capitanio
- Department of Biomedical Science, Faculty of Medicine, University of Foggia, Foggia, Italy
| | | | | | | | | |
Collapse
|
6
|
Forte E, Barone MC, Brunori M, Sarti P, Giuffrè A. Redox-linked protonation of cytochrome c oxidase: the effect of chloride bound to CuB. Biochemistry 2002; 41:13046-52. [PMID: 12390032 DOI: 10.1021/bi025917k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of bound Cl- on the redox-linked protonation of soluble beef heart cytochrome c oxidase (CcOX) has been investigated at pH 7.3-7.5 by multiwavelength stopped-flow spectroscopy, using phenol red as the pH indicator in an unbuffered medium. Reduction by Ru-II hexamine of the Cl-bound enzyme is associated with an overall apparent uptake of 1.40 +/- 0.21 H+/aa3, whereas 2.28 +/- 0.36 H+/aa3 is taken upon reduction of the Cl-free enzyme. Bound Cl- has no effect on the extent of H+ uptake coupled to heme a reduction (0.59 +/- 0.06 H+/aa3), but significantly decreases (by approximately 0.9 H+/aa3) the apparent stoichiometry of H+ uptake coupled to heme a3-Cu(B) reduction, by eliminating the net H+ uptake linked to Cu(B) reduction. To account for these results, we propose that, after the transfer of the first electron to the active site, reduction of Cu(B) is associated with Cl- dissociation, addition of a H+, and diffusion into the bulk (with subsequent dissociation) of HCl. In the physiologically competent Cl--free enzyme, an OH- likely bound to oxidized Cu(B) is protonated upon arrival of the first electron, and dissociates as H2O. The relevance of this finding to the understanding of the enzyme mechanism is discussed.
Collapse
Affiliation(s)
- Elena Forte
- Department of Biochemical Sciences and CNR Institute of Molecular Biology and Pathology, University of Rome La Sapienza, I-00185 Rome, Italy
| | | | | | | | | |
Collapse
|
7
|
Kotelnikov AI, Medvedev ES, Medvedev DM, Stuchebrukhov AA. Kinetic Treatment of Coupled Electron and Proton Transfer in Flash-Photolysis Experiments on Carbon Monoxide-Inhibited Mixed-Valence Cytochrome c Oxidase. J Phys Chem B 2001. [DOI: 10.1021/jp010001t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. I. Kotelnikov
- Department of Chemistry, University of California, Davis, California 95616, and Institute of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow, Russia
| | - E. S. Medvedev
- Department of Chemistry, University of California, Davis, California 95616, and Institute of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow, Russia
| | - D. M. Medvedev
- Department of Chemistry, University of California, Davis, California 95616, and Institute of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow, Russia
| | - A. A. Stuchebrukhov
- Department of Chemistry, University of California, Davis, California 95616, and Institute of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow, Russia
| |
Collapse
|
8
|
Capitanio N, Capitanio G, Boffoli D, Papa S. The proton/electron coupling ratio at heme a and Cu(A) in bovine heart cytochrome c oxidase. Biochemistry 2000; 39:15454-61. [PMID: 11112531 DOI: 10.1021/bi001940z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Measurements of the H(+)/heme a, Cu(A) ratios for proton-electron coupling at these centers (redox Bohr effect) in CO-inhibited cytochrome c oxidase purified from bovine heart mitochondria, both in the soluble state and reconstituted in liposomes, are presented. In the soluble oxidase, the H(+)/heme a, Cu(A) ratios were experimentally determined upon oxidation by ferricyanide of these centers as well as upon their reduction by hexammineruthenium(II). These measurements showed that in order to obtain H(+)/heme a, Cu(A) ratios approaching 1, one-step full oxidation of both metal centers by ferricyanide had to be induced by a stoicheiometric amount of the oxidant. Partial stepwise oxidation or reduction of heme a and Cu(A) did produce H(+)/heme a, Cu(A) ratios significantly lower or higher than 1, respectively. The experimental H(+)/heme a, Cu(A) ratios measured upon stepwise reduction/oxidation of the metals were reproduced by mathematical simulation based on the coupling of oxido-reduction of both heme a and Cu(A) to pK shifts of common acid-base groups. The vectorial nature of the proton-electron coupling at heme a/Cu(A) was analyzed by measuring pH changes in the external bulk phase associated with oxido-reduction of these redox centers in the CO-inhibited oxidase reconstituted in liposomes. The results show that the proton release associated with the oxidation of heme a and Cu(A) takes place in the external aqueous phase. Protons taken up by the oxidase upon rereduction of the centers derive, on the other hand, from the inner space. These results provide evidence supporting the view that cooperative proton-electron coupling at heme a/Cu(A) is involved in the proton pump of the oxidase.
