1
|
Uner B, Dwivedi P, Ergin AD. Effects of arginine on coenzyme-Q10 micelle uptake for mitochondria-targeted nanotherapy in phenylketonuria. Drug Deliv Transl Res 2024; 14:191-207. [PMID: 37555905 DOI: 10.1007/s13346-023-01392-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
Phenylketonuria (PKU) is a rare inherited metabolic disease characterized by phenylalanine hydroxylase enzyme deficiency. In PKU patients, coenzyme Q10 (CoQ10) levels were found low. Therefore, we focused on the modification of CoQ10 to load the micelles and increase entry of micelles into the cell and mitochondria, and it is taking a part in ATP turnover. Micelles had produced by comparing two different production methods (thin-film layer and direct-dissolution), and characterization studies were performed (zeta potential, size, and encapsulation efficiency). Then, L-arginine (LARG) and poly-arginine (PARG) were incorporated with the micelles for subsequential release and PKU cell studies. The effects of these components on intracellular uptake and their use in the cellular cycle were analyzed by ELISA, Western blot, membrane potential measurement, and flow cytometry methods. In addition, both effects of LARG and PARG micelles on pharmacokinetics at the cellular level and their cell binding rate were determined. The thin-film method was found superior in micelle preparation. PARG/LARG-modified micelles showed sustained release. In the cellular and mitochondrial uptake of CoQ10, CoQ10-micelle + PARG > CoQ10-micelle + LARG > CoQ10-micelle > CoQ10 was found. This increased localization caused lowering of oxygen consumption rates, but maintaining mitochondrial membrane potential. The study results had showed that besides micelle formulation, PARG and LARG are effective in cellular and mitochondrial targeting.
Collapse
Affiliation(s)
- Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, USA.
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, USA
| | - Ahmet Doğan Ergin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
- Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Koch EV, Bendas S, Nehlsen K, May T, Reichl S, Dietzel A. The Path from Nasal Tissue to Nasal Mucosa on Chip: Part 2-Advanced Microfluidic Nasal In Vitro Model for Drug Absorption Testing. Pharmaceutics 2023; 15:2439. [PMID: 37896199 PMCID: PMC10610000 DOI: 10.3390/pharmaceutics15102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The nasal mucosa, being accessible and highly vascularized, opens up new opportunities for the systemic administration of drugs. However, there are several protective functions like the mucociliary clearance, a physiological barrier which represents is a difficult obstacle for drug candidates to overcome. For this reason, effective testing procedures are required in the preclinical phase of pharmaceutical development. Based on a recently reported immortalized porcine nasal epithelial cell line, we developed a test platform based on a tissue-compatible microfluidic chip. In this study, a biomimetic glass chip, which was equipped with a controlled bidirectional airflow to induce a physiologically relevant wall shear stress on the epithelial cell layer, was microfabricated. By developing a membrane transfer technique, the epithelial cell layer could be pre-cultivated in a static holder prior to cultivation in a microfluidic environment. The dynamic cultivation within the chip showed a homogenous distribution of the mucus film on top of the cell layer and a significant increase in cilia formation compared to the static cultivation condition. In addition, the recording of the ciliary transport mechanism by microparticle image velocimetry was successful. Using FITC-dextran 4000 as an example, it was shown that this nasal mucosa on a chip is suitable for permeation studies. The obtained permeation coefficient was in the range of values determined by means of other established in vitro and in vivo models. This novel nasal mucosa on chip could, in future, be automated and used as a substitute for animal testing.
Collapse
Affiliation(s)
- Eugen Viktor Koch
- Institute of Microtechnology, TU Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany
- Center of Pharmaceutical Engineering, Franz-Liszt Str. 35 a, 38106 Braunschweig, Germany; (S.B.)
| | - Sebastian Bendas
- Center of Pharmaceutical Engineering, Franz-Liszt Str. 35 a, 38106 Braunschweig, Germany; (S.B.)
- Institute of Pharmaceutical Technology and Biopharmaceutics, TU Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | | | - Tobias May
- InSCREENeX GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Stephan Reichl
- Center of Pharmaceutical Engineering, Franz-Liszt Str. 35 a, 38106 Braunschweig, Germany; (S.B.)
- Institute of Pharmaceutical Technology and Biopharmaceutics, TU Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Andreas Dietzel
- Institute of Microtechnology, TU Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany
- Center of Pharmaceutical Engineering, Franz-Liszt Str. 35 a, 38106 Braunschweig, Germany; (S.B.)
| |
Collapse
|
3
|
Bendas S, Koch EV, Nehlsen K, May T, Dietzel A, Reichl S. The Path from Nasal Tissue to Nasal Mucosa on Chip: Part 1-Establishing a Nasal In Vitro Model for Drug Delivery Testing Based on a Novel Cell Line. Pharmaceutics 2023; 15:2245. [PMID: 37765214 PMCID: PMC10536430 DOI: 10.3390/pharmaceutics15092245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, there has been a significant increase in the registration of drugs for nasal application with systemic effects. Previous preclinical in vitro test systems for transmucosal drug absorption studies have mostly been based on primary cells or on tumor cell lines such as RPMI 2650, but both approaches have disadvantages. Therefore, the aim of this study was to establish and characterize a novel immortalized nasal epithelial cell line as the basis for an improved 3D cell culture model of the nasal mucosa. First, porcine primary cells were isolated and transfected. The P1 cell line obtained from this process was characterized in terms of its expression of tissue-specific properties, namely, mucus expression, cilia formation, and epithelial barrier formation. Using air-liquid interface cultivation, it was possible to achieve both high mucus formation and the development of functional cilia. Epithelial integrity was expressed as both transepithelial electrical resistance and mucosal permeability, which was determined for sodium fluorescein, rhodamine B, and FITC-dextran 4000. We noted a high comparability of the novel cell culture model with native excised nasal mucosa in terms of these measures. Thus, this novel cell line seems to offer a promising approach for developing 3D nasal mucosa tissues that exhibit favorable characteristics to be used as an in vitro system for testing drug delivery systems.
Collapse
Affiliation(s)
- Sebastian Bendas
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany;
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 a, 38106 Braunschweig, Germany; (E.V.K.); (A.D.)
| | - Eugen Viktor Koch
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 a, 38106 Braunschweig, Germany; (E.V.K.); (A.D.)
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, 38124 Braunschweig, Germany
| | - Kristina Nehlsen
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.N.); (T.M.)
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.N.); (T.M.)
| | - Andreas Dietzel
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 a, 38106 Braunschweig, Germany; (E.V.K.); (A.D.)
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, 38124 Braunschweig, Germany
| | - Stephan Reichl
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany;
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 a, 38106 Braunschweig, Germany; (E.V.K.); (A.D.)
| |
Collapse
|
4
|
Crowe TP, Hsu WH. Evaluation of Recent Intranasal Drug Delivery Systems to the Central Nervous System. Pharmaceutics 2022; 14:629. [PMID: 35336004 PMCID: PMC8950509 DOI: 10.3390/pharmaceutics14030629] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Neurological diseases continue to increase in prevalence worldwide. Combined with the lack of modifiable risk factors or strongly efficacious therapies, these disorders pose a significant and growing burden on healthcare systems and societies. The development of neuroprotective or curative therapies is limited by a variety of factors, but none more than the highly selective blood-brain barrier. Intranasal administration can bypass this barrier completely and allow direct access to brain tissues, enabling a large number of potential new therapies ranging from bioactive peptides to stem cells. Current research indicates that merely administering simple solutions is inefficient and may limit therapeutic success. While many therapies can be delivered to some degree without carrier molecules or significant modification, a growing body of research has indicated several methods of improving the safety and efficacy of this administration route, such as nasal permeability enhancers, gelling agents, or nanocarrier formulations. This review shall discuss promising delivery systems and their role in expanding the clinical efficacy of this novel administration route. Optimization of intranasal administration will be crucial as novel therapies continue to be studied in clinical trials and approved to meet the growing demand for the treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Tyler P. Crowe
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Walter H. Hsu
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Vedadghavami A, Zhang C, Bajpayee AG. Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins. NANO TODAY 2020; 34:100898. [PMID: 32802145 PMCID: PMC7425807 DOI: 10.1016/j.nantod.2020.100898] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Negatively charged tissues are ubiquitous in the human body and are associated with a number of common diseases yet remain an outstanding challenge for targeted drug delivery. While the anionic proteoglycans are critical for tissue structure and function, they make tissue matrix dense, conferring a high negative fixed charge density (FCD) that makes drug penetration through the tissue deep zones and drug delivery to resident cells extremely challenging. The high negative FCD of these tissues is now being utilized by taking advantage of electrostatic interactions to create positively charged multi-stage delivery methods that can sequentially penetrate through the full thickness of tissues, create a drug depot and target cells. After decades of work on attempting delivery using strong binding interactions, significant advances have recently been made using weak and reversible electrostatic interactions, a characteristic now considered essential to drug penetration and retention in negatively charged tissues. Here we discuss these advances using examples of negatively charged tissues (cartilage, meniscus, tendons and ligaments, nucleus pulposus, vitreous of eye, mucin, skin), and delve into how each of their structures, tissue matrix compositions and high negative FCDs create barriers to drug entry and explore how charge interactions are being used to overcome these barriers. We review work on tissue targeting cationic peptide and protein-based drug delivery, compare and contrast drug delivery designs, and also present examples of technologies that are entering clinical trials. We also present strategies on further enhancing drug retention within diseased tissues of lower FCD by using synergistic effects of short-range binding interactions like hydrophobic and H-bonds that stabilize long-range charge interactions. As electrostatic interactions are incorporated into design of drug delivery materials and used as a strategy to create properties that are reversible, tunable and dynamic, bio-electroceuticals are becoming an exciting new direction of research and clinical work.
