1
|
Yu J, Wang L, Pei P, Li X, Wu J, Qiu Z, Zhang J, Ao R, Wang S, Zhang T, Xie J. Reduced H3K27me3 leads to abnormal Hox gene expression in neural tube defects. Epigenetics Chromatin 2019; 12:76. [PMID: 31856916 PMCID: PMC6921514 DOI: 10.1186/s13072-019-0318-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Background Neural tube defects (NTDs) are severe, common birth defects that result from failure of normal neural tube closure during early embryogenesis. Accumulating strong evidence indicates that genetic factors contribute to NTDs etiology, among them, HOX genes play a key role in neural tube closure. Although abnormal HOX gene expression can lead to NTDs, the underlying pathological mechanisms have not fully been understood. Method We detected that H3K27me3 and expression of the Hox genes in a retinoic acid (RA) induced mouse NTDs model on E8.5, E9.5 and E10.5 using RNA-sequencing and chromatin immunoprecipitation sequencing assays. Furthermore, we quantified 10 Hox genes using NanoString nCounter in brain tissue of fetuses with 39 NTDs patients including anencephaly, spina bifida, hydrocephaly and encephalocele. Results Here, our results showed differential expression in 26 genes with a > 20-fold change in the level of expression, including 10 upregulated Hox genes. RT-qPCR revealed that these 10 Hox genes were all upregulated in RA-induced mouse NTDs as well as RA-treated embryonic stem cells (ESCs). Using ChIP-seq assays, we demonstrate that a decrease in H3K27me3 level upregulates the expression of Hox cluster A–D in RA-induced mouse NTDs model on E10.5. Interestingly, RA treatment led to attenuation of H3K27me3 due to cooperate between UTX and Suz12, affecting Hox gene regulation. Further analysis, in human anencephaly cases, upregulation of 10 HOX genes was observed, along with aberrant levels of H3K27me3. Notably, HOXB4, HOXC4 and HOXD1 expression was negatively correlated with H3K27me3 levels. Conclusion Our results indicate that abnormal HOX gene expression induced by aberrant H3K27me3 levels may be a risk factor for NTDs and highlight the need for further analysis of genome-wide epigenetic modification in NTDs.
Collapse
Affiliation(s)
- Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Pei Pei
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xue Li
- School of Clinical Medical, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Jianxin Wu
- Department of Biochemistry, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ruifang Ao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Concepts in the neurosurgical care of patients with spinal neural tube defects: An embryologic approach. Birth Defects Res 2019; 111:1564-1576. [DOI: 10.1002/bdr2.1588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/04/2023]
|
3
|
Yu J, Mu J, Guo Q, Yang L, Zhang J, Liu Z, Yu B, Zhang T, Xie J. Transcriptomic profile analysis of mouse neural tube development by RNA-Seq. IUBMB Life 2017; 69:706-719. [PMID: 28691208 DOI: 10.1002/iub.1653] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
The neural tube is the primordium of the central nervous system (CNS) in which its development is not entirely clear. Understanding the cellular and molecular basis of neural tube development could, therefore, provide vital clues to the mechanism of neural tube defects (NTDs). Here, we investigated the gene expression profiles of three different time points (embryonic day (E) 8.5, 9.5 and 10.5) of mouse neural tube by using RNA-seq approach. About 391 differentially expressed genes (DEGs) were screened during mouse neural tube development, including 45 DEGs involved in CNS development, among which Bmp2, Ascl1, Olig2, Lhx1, Wnt7b and Eomes might play the important roles. Of 45 DEGs, Foxp2, Eomes, Hoxb3, Gpr56, Hap1, Nkx2-1, Sez6l2, Wnt7b, Tbx20, Nfib, Cntn1 and Dcx had different isoforms, and the opposite expression pattern of different isoforms was observed for Gpr56, Nkx2-1 and Sez6l2. In addition, alternative splicing, such as mutually exclusive exon, retained intron, skipped exon and alternative 3' splice site was identified in 10 neural related differentially splicing genes, including Ngrn, Ddr1, Dctn1, Dnmt3b, Ect2, Map2, Mbnl1, Meis2, Vcan and App. Moreover, seven neural splicing factors, such as Nova1/2, nSR100/Srrm4, Elavl3/4, Celf3 and Rbfox1 were differentially expressed during mouse neural tube development. Interestingly, nine DEGs identified above were dysregulated in retinoic acid-induced NTDs model, indicating the possible important role of these genes in NTDs. Taken together, our study provides more comprehensive information on mouse neural tube development, which might provide new insights on NTDs occurrence. © 2017 IUBMB Life, 69(9):706-719, 2017.