Collapse
Affiliation(s)
- N Capitanio
- Department of Medical Biochemistry and Biology, University of Bari, Piazza G. Cesare, 70124 Bari, Italy
| | | | | | | |
Collapse
|
9
|
Capitanio N, Capitanio G, Minuto M, De Nitto E, Palese LL, Nicholls P, Papa S. Coupling of electron transfer with proton transfer at heme a and Cu(A) (redox Bohr effects) in cytochrome c oxidase. Studies with the carbon monoxide inhibited enzyme. Biochemistry 2000; 39:6373-9. [PMID: 10828951 DOI: 10.1021/bi0003137] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A study is presented on the coupling of electron transfer with proton transfer at heme a and Cu(A) (redox Bohr effects) in carbon monoxide inhibited cytochrome c oxidase isolated from bovine heart mitochondria. Detailed analysis of the coupling number for H(+) release per heme a, Cu(A) oxidized (H(+)/heme a, Cu(A) ratio) was based on direct measurement of the balance between the oxidizing equivalents added as ferricyanide to the CO-inhibited fully reduced COX, the equivalents of heme a, Cu(A), and added cytochrome c oxidized and the H(+) released upon oxidation and all taken up back by the oxidase upon rereduction of the metal centers. One of two reductants was used, either succinate plus a trace of mitochondrial membranes (providing a source of succinate-c reductase) or hexaammineruthenium(II) as the chloride salt. The experimental H(+)/heme a, Cu(A) ratios varied between 0.65 and 0.90 in the pH range 6.0-8.5. The pH dependence of the H(+)/heme a, Cu(A) ratios could be best-fitted by a function involving two redox-linked acid-base groups with pK(o)-pK(r) of 5.4-6.9 and 7.3-9.0, respectively. Redox titrations in the same samples of the CO-inhibited oxidase showed that Cu(A) and heme a exhibited superimposed E'(m) values, which decreased, for both metals, by around 20 mV/pH unit increase in the range 6.0-8.5. A model in which oxido-reduction of heme a and Cu(A) are both linked to the pK shifts of the two acid-base groups, characterized by the analysis of the pH dependence of the H(+)/heme a, Cu(A) ratios, provided a satisfactory fit for the pH dependence of the E'(m) of heme a and Cu(A). The results presented are consistent with a primary involvement of the redox Bohr effects shared by heme a and Cu(A) in the proton-pumping activity of cytochrome c oxidase.
Collapse
Affiliation(s)
- N Capitanio
- Department of Medical Biochemistry and Biology, University of Bari, Piazza G. Cesare, 70124 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Papa S, Capitanio N, Villani G. A cooperative model for protonmotive heme-copper oxidases. The role of heme a in the proton pump of cytochrome c oxidase. FEBS Lett 1998; 439:1-8. [PMID: 9849866 DOI: 10.1016/s0014-5793(98)01305-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Oxido-reductions of metal centers in cytochrome c oxidase are linked to pK shifts of acidic groups in the enzyme (redox Bohr effects). The linkage at heme a results in proton uptake from the inner space upon reduction and proton release in the external space upon oxidation of the metal. The relationship of this process to the features of the proton pump in cytochrome c oxidase and its atomic structure revealed by X-ray crystallography to 2.8-2.3 A resolution is examined. A mechanism for the proton pump of cytochrome c oxidase, based on cooperative coupling at heme a, is proposed.
Collapse
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Policlinico, Italy.
| | | | | |
Collapse
|
11
|
Papa S, Capitanio N, Villani G, Capitanio G, Bizzoca A, Palese LL, Carlino V, De Nitto E. Cooperative coupling and role of heme a in the proton pump of heme-copper oxidases. Biochimie 1998; 80:821-36. [PMID: 9893941 DOI: 10.1016/s0300-9084(00)88877-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the last few years, evidence has accumulated supporting the applicability of the cooperative model of proton pumps in cytochrome systems, vectorial Bohr mechanisms, to heme-copper oxidases. The vectorial Bohr mechanism is based on short- and long-range protonmotive cooperative effects linked to redox transitions of the metal centers. The crystal structure of oxidized and reduced bovine-heart cytochrome c oxidase reveals, upon reduction, the occurrence of long-range conformational changes in subunit I of the oxidase. Analysis of the crystal structure of cytochrome c oxidase shows the existence of hydrogen-bonded networks of amino acid residues which could undergo redox-linked pK shifts resulting in transmembrane proton translocation. Our group has identified four proteolytic groups undergoing reversible redox-linked pK shifts. Two groups result in being linked to redox transitions of heme a3. One group is apparently linked to CuB. The fourth group is linked to oxido-reduction of heme a. We have shown that the proton transfer resulting from the redox Bohr effects linked to heme a and CuB in the bovine oxidase displays membrane vectorial asymmetry, i.e., protons are taken up from the inner aqueous space (N), upon reduction, and released in the external space (P), upon oxidation of the metals. This direction of proton uptake and release is just what is expected from the vectorial Bohr mechanism. The group linked to heme a, which can transfer up to 0.9 H+/e- at pHs around neutrality, can provide the major contribution to the proton pump. It is proposed that translocation of pumped protons, linked to electron flow through heme a, utilizes a channel (channel D) which extends from a conserved aspartate at the N entrance to a conserved glutamate located between heme a and the binuclear center. The carboxylic group of this glutamic acid, after having delivered, upon electron flow through heme a, pumped protons towards the P phase, once reprotonated from the N phase, moves to deliver, subsequently, to the binuclear center chemical protons consumed in the conversion of the peroxy to ferryl and of the latter to the oxy intermediate in the redox cycle. Site-directed mutagenesis of protolytic residues in subunit I of the aa3-600 quinol oxidase of Bacillus subtilis to non-polar residues revealed that the conserved Lys 304 is critical for the proton pumping activity of the oxidase. Crystal structures of cytochrome c oxidase show that this lysine is at the N entrance of a channel which translocates the protons consumed for the production of the peroxy intermediate. Inhibition of this pathway, by replacement of the lysine, short-circuits protons from channel D to the binuclear center, where they are utilized in the chemistry of oxygen reduction.
Collapse
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|