Collapse
Affiliation(s)
- Armin Vedadghavami
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Chenzhen Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Ambika G. Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Jee JP, Pangeni R, Jha SK, Byun Y, Park JW. Preparation and in vivo evaluation of a topical hydrogel system incorporating highly skin-permeable growth factors, quercetin, and oxygen carriers for enhanced diabetic wound-healing therapy. Int J Nanomedicine 2019; 14:5449-5475. [PMID: 31409998 PMCID: PMC6647010 DOI: 10.2147/ijn.s213883] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We created and evaluated an enhanced topical delivery system featuring a combination of highly skin-permeable growth factors (GFs), quercetin (QCN), and oxygen; these synergistically accelerated re-epithelialization and granulation tissue formation of/in diabetic wounds by increasing the levels of GFs and antioxidants, and the oxygen partial pressure, at the wound site. METHODS To enhance the therapeutic effects of exogenous administration of GFs for the treatment of diabetic wounds, we prepared highly skin-permeable GF complexes comprised of epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), platelet-derived growth factor-A (PDGF-A), and basic fibroblast growth factor (bFGF), genetically attached, via the N-termini, to a low-molecular-weight protamine (LMWP) to form LMWP-EGF, LMWP-IGF-I, LMWP-PDGF-A, and LMWP-bFGF, respectively. Furthermore, quercetin (QCN)- and oxygen-carrying 1-bromoperfluorooctane (PFOB)-loaded nanoemulsions (QCN-NE and OXY-PFOB-NE) were developed to improve the topical delivery of QCN and oxygen, respectively. After confirming the enhanced penetration of LMWP-GFs, QCN-NE, and oxygen delivered from OXY-PFOB-NE across human epidermis, we evaluated the effects of combining LMWP-GFs, QCN-NE, and OXY-PFOB-NE on proliferation of keratinocytes and fibroblasts, and the chronic wound closure rate of a diabetic mouse model. RESULTS The optimal ratios of LMWP-EGF, LMWP-IGF-I, LMWP-PDGF-A, LMWP-bFGF, QCN-NE, and OXY-PFOB-NE were 1, 1, 0.02, 0.02, 0.2, and 60, respectively. Moreover, a Carbopol hydrogel containing LMWP-GFs, QCN-NE, and OXY-PFOB-NE (LMWP-GFs/QCN-NE/OXY-PFOB-NE-GEL) significantly improved scratch-wound recovery of keratinocytes and fibroblasts in vitro compared to that afforded by hydrogels containing each component alone. LMWP-GFs/QCN-NE/OXY-PFOB-NE-GEL significantly accelerated wound-healing in a diabetic mouse model, decreasing wound size by 54 and 35% compared to the vehicle and LMWP-GFs, respectively. CONCLUSION LMWP-GFs/QCN-NE/OXY-PFOB-NE-GEL synergistically accelerated the healing of chronic wounds, exerting both rapid and prolonged effects.
Collapse
Affiliation(s)
- Jun-Pil Jee
- College of Pharmacy, Chosun University, Gwangju61452, Republic of Korea
| | - Rudra Pangeni
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam58554, Republic of Korea
| | - Saurav Kumar Jha
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam58554, Republic of Korea
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam58554, Republic of Korea
| |
Collapse
|
7
|
Hyaluronic acid tethered pH-responsive alloy-drug nanoconjugates for multimodal therapy of glioblastoma: An intranasal route approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:419-436. [DOI: 10.1016/j.msec.2018.12.139] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/23/2018] [Accepted: 12/31/2018] [Indexed: 01/03/2023]
|
8
|
Yang D, Wu W, Wang S. Biocompatibility and degradability of alginate-poly- L-arginine microcapsules prepared by high-voltage electrostatic process. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1417291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dayun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
| | - Wenguo Wu
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Shibin Wang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
9
|
Mechanism of intranasal drug delivery directly to the brain. Life Sci 2018; 195:44-52. [DOI: 10.1016/j.lfs.2017.12.025] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
|
10
|
Kamiya Y, Yamaki T, Omori S, Uchida M, Ohtake K, Kimura M, Yamazaki H, Natsume H. Improved Intranasal Retentivity and Transnasal Absorption Enhancement by PEGylated Poly-l-ornithine. Pharmaceuticals (Basel) 2018; 11:ph11010009. [PMID: 29370117 PMCID: PMC5874705 DOI: 10.3390/ph11010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 11/25/2022] Open
Abstract
We reported that the introduction of polyethylene glycol (PEG) to poly-l-ornithine (PLO), which is an homopolymeric basic amino acid having absorption-enhancement ability, prolonged retention time in an in vitro inclined plate test, probably due to an increase in viscosity caused by PEGylation. The aim of the present study is to investigate whether the introduction of PEG chains to PLO improves intranasal retention and transnasal absorption in vivo. We performed intranasal administration experiments using PLO and PEG-PLO with a model drug, fluorescein isothiocyanate dextran (FD-4), in rats under closed and open systems. In the open system, transition of plasma FD-4 concentration after co-administration with unmodified PLO was low, and the area under the plasma concentration-time curve (AUC) decreased to about 60% of that in the closed system. In contrast, the AUC after co-administration with PEG-PLO in the open system was about 90% of that in the closed system, and the transition of plasma FD-4 concentration and FD-4 absorption profile were similar to those of the closed system. These findings indicate that introducing PEG chains to homopolymeric basic amino acids (HPBAAs) is a very useful method for developing a functional absorption enhancer that can exhibit an efficient in vivo absorption-enhancing effect.
Collapse
Affiliation(s)
- Yusuke Kamiya
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Tsutomu Yamaki
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Shigehiro Omori
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Masaki Uchida
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Kazuo Ohtake
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Mitsutoshi Kimura
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan.
| | - Hideshi Natsume
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
11
|
Chen J, Li H, Chen J. Human epidermal growth factor coupled to different structural classes of cell penetrating peptides: A comparative study. Int J Biol Macromol 2017; 105:336-345. [DOI: 10.1016/j.ijbiomac.2017.07.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/30/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022]
|
12
|
Khafagy ES, El-Azab MF, ElSayed MEH. Rhamnolipids Enhance in Vivo Oral Bioavailability of Poorly Absorbed Molecules. Pharm Res 2017; 34:2197-2210. [PMID: 28721446 DOI: 10.1007/s11095-017-2227-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/03/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE This report describes the effect of rhamnolipids (RLs) on the tight junctions (TJ) of the intestinal epithelium using the rat in-situ closed loop model. METHODS We investigated the transport of 5 (6)-carboxyfluorescein (CF) and fluorescein isothiocyanate-labeled dextrans with average molecular weights of 4.4 and 10 kDa (FD-4 and FD-10) when co-administered with different concentrations of RLs. Lactate dehydrogenase (LDH) leakage assay and histopathological examination of treated intestinal loops were used to assess potential toxicity of RLs. Further, the effect of kaempferol on accelerating the resealing of the tight junctions in vivo was also investigated RESULTS: Data shows that administration of different RLs concentrations (1.0-5.0% v/v) increased CF absorption through rat intestine by 2.84- and 15.82-folds with RLs concentrations of 1.0% and 5.0% v/v, respectively. RLs exhibited size-dependent increase on FD-4 and FD-10 absorption. Dosing RLs at 1.0% v/v didn't cause a significant LDH leakage or histopathological changes to intestinal mucosa compared to higher concentrations, which showed a progressive damaging effect. Using kaempferol, a natural flavonoid that stimulates the assembly of the TJs, proved to enhance the recovery of barrier properties of the intestinal mucosa treated with high concentrations of RLs (2.5% and 5% v/v). CONCLUSIONS These results collectively illustrate the ability of RLs to enhance oral bioavailability of different molecules across the intestinal epithelial membrane in a concentration- and time-dependent fashion.