Collapse
Affiliation(s)
- Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Qian Guo
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Lihong Yang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Ting Zhang
- Capital Institute of Pediatrics, Beijing, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Jaszczak K, Sazanov AA, Sacharczuk M, Korczak M, Sazanova AL, Parada R, Malewski T. Gene expression profiling of hereditary exencephaly in chickens. Anim Genet 2006; 37:253-7. [PMID: 16734686 DOI: 10.1111/j.1365-2052.2006.01417.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this preliminary study, differentially expressed genes were investigated in cranial tissues from chickens with hereditary exencephaly using cDNA microarrays containing 1,152 genes and expressed sequence tags (ESTs). Genes showing twofold or greater differences at P < 0.05 between affected and normal cranial cells were considered to be candidates for hereditary exencephaly in chicken. Eighteen ESTs (11 known genes/homologues) were upregulated and 108 ESTs (51 known genes/homologues) were downregulated. The EST AL584231 (ROS006C9), orthologous to human MTHFD1, a known candidate gene for human neural tube defects (NTDs), was expressed at the same level both in normal and affected chicken cranial tissues. ESTs AL584253 (ROS006F7, thioredoxin reductase 1) and AL585511 (ROS024H9, thioredoxin), both involved in NTD pathogenic pathways in mice, were downregulated and had mean ratios of 0.41 and 0.04 for expression in affected vs. normal cells respectively. Expression differences of these two ESTs were confirmed by quantitative real-time polymerase chain reaction. These data indicate that ESTs AL584253 and AL585511 are candidates for hereditary exencephaly in chickens.
Collapse
Affiliation(s)
- K Jaszczak
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Wolka Kosowska, Poland
| | | | | | | | | | | | | |
Collapse
|
5
|
Okada A, Fujiwara M. Molecular approaches to developmental malformations using analogous forms of valproic acid. Congenit Anom (Kyoto) 2006; 46:68-75. [PMID: 16732764 DOI: 10.1111/j.1741-4520.2006.00105.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The teratogenic potential of valproic acid has been well established both in experimental models and in human clinical studies. Evidence from many previous studies has shown that VPA is an appropriate drug model for studying chemical structure-teratogenicity relationships. Using molecular techniques of DNA microarray (GeneChip system) or quantitative real-time polymerase chain reaction with low teratogenic VPA analogs as comparative control drugs, we attempted to identify the genes involved with the molecular mechanisms of VPA teratogenicity in the neural tube and the axial skeleton of the mouse embryo. The recent development of DNA microarray enables a genome-wide approach to the identification of genes correlated with the teratogenicity of chemicals (teratogenomics). The VPA-induced changes in gene expression seen during mouse embryogenesis provides information for understanding how VPA disrupts normal embryonic development, and also provides leads for the development of safer medicines.
Collapse
Affiliation(s)
- Akinobu Okada
- Drug Safety Research Laboratories, Astellas Pharma, Yodogawa-ku, Osaka, Japan.
