1
|
Schreiber JM, Wiggs E, Cuento R, Norato G, Dustin IH, Rolinski R, Austermuehle A, Zhou X, Inati SK, Gibson KM, Pearl PL, Theodore WH. A Randomized Controlled Trial of SGS-742, a γ-aminobutyric acid B (GABA-B) Receptor Antagonist, for Succinic Semialdehyde Dehydrogenase Deficiency. J Child Neurol 2021; 36:1189-1199. [PMID: 34015244 PMCID: PMC8605041 DOI: 10.1177/08830738211012804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined safety, tolerability, and efficacy of SGS-742, a γ-aminobutyric acid B (GABA-B) receptor antagonist, in patients with succinic semialdehyde dehydrogenase deficiency. This was a single-center randomized, double-blind crossover phase II clinical trial of SGS-742 versus placebo in patients with succinic semialdehyde dehydrogenase deficiency. Procedures included transcranial magnetic stimulation and the Adaptive Behavior Assessment Scale. Nineteen subjects were consented and enrolled; the mean age was 14.0 ± 7.5 years and 11 (58%) were female. We did not find a significant effect of SGS-742 on the Adaptive Behavior Assessment Scale score, motor threshold, and paired-pulse stimulation. The difference in recruitment curve slopes between treatment groups was 0.003 (P = .09). There was no significant difference in incidence of adverse effects between drug and placebo arms. SGS-742 failed to produce improved cognition and normalization of cortical excitability as measured by the Adaptive Behavior Assessment Scale and transcranial magnetic stimulation. Our data do not support the current use of SGS-742 in succinic semialdehyde dehydrogenase deficiency.Trial registry number NCT02019667. Phase 2 Clinical Trial of SGS-742 Therapy in Succinic Semialdehyde Dehydrogenase Deficiency. https://clinicaltrials.gov/ct2/show/NCT02019667.
Collapse
Affiliation(s)
- John M. Schreiber
- NINDS NIH, Clinical Epilepsy Section, Bethesda, MD, USA
- Children’s National Hospital, Division of Epilepsy, Neurophysiology, and Critical Care Neurology, Washington, DC, USA
| | - Edythe Wiggs
- NINDS NIH, Office of the Clinical Director, Bethesda, MD, USA
| | - Rose Cuento
- NINDS NIH, Office of the Clinical Director, Bethesda, MD, USA
- NINDS NIH, Clinical Trials Unit, Bethesda, MD, USA
| | - Gina Norato
- NINDS NIH, Office of the Clinical Director, Bethesda, MD, USA
| | | | | | | | | | - Sara K. Inati
- NINDS NIH, Office of the Clinical Director, Bethesda, MD, USA
| | - K. Michael Gibson
- Washington State University, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacotherapy, Spokane, WA, USA
| | - Phillip L. Pearl
- Boston Children’s Hospital, Department of Epilepsy and Clinical Neurophysiology, Boston, MA, USA
| | | |
Collapse
|
2
|
Didiasova M, Banning A, Brennenstuhl H, Jung-Klawitter S, Cinquemani C, Opladen T, Tikkanen R. Succinic Semialdehyde Dehydrogenase Deficiency: An Update. Cells 2020; 9:cells9020477. [PMID: 32093054 PMCID: PMC7072817 DOI: 10.3390/cells9020477] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADH-D) is a genetic disorder that results from the aberrant metabolism of the neurotransmitter γ-amino butyric acid (GABA). The disease is caused by impaired activity of the mitochondrial enzyme succinic semialdehyde dehydrogenase. SSADH-D manifests as varying degrees of mental retardation, autism, ataxia, and epileptic seizures, but the clinical picture is highly heterogeneous. So far, there is no approved curative therapy for this disease. In this review, we briefly summarize the molecular genetics of SSADH-D, the past and ongoing clinical trials, and the emerging features of the molecular pathogenesis, including redox imbalance and mitochondrial dysfunction. The main aim of this review is to discuss the potential of further therapy approaches that have so far not been tested in SSADH-D, such as pharmacological chaperones, read-through drugs, and gene therapy. Special attention will also be paid to elucidating the role of patient advocacy organizations in facilitating research and in the communication between researchers and patients.
Collapse
Affiliation(s)
- Miroslava Didiasova
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (M.D.); (A.B.)
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (M.D.); (A.B.)
| | - Heiko Brennenstuhl
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (H.B.); (S.J.-K.); (T.O.)
| | - Sabine Jung-Klawitter
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (H.B.); (S.J.-K.); (T.O.)
| | | | - Thomas Opladen
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (H.B.); (S.J.-K.); (T.O.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (M.D.); (A.B.)