Collapse
Affiliation(s)
- El-Sayed Khafagy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University,, Ismailia, 41522, Egypt.,College of Engineering, Department of Biomedical Engineering, Cellular Engineering & Nano-Therapeutics Laboratory, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Mona F El-Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University,, Ismailia, 41522, Egypt
| | - Mohamed E H ElSayed
- College of Engineering, Department of Biomedical Engineering, Cellular Engineering & Nano-Therapeutics Laboratory, University of Michigan, Ann Arbor, Michigan, 48109, USA. .,University of Michigan, Macromolecular Science and Engineering Program, Ann Arbor, Michigan, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Lurie Biomedical Engineering Building, Room 2150, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
13
|
Kamiya Y, Yamaki T, Uchida M, Hatanaka T, Kimura M, Ogihara M, Morimoto Y, Natsume H. Preparation and Evaluation of PEGylated Poly-L-ornithine Complex as a Novel Absorption Enhancer. Biol Pharm Bull 2017; 40:205-211. [PMID: 28154261 DOI: 10.1248/bpb.b16-00781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polycationic compounds, such as poly-L-arginine and poly-L-ornithine (PLO), enhance the nasal absorption of hydrophilic macromolecular drugs. However, the bio availability corresponding to the dose of these enhancers has not been obtained in an open system study, where an administered solution is transferred to the pharynx because they do not exhibit mucoadhesion/retention in the nasal cavity. In this study, we prepared PEGylated-poly-L-ornithine (PEG-PLO) and investigated the effects of PEGylation on in vitro adhesion/retention properties, permeation enhancement efficiency, and cytotoxicity. PEG-PLO bearing 3-4 polyethylene glycol (PEG) chains per PLO molecule was more retentive than unmodified PLO on an inclined plate. The permeability of a model drug, FD-4, across Caco-2 cell sheets was enhanced by PEG-PLO as well as by PLO. PLO showed cytotoxicity at high concentrations, whereas PEG-PLO did not decrease cell viability, even above the concentration giving a sufficient enhancement effect. These findings suggest that PEGylation of polycationic absorption enhancers improves their adhesion/retention and decreases their cytotoxicity, which may lead to enhancers with greater utility.
Collapse
Affiliation(s)
- Yusuke Kamiya
- Faculty of Pharmaceutical Sciences, Josai University
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lollo G, Gonzalez-Paredes A, Garcia-Fuentes M, Calvo P, Torres D, Alonso MJ. Polyarginine Nanocapsules as a Potential Oral Peptide Delivery Carrier. J Pharm Sci 2017; 106:611-618. [DOI: 10.1016/j.xphs.2016.09.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/19/2016] [Accepted: 09/12/2016] [Indexed: 02/05/2023]
|
15
|
Takeda H, Kurioka T, Kaitsuka T, Tomizawa K, Matsunobu T, Hakim F, Mizutari K, Miwa T, Yamada T, Ise M, Shiotani A, Yumoto E, Minoda R. Protein transduction therapy into cochleae via the round window niche in guinea pigs. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16055. [PMID: 27579336 PMCID: PMC4988354 DOI: 10.1038/mtm.2016.55] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 12/18/2022]
Abstract
Cell-penetrating peptides (CPPs) are short sequences of amino acids that facilitate the penetration of conjugated cargoes across mammalian cell membranes, and as such, they may provide a safe and effective method for drug delivery to the inner ear. Simple polyarginine peptides have been shown to induce significantly higher cell penetration rates among CPPs. Herein, we show that a peptide consisting of nine arginines ("9R") effectively delivered enhanced green fluorescent protein (EGFP) into guinea pig cochleae via the round window niche without causing any deterioration in auditory function. A second application, 24 hours after the first, prolonged the presence of EGFP. To assess the feasibility of protein transduction using 9R-CPPs via the round window, we used "X-linked inhibitor of apoptosis protein" (XIAP) bonded to a 9R peptide (XIAP-9R). XIAP-9R treatment prior to acoustic trauma significantly reduced putative hearing loss and the number of apoptotic hair cells loss in the cochleae. Thus, the topical application of molecules fused to 9R-CPPs may be a simple and promising strategy for treating inner ear diseases.
Collapse
Affiliation(s)
- Hiroki Takeda
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University , Kumamoto, Japan
| | - Takaomi Kurioka
- Department of Otolaryngology, National Defense Medical College , Tokorozawa, Japan
| | - Taku Kaitsuka
- Department of Molecular Physiology, Kumamoto University , Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Kumamoto University , Kumamoto, Japan
| | - Takeshi Matsunobu
- Department of Otolaryngology, National Defense Medical College , Tokorozawa, Japan
| | - Farzana Hakim
- Department of Molecular Physiology, Kumamoto University , Kumamoto, Japan
| | - Kunio Mizutari
- Department of Otolaryngology, National Defense Medical College , Tokorozawa, Japan
| | - Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University , Kumamoto, Japan
| | - Takao Yamada
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University , Kumamoto, Japan
| | - Momoko Ise
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University , Kumamoto, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology, National Defense Medical College , Tokorozawa, Japan
| | - Eiji Yumoto
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University , Kumamoto, Japan
| | - Ryosei Minoda
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University , Kumamoto, Japan
| |
Collapse
|
16
|
Fang Y, Xue J, Ke L, Liu Y, Shi K. Polymeric lipid vesicles with pH-responsive turning on-off membrane for programed delivery of insulin in GI tract. Drug Deliv 2016; 23:3582-3593. [PMID: 27685178 DOI: 10.1080/10717544.2016.1212440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A kind of polymeric lipid vesicles (PLVs) with pH-responsive turning on-off membrane for programed delivery of insulin in gastrointestinal (GI) tract was developed, which was self-assembled from the grafted amphipathic polymer of N-tocopheryl-N'-succinyl-ɛ-poly-l-lysine (TP/SC-g-PLL). By controlling the grafting ratio of hydrophobic alkane and ionizable carboxyl branches, the permeability of membrane was adjustable and thus allowing insulin release in a GI-pH dependent manner. The effects of grafting degree of substitution (DS) on the pH-responsive behavior of the formed vesicles were confirmed by critical aggregation concentration determination, morphology and size characterization. Their transepithelial permeability across the GI tract was proved by both confocal visualization in vitro model of Caco-2 cellular monolayer and in vivo hypoglycemic study in diabetic rats. Accordingly, the work described here indicated that the self-assembled PLVs could be a promising candidate for improving the GI delivery of hydrophilic biomacromolecule agents.
Collapse
Affiliation(s)
- Yan Fang
- a Department of Pharmaceutics , School of Pharmaceutical Science, Shenyang Pharmaceutical University , Shenyang , China
| | - Jianxiu Xue
- a Department of Pharmaceutics , School of Pharmaceutical Science, Shenyang Pharmaceutical University , Shenyang , China
| | - Liyuan Ke
- a Department of Pharmaceutics , School of Pharmaceutical Science, Shenyang Pharmaceutical University , Shenyang , China
| | - Yang Liu
- a Department of Pharmaceutics , School of Pharmaceutical Science, Shenyang Pharmaceutical University , Shenyang , China
| | - Kai Shi
- a Department of Pharmaceutics , School of Pharmaceutical Science, Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
17
|
Kawashima R, Uchida M, Yamaki T, Ohtake K, Hatanaka T, Uchida H, Ueda H, Kobayashi J, Morimoto Y, Natsume H. Development of a Transnasal Delivery System for Recombinant Human Growth Hormone (rhGH): Effects of the Concentration and Molecular Weight of Poly-L-arginine on the Nasal Absorption of rhGH in Rats. Biol Pharm Bull 2015; 39:329-35. [PMID: 26725528 DOI: 10.1248/bpb.b15-00657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel system for delivering recombinant human growth hormone (rhGH) that is noninvasive and has a simple method of administration is strongly desired to improve the compliance of children. The aim of this study was to investigate the potential for the intranasal (i.n.) co-administration of rhGH with poly-L-arginine (PLA) as a novel delivery system by evaluating the effects of the concentration and molecular weight of PLA on the nasal absorption of rhGH. The influence of the formation of insoluble aggregates and a soluble complex in the dosage formulation on nasal rhGH absorption was also evaluated by size-exclusion chromatography and ultrafiltration. PLA enhanced the nasal absorption of rhGH at each concentration and molecular weight examined. Nasal rhGH absorption increased dramatically when the PLA concentration was 1.0 % (w/v) due to the improved solubility of rhGH in the formulation. A delay in rhGH absorption was observed when the molecular weight of PLA was increased. This appeared to be because the increase in molecular weight caused the formation of a soluble complex. It seems that the PLA concentration affects the absorption-enhancing effect on rhGH, while the molecular weight of PLA affects the time when the maximum plasma rhGH concentration was reached (Tmax) of rhGH after i.n. administration, mainly because of the interactions among rhGH, PLA, and additives. Therefore, the transnasal rhGH delivery system using PLA is considered to be a promising alternative to subcutaneous (s.c.) injection if these interactions are sufficiently controlled.