| | | |
Collapse
|
6
|
Maekawa M, Ohta KI, Katagiri RI, Ueta E, Naruse I. Exencephaly induction by valproic acid in the genetic polydactyly/arhinencephaly mouse, Pdn/Pdn. Congenit Anom (Kyoto) 2005; 45:132-6. [PMID: 16359493 DOI: 10.1111/j.1741-4520.2005.00082.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Non-treated homozygous polydactyly/arhinencephaly (Pdn/Pdn) mouse fetuses exhibited exencephaly in 16.7% of cases. Treatment of Pdn/Pdn mice with 350 mg/kg of valproic acid (VPA) on days 8.5 and 9.5 of gestation increased the rate of exencephaly to 66.7%. The responsible gene for the Pdn mouse phenotype has been determined to be Gli3, and the suppression of Gli3 gene expression has been documented in Pdn/Pdn embryos. We investigated how the sonic hedgehog (Shh) and Fgf8 genes, the correlated genes of Gli3, are expressed in the VPA-treated exencephalic Pdn/Pdn embryos on day 10 of gestation, using whole mount in situ hybridization (WISH) and real-time PCR methods. We could not detect any alterations in Shh expression by real-time PCR, or WISH in the non-treated Pdn/Pdn and VPA-treated exencephalic Pdn/Pdn embryos. Altered Fgf8 expression patterns were observed in the commissural plate and dorsal isthmal neuroepithelium in the non-treated Pdn/Pdn embryos. We speculated that the altered expression of Fgf8 might be the result of down-regulation of Gli3 in Pdn/Pdn embryos. Fgf8 gene expression in the commissural plate and dorsal isthmal neuroepithelium exhibits wide or altered signal patterns in the VPA-treated exencephalic Pdn/Pdn embryo. From these findings, it was suggested that down-regulation of Gli3 gene expression induced the altered expression of Fgf8 in the Pdn/Pdn embryos, and that VPA treatment accelerated the alterations of Fgf8 gene expression in the Pdn/Pdn embryos. It was further speculated that altered expression of Fgf8 in the commissural plate may be the fundamental cause of exencephaly, and that the synergistic effect between gene and drug shown in this experiment may explain the differences of sensitivity in the side-effects of the drug.
Collapse
Affiliation(s)
- Mizuho Maekawa
- School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | |
Collapse
|
7
|
Okada A, Kushima K, Aoki Y, Bialer M, Fujiwara M. Identification of early-responsive genes correlated to valproic acid-induced neural tube defects in mice. ACTA ACUST UNITED AC 2005; 73:229-38. [PMID: 15799026 DOI: 10.1002/bdra.20131] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Valproic acid (VPA) causes the failure of neural tube closure in newborn mice. However, the molecular mechanism of its teratogenesis is unknown. This study was conducted to investigate the genomewide effects of VPA disruption of normal neural tube development in mice. METHODS Microarray analysis was performed on the head part of NMRI mouse embryos treated for 1 hr with VPA on gestational day (GD) 8. Subsequently, we attempted to isolate genes that changed in correlation with the teratogenic action of VPA by employing reduced teratogenic VPA analogs, valpromide (VPD) and valnoctamide (VCD), in a real-time PCR study. RESULTS Microarray results demonstrated that during neurulation, many genes, some of whose functions are known and some unknown, were either increased or decreased after VPA injection. Some genes were affected by VPD or VCD in the same way as VPA, but others were not changed by the analogs. In this way, our system identified 11 increased and 20 decreased genes. Annotation analysis revealed that the increased genes included gadd45b, ier5, per1, phfl3, pou3f1, and sox4, and the decreased genes included ccne2, ccnl, gas5, egr2, sirt1, and zfp105. CONCLUSIONS These findings demonstrate that expression changes in genes having roles in the cell cycle and apoptosis pathways of neural tube cells were strongly expected to relate to the teratogenic, but not antiepileptic, activity of VPA. Our approach has allowed the expansion of the catalog of molecules immediately affected by VPA in the developing neural tube.
Collapse
Affiliation(s)
- Akinobu Okada
- Drug Safety Research Laboratories, Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | | | | | | | | |
Collapse
|
8
|
Detrait ER, George TM, Etchevers HC, Gilbert JR, Vekemans M, Speer MC. Human neural tube defects: developmental biology, epidemiology, and genetics. Neurotoxicol Teratol 2005; 27:515-24. [PMID: 15939212 PMCID: PMC2727639 DOI: 10.1016/j.ntt.2004.12.007] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 12/17/2004] [Indexed: 12/16/2022]
Abstract
Birth defects (congenital anomalies) are the leading cause of death in babies under 1 year of age. Neural tube defects (NTD), with a birth incidence of approximately 1/1000 in American Caucasians, are the second most common type of birth defect after congenital heart defects. The most common presentations of NTD are spina bifida and anencephaly. The etiologies of NTDs are complex, with both genetic and environmental factors implicated. In this manuscript, we review the evidence for genetic etiology and for environmental influences, and we present current views on the developmental processes involved in human neural tube closure.