- Correspondence: ; Tel.: +49-641-9947-420
| |
Collapse
|
3
|
Ribas GS, Vargas CR, Wajner M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene 2013; 533:469-76. [PMID: 24148561 DOI: 10.1016/j.gene.2013.10.017] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/02/2013] [Accepted: 10/09/2013] [Indexed: 01/11/2023]
Abstract
In recent years increasing evidence has emerged suggesting that oxidative stress is involved in the pathophysiology of a number of inherited metabolic disorders. However the clinical use of classical antioxidants in these diseases has been poorly evaluated and so far no benefit has been demonstrated. l-Carnitine is an endogenous substance that acts as a carrier for fatty acids across the inner mitochondrial membrane necessary for subsequent beta-oxidation and ATP production. Besides its important role in the metabolism of lipids, l-carnitine is also a potent antioxidant (free radical scavenger) and thus may protect tissues from oxidative damage. This review addresses recent findings obtained from patients with some inherited neurometabolic diseases showing that l-carnitine may be involved in the reduction of oxidative damage observed in these disorders. For some of these diseases, reduced concentrations of l-carnitine may occur due to the combination of this compound to the accumulating toxic metabolites, especially organic acids, or as a result of protein restricted diets. Thus, l-carnitine supplementation may be useful not only to prevent tissue deficiency of this element, but also to avoid oxidative damage secondary to increased production of reactive species in these diseases. Considering the ability of l-carnitine to easily cross the blood-brain barrier, l-carnitine supplementation may also be beneficial in preventing neurological damage derived from oxidative injury. However further studies are required to better explore this potential.
Collapse
Affiliation(s)
- Graziela S Ribas
- Federal University of Rio Grande do Sul, Brazil; Serviço de Genética Médica, HCPA, Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | | | | |
Collapse
|
4
|
Mc Guire PJ, Parikh A, Diaz GA. Profiling of oxidative stress in patients with inborn errors of metabolism. Mol Genet Metab 2009; 98:173-80. [PMID: 19604711 PMCID: PMC2915835 DOI: 10.1016/j.ymgme.2009.06.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 01/19/2023]
Abstract
Free radical formation resulting in oxidative stress is a hallmark of mitochondrial dysfunction. Indeed, oxidative stress has been demonstrated to be an underlying pathophysiologic process in various inborn errors of metabolism. Metabolic profiling of oxidative stress may provide a non-specific measure of disease activity that may further enable physicians to monitor disease. In the present study, we investigated two markers of oxidative damage in urinary samples from IEM subjects and controls: F-2 isoprostanes, a measure of lipid peroxidation and di-tyrosine, a measure of protein oxidation. We also determined urinary antioxidant activity in these samples. Subsets of IEM patients showed significantly higher levels of the damage markers isoprostanes and di-tyrosine. Of note, patients with cobalamin disorders (i.e., CblB and CblC) consistently had the highest levels of oxidative damage markers. Lower urine antioxidant capacity was seen in all subject categories, particularly cobalamin disorders and propionic acidemia. Longitudinal studies in subjects with MSUD showed good concordance between markers of oxidative damage and acute decompensation. Overall, quantifying oxidative stress offers a unique perspective to IEM. These measures may provide a means of addressing mitochondrial function in IEM and aid in the development of therapeutic targets and clinical monitoring in this diverse set of disorders.
Collapse
Affiliation(s)
- Peter J Mc Guire
- Department of Genetics & Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
5
|
Sgaravatti AM, Magnusson AS, Oliveira AS, Mescka CP, Zanin F, Sgarbi MB, Pederzolli CD, Wyse ATS, Wannmacher CMD, Wajner M, Dutra-Filho CS. Effects of 1,4-butanediol administration on oxidative stress in rat brain: study of the neurotoxicity of gamma-hydroxybutyric acid in vivo. Metab Brain Dis 2009; 24:271-82. [PMID: 19296210 DOI: 10.1007/s11011-009-9136-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 12/05/2008] [Indexed: 02/06/2023]
Abstract
gamma-Hydroxybutyric acid (GHB) is a naturally occurring compound in the central nervous system (CNS) whose tissue concentration are highly increased in the neurometabolic-inherited deficiency of succinic semialdehyde dehydrogenase (SSADH) activity or due to intoxication. SSADH deficiency is biochemically characterized by increased concentrations of GHB in tissues, cerebrospinal fluid, blood and urine of affected patients. Clinical manifestations are variable and include retardation of mental, motor, and language development along with other neurological symptoms, such as hypotonia, ataxia and seizures, whose underlying mechanisms are practically unknown. The precursor of GHB, 1,4-butanediol (1,4-BD) has been used to study the mechanisms of in vivo GHB neurotoxicity. Therefore, in the present work, the effect of acute administration of 20 or 120 mg/Kg 1,4-BD was investigated on various parameters of oxidative stress, such as spontaneous chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total antioxidant reactivity (TAR), sulfhydryl and protein carbonyl contents, as well as the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in homogenates from cerebral cortex of 14-day-old Wistar rats. Acute administration of 120 mg/Kg 1,4-BD significantly increased spontaneous chemiluminescence and TBA-RS levels, while TAR measurement was markedly diminished, whereas injection of a lower dose (20 mg/Kg) did not change the parameters examined. Other parameters of oxidative stress evaluated were not affected by administration of 1,4-BD. These results indicate that 1,4-BD induces in vivo oxidative stress by stimulating lipid peroxidation and decreasing the non-enzymatic antioxidant defenses in cerebral cortex of young rats. If these effects also occur in humans, it is possible that they might contribute to the brain damage found in SSADH-deficient patients and possibly in individuals intoxicated by GHB or its prodrugs (gamma-butyrolactone or 1,4-BD).