Collapse
Affiliation(s)
- Ryo Kawashima
- Faculty of Pharmaceutical Sciences, Josai University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Clède S, Delsuc N, Laugel C, Lambert F, Sandt C, Baillet-Guffroy A, Policar C. An easy-to-detect nona-arginine peptide for epidermal targeting. Chem Commun (Camb) 2015; 51:2687-9. [DOI: 10.1039/c4cc08737b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nona-arginine peptide conjugated with a Re-tricarbonyl IR and fluorescent probe (SCoMPI) accumulates at the epidermis without reaching the dermis.
Collapse
Affiliation(s)
- Sylvain Clède
- Ecole Normale Supérieure-PSL Research University
- Département de Chimie
- Sorbonne Universités – UPMC Univ Paris 06
- UMR 7203 CNRS-ENS-UPMC LBM
- 75005 Paris
| | - Nicolas Delsuc
- Ecole Normale Supérieure-PSL Research University
- Département de Chimie
- Sorbonne Universités – UPMC Univ Paris 06
- UMR 7203 CNRS-ENS-UPMC LBM
- 75005 Paris
| | - Cécile Laugel
- Laboratory of Analytical Chemistry
- Analytical Chemistry Group of Paris-Sud (GCAPS-EA 4041)
- Faculty of Pharmacy
- University Paris-Sud
- 92296 Chatenay-Malabry
| | - François Lambert
- Ecole Normale Supérieure-PSL Research University
- Département de Chimie
- Sorbonne Universités – UPMC Univ Paris 06
- UMR 7203 CNRS-ENS-UPMC LBM
- 75005 Paris
| | - Christophe Sandt
- Smis beamline
- Synchrotron SOLEIL Saint-Aubin
- Gif-sur-Yvette Cedex
- France
| | - Arlette Baillet-Guffroy
- Laboratory of Analytical Chemistry
- Analytical Chemistry Group of Paris-Sud (GCAPS-EA 4041)
- Faculty of Pharmacy
- University Paris-Sud
- 92296 Chatenay-Malabry
| | - Clotilde Policar
- Ecole Normale Supérieure-PSL Research University
- Département de Chimie
- Sorbonne Universités – UPMC Univ Paris 06
- UMR 7203 CNRS-ENS-UPMC LBM
- 75005 Paris
| |
Collapse
|
19
|
Do N, Weindl G, Fleige E, Salwiczek M, Koksch B, Haag R, Schäfer-Korting M. Core-multishell nanotransporters enhance skin penetration of the cell-penetrating peptide low molecular weight protamine. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nhung Do
- Institute of Pharmacy (Pharmacology and Toxicology); Freie Universität Berlin; 14195 Berlin Germany
| | - Günther Weindl
- Institute of Pharmacy (Pharmacology and Toxicology); Freie Universität Berlin; 14195 Berlin Germany
| | - Emanuel Fleige
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; 14195 Berlin Germany
| | - Mario Salwiczek
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; 14195 Berlin Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; 14195 Berlin Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; 14195 Berlin Germany
| | - Monika Schäfer-Korting
- Institute of Pharmacy (Pharmacology and Toxicology); Freie Universität Berlin; 14195 Berlin Germany
| |
Collapse
|
20
|
Bae IH, Park JW, Kim DY. Enhanced regenerative healing efficacy of a highly skin-permeable growth factor nanocomplex in a full-thickness excisional mouse wound model. Int J Nanomedicine 2014; 9:4551-67. [PMID: 25288883 PMCID: PMC4184407 DOI: 10.2147/ijn.s68399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Exogenous administration of growth factors has potential benefits in wound healing; however, limited percutaneous absorption, inconsistent efficacy, and the need for high doses have hampered successful clinical use. To overcome these restrictions, we focused on the development of a topical formulation composed of highly skin-permeable multimeric nanocomplex of growth factors. In the present study, we fused low-molecular-weight protamine (LMWP) with epidermal growth factor (EGF), insulin-like growth factor 1 (IGF-I), and platelet-derived growth factor A ligand (PDGF-A) (producing recombinant [r]LMWP-EGF, rLMWP-IGF-I, and rLMWP-PDGF-A, respectively) via genetic modification. Then, we used in vitro cell proliferation studies to assess the biological activity and the benefits of the combination. The LMWP-conjugated growth factors were complexed with low-molecular-weight heparin (LMWH) and formulated with Poloxamer 188 as a delivery vehicle. After confirming the enhanced skin permeability, in vivo studies were performed to assess whether the LMWP-conjugated growth factor nanocomplex formulations accelerated the healing of full-thickness wounds in mice. The LMWP-conjugated growth factors were biologically equivalent to their native forms, and their combination induced greater fibroblast proliferation. rLMWP-EGF showed significantly enhanced permeability and cumulative permeation, and the rates for rLMWP-IGF-I and rLMWP-PDGF-A, across excised mouse skin, were 124% and 164% higher, respectively, than for the native forms. The LMWP-fused growth factors resulted in formation of nanocomplexes (23.51±1.12 nm in diameter) in combination with LMWH. Topical delivery of growth factors fused with LMWP accelerated wound re-epithelialization significantly, accompanied by the formation of healthy granulation tissue within 9 days compared with a free–growth factor complex or vehicle. Thus, the LMWP-conjugated growth factor nanocomplex can induce rapid, comprehensive healing and may be a candidate wound-healing therapeutic.
Collapse
Affiliation(s)
- Il-Hong Bae
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea
| | - Dae-Yong Kim
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Kitaoka M, Imamura K, Hirakawa Y, Tahara Y, Kamiya N, Goto M. Needle-free immunization using a solid-in-oil nanodispersion enhanced by a skin-permeable oligoarginine peptide. Int J Pharm 2013. [DOI: 10.1016/j.ijpharm.2013.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Lee JH, Bae IH, Choi JK, Park JW. Evaluation of a Highly Skin Permeable Low-Molecular-Weight Protamine Conjugated Epidermal Growth Factor for Novel Burn Wound Healing Therapy. J Pharm Sci 2013; 102:4109-20. [DOI: 10.1002/jps.23725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 11/10/2022]
|
23
|
Chen Y, Wang M, Fang L. Biomaterials as novel penetration enhancers for transdermal and dermal drug delivery systems. Drug Deliv 2013; 20:199-209. [DOI: 10.3109/10717544.2013.801533] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
The effect of epidermal growth factor (EGF) conjugated with low-molecular-weight protamine (LMWP) on wound healing of the skin. Biomaterials 2012; 33:8579-90. [DOI: 10.1016/j.biomaterials.2012.07.061] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/28/2012] [Indexed: 02/03/2023]
|
25
|
Nasrollahi SA, Taghibiglou C, Azizi E, Farboud ES. Cell-penetrating peptides as a novel transdermal drug delivery system. Chem Biol Drug Des 2012; 80:639-46. [PMID: 22846609 DOI: 10.1111/cbdd.12008] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the last decade, almost one-third of the newly discovered drugs approved by the US FDA were biomolecules and biologics. Effective delivery of therapeutic biomolecules to their target is a challenging issue. Innovations in drug delivery systems have improved the efficiency of many of new biopharmaceuticals. Designing of novel transdermal delivery systems has been one of the most important pharmaceutical innovations, which offers a number of advantages. The cell-penetrating peptides have been increasingly used to mediate delivery of bimolecular cargoes such as small molecules, small interfering RNA nucleotides, drug-loaded nanoparticles, proteins, and peptides, both in vitro and in vivo, without using any receptors and without causing any significant membrane damage. Among several different drug delivery routes, application of cell-penetrating peptides in the topical and transdermal delivery systems has recently garnered tremendous attention in both cosmeceutical and pharmaceutical research and industries. In this review, we discuss history of cell-penetrating peptides, cell-penetrating peptide/cargo complex formation, and their mechanisms of cell and skin transduction.
Collapse
Affiliation(s)
- Saman A Nasrollahi
- Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
26
|
Reichl S, Becker K. Cultivation of RPMI 2650 cells as an in-vitro model for human transmucosal nasal drug absorption studies: optimization of selected culture conditions. ACTA ACUST UNITED AC 2012; 64:1621-30. [PMID: 23058049 DOI: 10.1111/j.2042-7158.2012.01540.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES The kinetics of drug absorption for nasally administered drugs are often studied using excised mucosal tissue. To avoid the disadvantages of animal experiments, cellular in-vitro models have been established. This study describes the optimization of culture conditions for a model based on the RPMI 2650 cell line, and an evaluation of this model's value for drug absorption studies. METHODS The cells were cultured in two serum-free media, serum-reduced variants or minimum essential medium (MEM) containing 5-20% serum. Cell seeding efficiency and proliferation behavior were evaluated in addition to viability and attachment following cryopreservation and thawing. Cells were cultured on different filter inserts for varying cultivation times. The epithelial barrier properties were determined by measuring transepithelial electrical resistance (TEER). Permeability was assessed using marker substances. KEY FINDINGS Serum supplementation of medium was necessary for cultivation, whereas the serum concentration showed little impact on proliferation and attachment following cryopreservation. A pronounced dependence of TEER on medium and filter material was observed. An optimized model cultured with MEM containing 10% serum on polyethylene terephthalate exhibited permeability that was similar to excised nasal mucosa. CONCLUSIONS These data indicate that this model could be an appropriate alternative to excised mucosa for the in-vitro evaluation of nasal drug absorption.