Collapse
Affiliation(s)
- Eric R Detrait
- Hôpital Necker, Enfants Malades Unité INSERM U393, 149, rue de Sèvres, 75743 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
9
|
Spiegelstein O, Gould A, Wlodarczyk B, Tsie M, Lu X, Le C, Troen A, Selhub J, Piedrahita JA, Salbaum JM, Kappen C, Melnyk S, James J, Finnell RH. Developmental consequences of in utero sodium arsenate exposure in mice with folate transport deficiencies. Toxicol Appl Pharmacol 2005; 203:18-26. [PMID: 15694460 PMCID: PMC3938173 DOI: 10.1016/j.taap.2004.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2004] [Accepted: 07/21/2004] [Indexed: 01/13/2023]
Abstract
Previous studies have demonstrated that mice lacking a functional folate binding protein 2 gene (Folbp2-/-) were significantly more sensitive to in utero arsenic exposure than were the wild-type mice similarly exposed. When these mice were fed a folate-deficient diet, the embryotoxic effect of arsenate was further exacerbated. Contrary to expectations, studies on 24-h urinary speciation of sodium arsenate did not demonstrate any significant difference in arsenic biotransformation between Folbp2-/- and Folbp2+/+ mice. To better understand the influence of folate pathway genes on arsenic embryotoxicity, the present investigation utilized transgenic mice with disrupted folate binding protein 1 (Folbp1) and reduced folate carrier (RFC) genes. Because complete inactivation of Folbp1 and RFC genes results in embryonic lethality, we used heterozygous animals. Overall, no RFC genotype-related differences in embryonic susceptibility to arsenic exposure were observed. Embryonic lethality and neural tube defect (NTD) frequency in Folbp1 mice was dose-dependent and differed from the RFC mice; however, no genotype-related differences were observed. The RFC heterozygotes tended to have higher plasma levels of S-adenosylhomocysteine (SAH) than did the wild-type controls, although this effect was not robust. It is concluded that genetic modifications at the Folbp1 and RFC loci confers no particular sensitivity to arsenic toxicity compared to wild-type controls, thus disproving the working hypothesis that decreased methylating capacity of the genetically modified mice would put them at increased risk for arsenic-induced reproductive toxicity.
Collapse
Affiliation(s)
- Ofer Spiegelstein
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | - Amy Gould
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
- NIDCR T32 Fellow, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Bogdan Wlodarczyk
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | - Marlene Tsie
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | - Xiufen Lu
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chris Le
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Aron Troen
- Vitamin Metabolism and Neurocognitive Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Jacob Selhub
- Vitamin Metabolism and Neurocognitive Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Jorge A. Piedrahita
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | - J. Michael Salbaum
- S.C. Johnson Medical Research Center, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Claudia Kappen
- S.C. Johnson Medical Research Center, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Stepan Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Jill James
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Richard H. Finnell
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
- Center for Environmental and Rural Health, Texas A&M University, College Station, TX 77843, USA
- Corresponding author: Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Boulevard, Houston, TX 77030. Fax: +1 713 677 7790. (R.H. Finnell)
| |
Collapse
|
10
|
Abstract
PURPOSE Neural tube defects (NTDs), including spina bifida and anencephaly, are common congenital malformations that occur when the neural tube fails to achieve proper closure during early embryogenesis. Based on epidemiological and clinical data obtained over the last few decades, it is apparent that these multifactorial defects have a significant genetic component to their etiology that interacts with specific environmental risk factors. The purpose of this review article is to synthesize the existing literature on the genetic factors contributing to NTD risk. RESULTS To date, there is evidence that closure of the mammalian neural tube initiates and fuses intermittently at four discrete locations. Disruption of this process at any of these four sites may lead to an NTD, possibly arising through closure site-specific genetic mechanisms. Candidate genes involved in neural tube closure include genes of the folate metabolic pathway, as well as those involved in folate transport. CONCLUSIONS Although extensive efforts have focused on elucidating the genetic risk factors contributing to the etiology of NTDs, the population burden for these malformations remains unknown. One group at high risk for having children with NTDs is epileptic women receiving antiepileptic medications during pregnancy. Efforts to better understand the genetic factors that may contribute to their heightened risk, as well as the pathogenesis of neural tube closure defects, are reviewed herein.
Collapse
Affiliation(s)
- Richard H Finnell
- Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston 77030-3303, USA.
| | | | | |
Collapse
|