Collapse
Affiliation(s)
- Angela M Sgaravatti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sgaravatti AM, Sgarbi MB, Testa CG, Durigon K, Pederzolli CD, Prestes CC, Wyse ATS, Wannmacher CMD, Wajner M, Dutra-Filho CS. Gamma-hydroxybutyric acid induces oxidative stress in cerebral cortex of young rats. Neurochem Int 2006; 50:564-70. [PMID: 17197055 DOI: 10.1016/j.neuint.2006.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 10/30/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
GHB is a naturally occurring compound in the central nervous system (CNS) whose tissue concentration are highly increased during drug abuse and in the inherited deficiency of succinic semialdehyde dehydrogenase (SSADH) activity. SSADH deficiency is a neurometabolic-inherited disorder of the degradation pathway of gamma-aminobutyric acid (GABA). It is biochemically characterized by increased concentrations of gamma-hydroxybutyric acid (GHB) in tissues, cerebrospinal fluid (CSF), blood and urine of affected patients. Clinical manifestations are variable, ranging from mild retardation of mental, motor, and language development to more severe neurological symptoms, such as hypotonia, ataxia and seizures, whose underlying mechanisms are practically unknown. In the present study, the in vitro and in vivo effects of GHB was investigated on some parameters of oxidative stress, such as chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), as well as the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in homogenates from cerebral cortex of 15-day-old Wistar rats. In vitro, GHB significantly increased chemiluminescence and TBA-RS levels, while TRAP and TAR measurements were markedly diminished. In contrast, the activities of the antioxidant enzymes SOD, CAT and GPX were not altered by GHB in vitro. Acute administration of GHB provoked a significant enhance of TBA-RS levels and a decrease of TRAP and TAR measurements. These results indicate that GHB induces oxidative stress by stimulating lipid peroxidation and decreasing the non-enzymatic antioxidant defenses in cerebral cortex of young rats. If these effects also occur in humans, it is possible that they might contribute to the brain damage found in SSADH-deficient patients and possibly in individuals who consume GHB or its prodrug gamma-butyrolactone.
Collapse
Affiliation(s)
- Angela M Sgaravatti
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wajner M, Latini A, Wyse ATS, Dutra-Filho CS. The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 2004; 27:427-48. [PMID: 15303000 DOI: 10.1023/b:boli.0000037353.13085.e2] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Organic acidurias represent a group of inherited disorders resulting from deficient activity of specific enzymes of the catabolism of amino acids, carbohydrates or lipids, leading to tissue accumulation of one or more carboxylic (organic) acids. Patients affected by organic acidurias predominantly present neurological symptoms and structural brain abnormalities, of which the aetiopathogenesis is poorly understood. However, in recent years increasing evidence has emerged suggesting that oxidative stress is possibly involved in the pathology of some organic acidurias and other inborn errors of metabolism. This review addresses some of the recent developments obtained mainly from animal studies indicating oxidative damage as an important determinant of the neuropathophysiology of some organic acidurias. Recent data showing that various organic acids are capable of inducing free radical generation and decreasing brain antioxidant defences is presented. The discussion focuses on the relatively low antioxidant defences of the brain and the vulnerability of this tissue to reactive species. This offers new perspectives for potential therapeutic strategies for these disorders, which may include the early use of appropriate antioxidants as a novel adjuvant therapy, besides the usual treatment based on removing toxic compounds and using special diets and pharmacological agents, such as cofactors and L-carnitine.