Collapse
Affiliation(s)
- Stephan Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany.
| | | |
Collapse
|
27
|
Tahara Y, Honda S, Kamiya N, Goto M. Transdermal delivery of insulin using a solid-in-oil nanodispersion enhanced by arginine-rich peptides. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20059g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Liu Q, Shen Y, Chen J, Gao X, Feng C, Wang L, Zhang Q, Jiang X. Nose-to-brain transport pathways of wheat germ agglutinin conjugated PEG-PLA nanoparticles. Pharm Res 2011; 29:546-58. [PMID: 22167350 DOI: 10.1007/s11095-011-0641-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 12/04/2011] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the possible pathways for transport of wheat germ agglutinin conjugated PEG-PLA nanoparticles (WGA-NP) into the brain after nasal administration. METHODS The nose-to-brain pathways were investigated using WGA-NP containing 6-coumarin (as a fluorescent marker) and (125)I-labeled WGA-NP. Ex vivo imaging analysis was also employed to visualize the transport process. RESULTS Nasal administration of WGA-NP to rats resulted in transcellular absorption across the olfactory epithelium and transfer to the olfactory bulb within 5 min. After entering the lamina propria, a proportion of WGA-NP were transferred from the olfactory nerve bundles and their surrounding connective tissue to the olfactory bulb. The trigeminal nerves also contributed to WGA-NP brain transfer, especially to WGA-NP distribution in the caudal brain areas. However, cerebrospinal fluid pathway may have little contribution to the process of transferring WGA-NP into the central nervous system (CNS) after intranasal administration. CONCLUSIONS These results demonstrated that intranasally administered WGA-NP reach the CNS via olfactory pathway and trigeminal nerve pathway, and extracellular transport along these nerves is the most possible mechanism.
Collapse
Affiliation(s)
- Qingfeng Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Room 604, Shanghai, 201203, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Seki T, Fukushi N, Maru H, Kimura S, Chono S, Egawa Y, Morimoto K, Ueda H, Morimoto Y. [Effects of sperminated pullulans on the pulmonary absorption of insulin]. YAKUGAKU ZASSHI 2011; 131:307-14. [PMID: 21297376 DOI: 10.1248/yakushi.131.307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sperminated pullulans (SP) having different molecular weights (MWs) were prepared, and the enhancing effect on the pulmonary absorption of insulin in rats was examined. SP acted as enhancers of insulin absorption when a 0.1% solution was applied with insulin simultaneously and their enhancing effects depended on the MW of the SP; the same solutions exhibited low toxicity in the in vivo LDH leaching test. In the in vitro experiments using Calu-3 cells, tight junction-opening effects and a toxic effect of SP in the MTT assay were observed at lower concentrations compared with the in vivo experiments. A mucus layer might interfere with the interaction between SP and the cell surface and might suppress both these effects and toxicity. SP having a high MW will be useful for preparing safe and efficient formulations of peptide and protein drugs. The change in the localization of the tight junction proteins may be related to the permeation-enhancing mechanism of SP.
Collapse
|
30
|
Seki T. [Enhancement of insulin absorption through mucosal membranes using cationic polymers]. YAKUGAKU ZASSHI 2010; 130:1115-21. [PMID: 20823668 DOI: 10.1248/yakushi.130.1115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cationic polymers (e.g., cationated gelatins, cationated pullulans and poly-L-arginines) have potential to promote transmucosal delivery of peptide and protein drugs without producing any toxic effects on epithelial cells. These cationic polymers could interact with the mucosal membranes and increase the number of pathways for water-soluble macromolecules in the tight junctions. In the case of insulin having negative charges in neutral solutions, interaction between the cationic polymers and insulin is also important to promote suitable delivery. An appropriate interaction can help insulin to access to cell surface, but too strong interaction suppresses insulin absorption. When the absorption-enhancing effects of sperminated pullulans and gelatin having different numbers of amino groups on the pulmonary absorption of insulin in rats were evaluated, their enhancing effects correlated with the amino group content. Cationic polymers having suitable charge density will be useful for pulmonary delivery systems of insulin.
Collapse
Affiliation(s)
- Toshinobu Seki
- Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan.
| |
Collapse
|
31
|
Selg E, Acevedo F, Nybom R, Blomgren B, Ryrfeldt Å, Gerde P. Delivering Horseradish Peroxidase as a Respirable Powder to the Isolated, Perfused, and Ventilated Lung of the Rat: The Pulmonary Disposition of an Inhaled Model Biopharmaceutical. J Aerosol Med Pulm Drug Deliv 2010; 23:273-84. [DOI: 10.1089/jamp.2009.0790] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ewa Selg
- Inhalation Sciences Sweden AB, Stockholm, Sweden
| | | | - Rolf Nybom
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bo Blomgren
- Safety Assessment, AstraZeneca R&D, Södertälje, Sweden
| | - Åke Ryrfeldt
- Division of Physiology, The National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Gerde
- Inhalation Sciences Sweden AB, Stockholm, Sweden
- Division of Physiology, The National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Missel P, Chastain J, Mitra A, Kompella U, Kansara V, Duvvuri S, Amrite A, Cheruvu N. In vitro transport and partitioning of AL-4940, active metabolite of angiostatic agent anecortave acetate, in ocular tissues of the posterior segment. J Ocul Pharmacol Ther 2010; 26:137-46. [PMID: 20415622 DOI: 10.1089/jop.2009.0132] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate partitioning into and transport across posterior segment tissues (sclera, retinal pigment epithelium (RPE)-choroid) of AL-4940, the active metabolite of angiostatic cortisene anecortave acetate (AL-3789). METHODS Transport of [(14)C]-AL-4940 was measured through RPE-choroid-sclera (RCS) and sclera, excised from Dutch Belted pigmented rabbits' eyes, in the directions of scleral to vitreal (S-->V) and vitreal to scleral (V-->S) for 3 h at 37 degrees C using Ussing chambers. Tissue integrity was monitored by transepithelial electrical resistance (TEER), potential difference (PD), and biochemical assay (LDH). Partitioning in RPE-choroid and sclera was determined separately for both [(14)C]-AL-4940 and [(14)C]-AL-3789. Mathematical analysis for bilaminate membranes used partitioning and transport data to derive diffusion coefficients for 2 tissue layers sclera and RPE-choroid. RESULTS Partitioning of drug in tissue was comparable for both [(14)C]-AL-4940 and [(14)C]-AL-3789. Partition coefficients of drug in tissue were 2.2 for sclera and about 4 for RPE-choroid. Permeability through sclera alone was about 3 x 10(-5) cm/s and about 1 x 10(-5) cm/s through the RCS tissue, irrespective of the direction of transport (S-->V) or (V-->S). Results from bioelectrical and biochemical evaluation of tissue with modified LDH assay provided evidence that the RCS tissue preparation remained viable during the period of transport study. CONCLUSIONS The thin RPE-choroid layer contributes significantly to resistance to drug transport, and diffusivity in this layer is 10 times less than in sclera. This experimental scheme is proposed as an important component for the development of a general ocular physiologically based pharmacokinetic model.
Collapse
Affiliation(s)
- Paul Missel
- Alcon Research, Ltd., Drug Delivery, R2-45, 6201 South Freeway, Fort Worth, TX 76134, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Chow AWM, Liang JFT, Wong JSC, Fu Y, Tang NLS, Ko WH. Polarized secretion of interleukin (IL)-6 and IL-8 by human airway epithelia 16HBE14o- cells in response to cationic polypeptide challenge. PLoS One 2010; 5:e12091. [PMID: 20711426 PMCID: PMC2920803 DOI: 10.1371/journal.pone.0012091] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 07/11/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The airway epithelium participates in asthmatic inflammation in many ways. Target cells of the epithelium can respond to a variety of inflammatory mediators and cytokines. Damage to the surface epithelium occurs following the secretion of eosinophil-derived, highly toxic cationic proteins. Moreover, the surface epithelium itself is responsible for the synthesis and release of cytokines that cause the selective recruitment, retention, and accumulation of various inflammatory cells. To mimic the damage seen during asthmatic inflammation, the bronchial epithelium can be challenged with highly charged cationic polypeptides such as poly-L-arginine. METHODOLOGY/PRINCIPAL FINDINGS In this study, human bronchial epithelial cells, 16HBE14o- cells, were "chemically injured" by exposing them to poly-l-arginine as a surrogate of the eosinophil cationic protein. Cytokine antibody array data showed that seven inflammatory mediators were elevated out of the 40 tested, including marked elevation in interleukin (IL)-6 and IL-8 secretion. IL-6 and IL-8 mRNA expression levels were elevated as measured with real-time PCR. Cell culture supernatants from apical and basolateral compartments were collected, and the IL-6 and IL-8 production was quantified with ELISA. IL-6 and IL-8 secretion by 16HBE14o- epithelia into the apical compartment was significantly higher than that from the basolateral compartment. Using specific inhibitors, the production of IL-6 and IL-8 was found to be dependent on p38 MAPK, ERK1/2 MAPK, and NF-kappaB pathways. CONCLUSIONS/SIGNIFICANCE The results clearly demonstrate that damage to the bronchial epithelia by poly-L-arginine stimulates polarized IL-6 and IL-8 secretion. This apically directed secretion of cytokines may play an important role in orchestrating epithelial cell responses to inflammation.
Collapse
Affiliation(s)
- Alison Wai-ming Chow
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Jocelyn Feng-ting Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Janice Siu-chong Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Yan Fu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Nelson Leung-sang Tang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
- KIZ/CUHK Joint Laboratory of Bioresource and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Wing-hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
- KIZ/CUHK Joint Laboratory of Bioresource and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
- * E-mail:
| |
Collapse
|
34
|
Yu N, Xun Y, Jin D, Yang H, Hang T, Cui H. Effect of sperminated pullulans on drug permeation through isolated rabbit cornea and determination of ocular irritation. J Int Med Res 2010; 38:526-35. [PMID: 20515566 DOI: 10.1177/147323001003800215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the effect of two sperminated pullulans (SP) with a different number of amino groups (SP-L, amino group content 0.124 mmol/g polymer; and SP-H, amino group content 0.578 mmol/g polymer) on the permeation of drugs through isolated rabbit corneas. Determination of corneal hydration levels and Draize eye tests were performed to assess the safety of SP both in vitro and in vivo. For 0.2% (w/v) SP-L and 0.2% (w/v) SP-H, the enhancement ratios (ERs) with dexamethasone of 1.34 and 1.42, respectively, were not statistically significant. For ofloxacin, tobramycin and sodium fluorescein, the ERs with 0.2% SP-L were 1.37, 2.02 and 2.12, respectively, and with 0.2% SP-H the ERs were 1.84, 4.69 and 6.87, respectively; these ERs were all statistically significant. Enhancement increased with increasing amino group content of the SP. The improved transcorneal drug absorption via the paracellular route indicated opening of the tight junctions in the corneal epithelium. Irritation tests indicated that 0.2% SP-L and 0.2% SP-H did not damage the corneal tissues.
Collapse
Affiliation(s)
- N Yu
- Department of Ophthalmology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
35
|
Vetter A, Martien R, Bernkop-Schnürch A. Thiolated polycarbophil as an adjuvant for permeation enhancement in nasal delivery of antisense oligonucleotides. J Pharm Sci 2010; 99:1427-39. [PMID: 19708062 DOI: 10.1002/jps.21887] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to investigate the effect of thiolated polycarbophil as an adjuvant to enhance the permeation and improve the stability of a phosphorothioate antisense oligonucleotide (PTO-ODN) on the nasal mucosa. Polycarbophil-cysteine (PCP-Cys) was synthesized by the covalent attachment of L-cysteine to the polymeric backbone. Cytotoxicity tests were examined on human nasal epithelial cells from surgery of nasal polyps confirmed by histological studies. Deoxyribonuclease I activity in respiratory region of the porcine nasal cavity was analyzed by an enzymatic assay. The enzymatic degradation of PTO-ODNs on freshly excised porcine nasal mucosa was analyzed and protection of PCP-cysteine toward DNase I degradation was evaluated. Permeation studies were performed in Ussing-type diffusion chambers. PCP-Cys/GSH did not arise a remarkable mortal effect. Porcine respiratory mucosa was shown to possess nuclease activity corresponding to 0.69 Kunitz units/mL. PTO-ODNs were degraded by incubation with nasal mucosa. In the presence of 0.45% thiolated polycarbophil and 0.5% glutathione (GSH), this degradation process could be lowered. In the presence of thiolated polycarbophil and GSH the uptake of PTO-ODNs from the nasal mucosa was 1.7-fold improved. According to these results thiolated polycarbophil/GSH might be a promising excipient for nasal administration of PTO-ODNs.
Collapse
Affiliation(s)
- A Vetter
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innrain 52, Josef Möller Haus, 6020 Innsbruck, Austria
| | | | | |
Collapse
|
36
|
Kansara V, Mitra AK. Evaluation of anEx VivoModel Implication for Carrier-Mediated Retinal Drug Delivery. Curr Eye Res 2009; 31:415-26. [PMID: 16714233 DOI: 10.1080/02713680600646890] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the implication of an ex vivo model for carrier-mediated retinal drug delivery using an Ussing chamber system. METHODS Dutch Belted Pigmented rabbits weighing 2-2.5 kg were used in these studies. Excised posterior segment tissues (RPE-choroid-sclera and sclera), mounted on the Ussing chamber, were used as an ex vivo model. Transport studies were carried out across sclera and RPE-choroid-sclera (RCS) tissue preparations in the sclera to retina (S --> R) and retina to sclera (R --> S) directions for 3 hr at 37 degrees C. The model was validated by permeability studies with paracellular and transcellular markers ([(3)H]mannitol and [(14)C]diazepam, respectively), tissue viability studies (bioelectrical and biochemical assays), and tissue histology and electron microscopy studies. Functional presence of a carrier-mediated transport system for folic acid (folate receptor alpha) was investigated on the basolateral side of the rabbit retina. RESULTS Results from bioelectrical, biochemical, and histological evaluation of tissue provide evidence that the RCS tissue preparation remains viable during the period of transport study. Permeability values of [(3)H]mannitol across sclera were 4.18 +/- 1.09 x 10(- 5) cm/s (R --> S) and 4.11 +/- 1.09 x 10(- 5) cm/s (S --> R) and across RCS were 1.77 +/- 0.31 x 10(- 5) cm/s (S --> R) and 1.60 +/- 0.19 x 10(- 5) cm/s (R --> S). Permeability values of [(14)C]diazepam across sclera were 2.37 +/- 0.38 x 10(- 5) cm/s (R --> S) and 2.70 +/- 0.70 x 10(- 5) cm/s (S --> R) and across RCS were 3.12 +/- 0.12 x 10(- 5) cm/s (R --> S) and 2.77 +/- 0.25 x 10(- 5)cm/s (S --> R). The rate of [(3)H]folic acid transport across RCS was found to be significantly higher in the S -->R direction (16.34 +/- 0.94 fmoles min(-1) cm(-2)) as compared with R --> S direction (9.38 +/- 1.44 fmoles min(-1) cm(-2)) and nearly 10-fold higher across sclera as compared with RCS in both directions. Transport of [(3)H]folic acid was found to be pH and temperature dependent and was inhibited by 44.5%, 35.1%, and 50.3% in the presence of unlabeled folic acid, 5-methyltetrahydrofolate (MTF), and Methotrexate (MTX). CONCLUSIONS The RCS tissue preparation mounted on the Ussing chamber system, an ex vivo model, can be a useful tool for identification and characterization of carrier-mediated systems present on RPE (a major barrier for retinal drug delivery) and to study carrier-mediated retinal drug delivery via prodrug derivatization.