Collapse
Affiliation(s)
- M Wajner
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, 90035-003 Porto Alegre, RS, Brazil.
| | | | | | | |
Collapse
|
8
|
Silva AR, Silva CG, Ruschel C, Helegda C, Wyse AT, Wannmacher CM, Wajner M, Dutra-Filho CS. L-pyroglutamic acid inhibits energy production and lipid synthesis in cerebral cortex of young rats in vitro. Neurochem Res 2001; 26:1277-83. [PMID: 11885778 DOI: 10.1023/a:1014289232039] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present study we investigated the effects of L-pyroglutamic acid (PGA), which predominantly accumulates in the inherited metabolic diseases glutathione synthetase deficiency (GSD) and gamma-glutamylcysteine synthetase deficiency (GCSD), on some in vitro parameters of energy metabolism and lipid biosynthesis. We evaluated the rates of CO2 production and lipid synthesis from [U-14C]acetate, as well as ATP levels and the activities of creatine kinase and of the respiratory chain complexes I-IV in cerebral cortex of young rats in the presence of PGA at final concentrations ranging from 0.5 to 3 mM. PGA significantly reduced brain CO2 production by 50% at the concentrations of 0.5 to 3 mM, lipid biosynthesis by 20% at concentrations of 0.5 to 3 mM and ATP levels by 52% at the concentration of 3 mM. Regarding the enzyme activities, PGA significantly decreased NADH:cytochrome c oxireductase (complex I plus CoQ plus complex III) by 40% at concentrations of 0.5-3.0 mM and cytochrome c oxidase activity by 22-30% at the concentration of 3.0 mM, without affecting the activities of succinate dehydrogenase, succinate:DCPIP oxireductase (complex II), succinate:cytochrome c oxireductase (complex II plus CoQ plus complex III) or creatine kinase. The results strongly indicate that PGA impairs brain energy production. If these effects also occur in humans, it is possible that they may contribute to the neuropathology of patients affected by these diseases.
Collapse
Affiliation(s)
- A R Silva
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Silva AR, Ruschel C, Helegda C, Wyse AT, Wannmacher CM, Wajner M, Dutra-Filho CS. Inhibition of in vitro CO2 production and lipid synthesis by 2-hydroxybutyric acid in rat brain. Braz J Med Biol Res 2001; 34:627-31. [PMID: 11323749 DOI: 10.1590/s0100-879x2001000500010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2-Hydroxybutyric acid appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. The present study was carried out to determine the effect of 2-hydroxybutyric acid at various concentrations (1-10 mM) on CO2 production and lipid synthesis from labeled substrates in cerebral cortex of 30-day-old Wistar rats in vitro. CO2 production was significantly inhibited (30-70%) by 2-hydroxybutyric acid in cerebral cortex prisms, in total homogenates and in the mitochondrial fraction. We also demonstrated a significant inhibition of lipid synthesis (20-45%) in cerebral cortex prisms and total homogenates in the presence of 2-hydroxybutyric acid. However, no inhibition of lipid synthesis occurred in homogenates free of nuclei and mitochondria. The results indicate an impairment of mitochondrial energy metabolism caused by 2-hydroxybutyric acid, a fact that may secondarily lead to reduction of lipid synthesis. It is possible that these findings may be associated with the neuropathophysiology of the situations where 2-hydroxybutyric acid is accumulated.
Collapse
Affiliation(s)
- A R Silva
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | |
Collapse
|
10
|
Silva CG, Silva AR, Ruschel C, Helegda C, Wyse AT, Wannmacher CM, Dutra-Filho CS, Wajner M. Inhibition of energy production in vitro by glutaric acid in cerebral cortex of young rats. Metab Brain Dis 2000; 15:123-31. [PMID: 11092579 DOI: 10.1007/bf02679979] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The present study investigated the effects of glutaric acid (GA), which predominantly accumulates in glutaric acidemia type I (GA-I), on some in vitro parameters of energy metabolism in cerebral cortex of rats. We first evaluated CO2 production from [U-14C] acetate, as well as ATP levels in brain of young Wistar rats. The effect of the acid on the activities of the respiratory chain complexes were also investigated. GA was tested at final concentrations ranging from 0.5 to 5.0 mM. GA significantly reduced brain CO2 production by 50% at the concentrations of 0.5 to 3.0 mM, ATP levels by 25% at the concentration of 3.0 mM, succinate:cytochrome C oxireductase (complex II plus CoQ plus complex III) by 25% at 5 mM concentration, and NADH:cytochrome C oxireductase (complex I plus CoQ plus complex Ill) by 25% at 2.5 and 5 mM concentrations. The results strongly indicate that GA impairs brain energy production. If these effects also occur in humans, it is possible that they may contribute to the neuropathology of patients affected by GA-I.
Collapse
Affiliation(s)
- C G Silva
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | | | | | | | | | | | | |
Collapse
|