Collapse
Affiliation(s)
- Viral Kansara
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, MO 64112, USA
| | | |
Collapse
|
37
|
Application of the Renkin function to characterize paracellular pathways in the nasal absorption of FITC-dextrans in rats. J Drug Deliv Sci Technol 2009. [DOI: 10.1016/s1773-2247(09)50068-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Sakudo A, Baba K, Tsukamoto M, Sugimoto A, Okada T, Kobayashi T, Kawashita N, Takagi T, Ikuta K. Anionic polymer, poly(methyl vinyl ether–maleic anhydride)-coated beads-based capture of human influenza A and B virus. Bioorg Med Chem 2009; 17:752-7. [DOI: 10.1016/j.bmc.2008.11.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/14/2008] [Accepted: 11/15/2008] [Indexed: 10/21/2022]
|
39
|
Di Colo G, Zambito Y, Zaino C. Polymeric Enhancers of Mucosal Epithelia Permeability: Synthesis, Transepithelial Penetration-Enhancing Properties, Mechanism of Action, Safety Issues. J Pharm Sci 2008; 97:1652-80. [PMID: 17828745 DOI: 10.1002/jps.21043] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transmucosal drug administration across nasal, buccal, and ocular mucosae is noninvasive, eliminates hepatic first-pass metabolism and harsh environmental conditions, allows rapid onset, and further, mucosal surfaces are readily accessible. Generally, however, hydrophilic drugs, such as peptides and proteins, are poorly permeable across the epithelium, which results in insufficient bioavailability. Therefore, reversible modifications of epithelial barrier structure by permeation enhancers are required. Low molecular weight enhancers generally have physicochemical characteristics favoring their own absorption, whereas polymeric enhancers are not absorbed, and this minimizes the risk of systemic toxicity. The above considerations have warranted the present survey of the studies on polymeric transmucosal penetration-enhancers that have appeared in the literature during the last decade. Studies on intestinal permeation enhancers are also reviewed as they give information on the mechanism of action and safety of polymers. The synthesis and characterization of polymers, their effectiveness in enhancing the absorption of different drugs across different epithelium types, their mechanism of action and structure-efficacy relationship, and the relevant safety issues are reviewed. The active polymers are classified into: polycations (chitosan and its quaternary ammonium derivatives, poly-L-arginine (poly-L-Arg), aminated gelatin), polyanions (N-carboxymethyl chitosan, poly(acrylic acid)), and thiolated polymers (carboxymethyl cellulose-cysteine, polycarbophil (PCP)-cysteine, chitosan-thiobutylamidine, chitosan-thioglycolic acid, chitosan-glutathione conjugates).
Collapse
Affiliation(s)
- Giacomo Di Colo
- Department of Bioorganic Chemistry and Biopharmaceutics, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | | | | |
Collapse
|
40
|
Seki T, Fukushi N, Chono S, Morimoto K. Effects of sperminated polymers on the pulmonary absorption of insulin. J Control Release 2008; 125:246-51. [DOI: 10.1016/j.jconrel.2007.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/04/2007] [Accepted: 10/20/2007] [Indexed: 11/24/2022]
|
41
|
Rawat A, Yang T, Hussain A, Ahsan F. Complexation of a Poly-l-Arginine with Low Molecular Weight Heparin Enhances Pulmonary Absorption of the Drug. Pharm Res 2007; 25:936-48. [DOI: 10.1007/s11095-007-9442-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 08/21/2007] [Indexed: 11/29/2022]
|
42
|
Lopes LB, Furnish E, Komalavilas P, Seal BL, Panitch A, Bentley MVLB, Brophy CM. Enhanced skin penetration of P20 phosphopeptide using protein transduction domains. Eur J Pharm Biopharm 2007; 68:441-5. [PMID: 18035527 DOI: 10.1016/j.ejpb.2007.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/26/2007] [Accepted: 09/28/2007] [Indexed: 11/26/2022]
Abstract
Protein transduction domains (PTDs) were recently demonstrated to increase the penetration of the model peptide P20 when the PTD and P20 were covalently attached. Here, we evaluated whether non-covalently linked PTDs were capable of increasing the skin penetration of P20. Two different PTDs were studied: YARA and WLR. Porcine ear skin mounted in a Franz diffusion cell was used to assess the penetration of P20 in the stratum corneum (SC) and viable skin (VS); VS consists of dermis and epidermis without SC. The transdermal delivery of P20 was also assessed. At 1mM, YARA promoted a 2.33-fold increase in the retention of P20 in the SC but did not significantly increase the amount of P20 that reached VS. WLR significantly increased (2.88-fold) the penetration of P20 in VS. Compared to the non-attached form, the covalently linked WLR fragment was two times more effective in promoting the penetration of P20 into VS. None of the PTDs promoted transdermal delivery of P20 at 4h post-application. It was concluded that selected non-covalently linked PTDs can be used as a penetration enhancer, but greater skin penetration efficiency can be achieved by covalently binding the PTD to the therapeutic agent.
Collapse
Affiliation(s)
- Luciana B Lopes
- Center for Metabolic Biology, Arizona State University, Tempe, AZ, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Gao X, Wu B, Zhang Q, Chen J, Zhu J, Zhang W, Rong Z, Chen H, Jiang X. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release 2007; 121:156-67. [PMID: 17628165 DOI: 10.1016/j.jconrel.2007.05.026] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 05/18/2007] [Accepted: 05/22/2007] [Indexed: 01/27/2023]
Abstract
The development of biotech drugs such as peptides and proteins that act in the central nervous system has been significantly impeded by the difficulty of delivering them across the blood-brain barrier. The surface engineering of nanoparticles with lectins opened a novel pathway to the absorption of drugs loaded by biodegradable poly (ethylene glycol)-poly (lactic acid) nanoparticles in the brain following intranasal administration. In the present study, vasoactive intestinal peptide, a neuroprotective peptide, was efficiently incorporated into the poly (ethylene glycol)-poly (lactic acid) nanoparticles modified with wheat germ agglutinin and the biodistribution, brain uptake and neuroprotective effect of the formulation were assessed. The area under the concentration-time curve of intact 125I-vasoactive intestinal peptide in brain of mice following the intranasal administration of 125I-vasoactive intestinal peptide carried by nanoparticles and wheat germ agglutinin-conjugated ones was significantly enlarged by 3.5 approximately 4.7 folds and 5.6 approximately 7.7 folds, respectively, compared with that after intranasal application of 125I-vasoactive intestinal peptide solution. The same improvements in spatial memory in ethylcholine aziridium-treated rats were observed following intranasal administration of 25 microg/kg and 12.5 microg/kg of vasoactive intestinal peptide loaded by unmodified nanoparticles and wheat germ agglutinin-modified nanoparticles, respectively. Distribution profiles of wheat germ agglutinin-conjugated nanoparticles in the nasal cavity presented their higher affinity to the olfactory mucosa than to the respiratory one. Inhibition experiment with specific sugars suggested that the interaction between the nasal mucosa and the wheat germ agglutinin-functionalized nanoparticles were due to the immobilization of carbohydrate-binding pockets on the surface of the nanoparticles. The results clearly indicated wheat germ agglutinin-modified nanoparticles might serve as promising carriers especially for biotech drugs such as peptides and proteins.
Collapse
Affiliation(s)
- Xiaoling Gao
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sugita Y, Takao K, Toyama Y, Shirahata A. Enhancement of intestinal absorption of macromolecules by spermine in rats. Amino Acids 2007; 33:253-60. [PMID: 17653818 DOI: 10.1007/s00726-007-0532-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate the enhancing effect of polyamines on intestinal absorption of fluorescein isothiocyanate-labeled dextran (MW 4400, FD-4) in the in situ loop study and in vivo oral absorption study. Absorption of FD-4 from the jejunum was significantly enhanced by 5 mM spermine without serious membrane damage in the jejunum. An in vivo oral absorption study was also performed, and plasma FD-4 levels increased significantly after co-administration of 30 mM spermine. In the in vitro transport studies with Caco-2 cells, prolonged incubation with spermine resulted in a gradual decrease in transepithelial electrical resistance. This finding suggests that the absorption-enhancing mechanism of spermine partly includes opening the tight junctions of the epithelium via the paracellular route. These results indicate that excess oral ingestion of polyamines may have widespread health effects via the modulation of the intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Y Sugita
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan.
| | | | | | | |
Collapse
|
45
|
Nehéz L, Tingstedt B, Axelsson J, Andersson R. Differently charged polypeptides in the prevention of post-surgical peritoneal adhesions. Scand J Gastroenterol 2007; 42:519-23. [PMID: 17454864 DOI: 10.1080/00365520600988204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Peritoneal adhesions develop after almost all surgical interventions in the abdomen. We have developed an efficient treatment against post-surgical adhesions consisting of a combination of positively charged poly-L-lysine and negatively charged poly-L-glutamate. The aim of the present study was to further develop the concept of applying oppositely charged polypeptides in the prevention of adhesion formation, by evaluating different doses of the peptides, alterations in the way of administration, and also testing alternative components. MATERIAL AND METHODS Eighty-five NMRI mice were divided into six groups. A standardized peritoneal injury model was used. The groups received physiologic sodium chlorine, poly-L-lysine+poly-L-glutamate, low molecular weight poly-L-lysine+poly-L-glutamate, locally administered poly-L-lysine+poly-L-glutamate, in vitro mixed poly-L-lysine+poly-L-glutamate and poly-L-arginine+poly-L-glutamate, respectively. After 7 days, the extent of adhesion formation was determined during relaparotomy and was expressed as the mean percentage of the total wound length. RESULTS A significant decrease (p <0.001) in the peritoneal adhesion rate was detected in all groups, with the exception of the group administered poly-L-arginine. Among those animals that received poly-L-lysine and poly-L-glutamate, the low dose of poly-L-lysine administration resulted in the most pronounced anti-adhesive effect. CONCLUSIONS The most effective polypeptide combination was poly-L-lysine and poly-L-glutamate, also showing effectiveness when used at low doses and by local application. The differences in adhesion prevention and the possible underlying mechanisms are discussed and the key role of poly-L-lysine is elucidated.
Collapse
Affiliation(s)
- László Nehéz
- Department of Surgery, Lund University Hospital, SE-221 85 Lund, Sweden
| | | | | | | |
Collapse
|
46
|
Seki T, Kanbayashi H, Chono S, Tabata Y, Morimoto K. Effects of a sperminated gelatin on the nasal absorption of insulin. Int J Pharm 2007; 338:213-8. [PMID: 17346909 DOI: 10.1016/j.ijpharm.2007.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/05/2007] [Accepted: 02/03/2007] [Indexed: 11/23/2022]
Abstract
The effects of a sperminated gelatin (SG), which was prepared as a candidate absorption enhancer by the addition of spermine to gelatin, on the nasal absorption of insulin, were examined in rats. The AUC of immuno-reactive insulin levels in the plasma after nasal administration of insulin were increased 5.3-fold by addition of 0.2% SG, and the plasma glucose levels fell in a manner dependent on the insulin levels. In Calu-3 cell monolayer permeation experiments, SG showed significant enhancing effects on 5(6)-carboxyfluorescein (CF), FITC-dextran (MW 4400, FD4) and insulin. Evaluation of the tight junctions in the Calu-3 cell monolayers based on the Renkin molecular sieving function suggests that the pore occupancy/length ratio of the permeation pathways for water-soluble molecules in the tight junctions increases, while the equivalent cylindrical pore radius is not changed by SG treatment. SG may transform the true tight junctions, which act as a barrier for water-soluble molecules, into pathways for CF and FD4 to increase their number. SG is a good candidate for a safe absorption enhancer to produce a slight modification of the permeability of the paracellular pathway of mucosal membranes, while retaining the sieving property of the epithelial membranes.
Collapse
Affiliation(s)
- Toshinobu Seki
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan.
| | | | | | | | | |
Collapse
|
47
|
Nemoto E, Ueda H, Akimoto M, Natsume H, Morimoto Y. Ability of Poly- L-arginine to Enhance Drug Absorption into Aqueous Humor and Vitreous Body after Instillation in Rabbits. Biol Pharm Bull 2007; 30:1768-72. [PMID: 17827737 DOI: 10.1248/bpb.30.1768] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of poly-L-arginine with a molecular weight of 35.5 kDa (PLA) on the ocular absorption of hydrophilic molecules after instillation was examined in rabbits in vivo. FITC-labeled dextran (3.8 kDa, FD-4) and pyridoxamine were used as model hyprophilic molecules for absorption. The potential toxicity of PLA was evaluated by microscopic observation of the cornea, production of TNF-alpha, and the thickness of the corneal epithelia and stroma. The concentration of pyridoxamine and FD-4 in aqueous humor 30 min after a single instillation of a solution of PLA was 29- and 16-fold higher than that without PLA, respectively, but the drug concentrations were not determined in the vitreous body. Repetitive instillation of PLA every 30 min for 150 min achieved 31.1- and 13.3-fold increases in pyridoxamine and FD-4 in aqueous humor, respectively. Furthermore, significant amounts of pyridoxamine and FD-4 were detected in the vitreous body after the repetitive instillation of PLA, even although very little of these drugs was detected in the vitreous body in the control eye without PLA. On the other hand, repetitive instillation of PLA did not induce any alteration of corneal epithelial and stromal thickness, production of TNF-alpha, and disruption of the epithelial and stromal morphologies and neutrophil infiltration. Our findings suggest that PLA may be useful in promoting drug delivery of hydrophilic drugs to the ocular tissues without producing any significant corneal damage and inflammation.
Collapse
Affiliation(s)
- Eiichi Nemoto
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | | | | | | | | |
Collapse
|
48
|
Abstract
New approaches for enhancing intranasal drug delivery based on recent discoveries on the molecular biology of tight junctions (TJ) are significantly improving the bioavailability of 'non-Lipinsky' small molecules, and peptide, protein and oligonucleotide drugs. As knowledge of the structure and function of the TJ has developed, so has the ability to identify mechanism-based TJ modulators using high-throughput molecular biology-based screening methods. The present review focuses on recent developments on the TJ protein complex as a lipid raft-like membrane microdomain, the emerging role of unique endocytic pathways in regulating TJ dynamics, and the utility of techniques such as RNA interference and phage display to study TJ components and identify novel peptides and related molecules that can modulate their function. Experimental and statistical methodologies used for the identification of new classes of TJ modulators are described, which are capable of reversibly opening TJ barriers with broad potential to significantly improve intranasal and, eventually, oral drug delivery. The development of an advanced intranasal formulation for the obesity therapeutic PYY(3-36), the endogenous Y2 receptor agonist is also reviewed.
Collapse
Affiliation(s)
- Paul H Johnson
- Nastech Pharmaceutical Company, Inc., Bothell, WA 98021, USA.
| | | |
Collapse
|
49
|
Yang T, Hussain A, Bai S, Khalil IA, Harashima H, Ahsan F. Positively charged polyethylenimines enhance nasal absorption of the negatively charged drug, low molecular weight heparin. J Control Release 2006; 115:289-97. [PMID: 17023085 PMCID: PMC1847392 DOI: 10.1016/j.jconrel.2006.08.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 08/18/2006] [Accepted: 08/22/2006] [Indexed: 11/19/2022]
Abstract
This study tests the hypothesis that positively charged polyethylenimines (PEIs) enhance nasal absorption of low molecular weight heparin (LMWH) by reducing the negative surface charge of the drug molecule. Physical interactions between PEIs and LMWH were studied by Fourier transform infrared (FTIR) spectroscopy, particle size analysis, conductivity measurements, zeta potential analysis, and azure A assay. The efficacy of PEIs in enhancing nasal absorption of LMWH was studied by administering LMWH formulated with PEI into the nose of anesthetized rats and monitoring drug absorption by measuring plasma anti-factor Xa activity. The metabolic stability of LMWH was evaluated by incubating the drug in rat nasal mucosal homogenates. FTIR spectra of the LMWH-PEI formulation showed a shift in peak position compared to LMWH or PEI alone. Decreases in conductivity, zeta potential and the amount of free LMWH in the PEI-LMWH formulation, as revealed by azure A assay, suggest that PEIs possibly neutralize the negative surface charge of LMWH. The efficacy of PEI in enhancing the bioavailability of nasally administered LMWH can be ranked as PEI-1000 kDa>or=PEI-750 kDa>PEI-25 kDa. When PEI-1000 kDa was used at a concentration of 0.25%, there was a 4-fold increase in both the absolute and relative bioavailabilities of LMWH compared to the control formulation. Overall, these results indicate that polyethylenimines can be used as potential carriers for nasally administered LMWHs.
Collapse
Affiliation(s)
- Tianzhi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX-79106
| | - Alamdar Hussain
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX-79106
| | - Shuhua Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX-79106
| | - Ikramy A. Khalil
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX-79106
- *To whom all correspondence should be addressed: Phone: 806-356-4015 (Ext. 335), Fax: 806-356-4034, E-mail:
| |
Collapse
|
50
|
Seki T, Kanbayashi H, Nagao T, Chono S, Tabata Y, Morimoto K. Effect of cationized gelatins on the paracellular transport of drugs through caco-2 cell monolayers. J Pharm Sci 2006; 95:1393-401. [PMID: 16625653 DOI: 10.1002/jps.20616] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cationized gelatins, candidate absorption enhancers, were prepared by addition of ethylenediamine or spermine to gelatin and the effects of the resulting ethylenediaminated gelatin (EG) and sperminated gelatin (SG) on the paracellular transport of 5(6)-carboxyfluorescein (CF), FITC-dextran-4 (FD4), and insulin through caco-2 cell monolayers were examined. The Renkin function was used for characterization of the paracellular pathway and changes in the pore radius (R) and pore occupancy/length ratio (epsilon/L) calculated from the apparent permeability coefficients (P(app)) of CF and FD4 are discussed. Ethylenediaminetetraacetic acid (EDTA) increased the R of the caco-2 cell monolayer and the P(app) of all compounds examined was markedly increased by the addition of EDTA. On the other hand, EG and SG did not increase R and their enhancing effects were not as strong as those of EDTA. The increase in epsilon/L could be the enhancing mechanism for the cationized gelatins. The number of pathways for water-soluble drugs, such as CF and FD4, in the caco-2 monolayers could be increased by the addition of the cationized gelatins. The ratios of the permeability coefficients of insulin (observed/calculated based on the Renkin function) suggest that insulin undergoes enzymatic degradation during transport which is not inhibited by enhancers.
Collapse
Affiliation(s)
- Toshinobu Seki
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan.
| | | | | | | | | | | |
Collapse
|