1
|
Zhang T, Peruch F, Wirotius AL, Ibarboure E, Rosu F, Schatz C, Garbay B. Unprecedented coupling of natural rubber and ELP: synthesis, characterization and self-assembly properties. Polym Chem 2021. [DOI: 10.1039/d1py00969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing new biomaterials is an active research area owing to their applications in regenerative medicine, tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Tingting Zhang
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Frédéric Peruch
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | | | - Emmanuel Ibarboure
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS & Inserm, IECB, UMS3033, US001, 33607 Pessac, France
| | - Christophe Schatz
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Bertrand Garbay
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| |
Collapse
|
2
|
Erwig MS, Hesse D, Jung RB, Uecker M, Kusch K, Tenzer S, Jahn O, Werner HB. Myelin: Methods for Purification and Proteome Analysis. Methods Mol Biol 2019; 1936:37-63. [PMID: 30820892 DOI: 10.1007/978-1-4939-9072-6_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Molecular characterization of myelin is a prerequisite for understanding the normal structure of the axon/myelin-unit in the healthy nervous system and abnormalities in myelin-related disorders. However, reliable molecular profiles necessitate very pure myelin membranes, in particular when considering the power of highly sensitive "omics"-data acquisition methods. Here, we recapitulate the history and recent applications of myelin purification. We then provide our laboratory protocols for the biochemical isolation of a highly pure myelin-enriched fraction from mouse brains and for its proteomic analysis. We also supply methodological modifications when investigating posttranslational modifications, RNA, or myelin from peripheral nerves. Notably, technical advancements in solubilizing myelin are beneficial for gel-based and gel-free myelin proteome analyses. We conclude this article by exemplifying the exceptional power of label-free proteomics in the mass-spectrometric quantification of myelin proteins.
Collapse
Affiliation(s)
- Michelle S Erwig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Marina Uecker
- Proteomics Group, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Goettingen, Germany.
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany.
| |
Collapse
|
3
|
Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection. ACTA ACUST UNITED AC 2009; 4:111-27. [PMID: 19497142 DOI: 10.1017/s1740925x0900009x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein composition of myelin in the central nervous system (CNS) has changed at the evolutionary transition from fish to tetrapods, when a lipid-associated transmembrane-tetraspan (proteolipid protein, PLP) replaced an adhesion protein of the immunoglobulin superfamily (P0) as the most abundant constituent. Here, we review major steps of proteolipid evolution. Three paralog proteolipids (PLP/DM20/DMalpha, M6B/DMgamma and the neuronal glycoprotein M6A/DMbeta) exist in vertebrates from cartilaginous fish to mammals, and one (M6/CG7540) can be traced in invertebrate bilaterians including the planktonic copepod Calanus finmarchicus that possess a functional myelin equivalent. In fish, DMalpha and DMgamma are coexpressed in oligodendrocytes but are not major myelin components. PLP emerged at the root of tetrapods by the acquisition of an enlarged cytoplasmic loop in the evolutionary older DMalpha/DM20. Transgenic experiments in mice suggest that this loop enhances the incorporation of PLP into myelin. The evolutionary recruitment of PLP as the major myelin protein provided oligodendrocytes with the competence to support long-term axonal integrity. We suggest that the molecular shift from P0 to PLP also correlates with the concentration of adhesive forces at the radial component, and that the new balance between membrane adhesion and dynamics was favorable for CNS myelination.
Collapse
|
4
|
Myelin proteomics: molecular anatomy of an insulating sheath. Mol Neurobiol 2009; 40:55-72. [PMID: 19452287 PMCID: PMC2758371 DOI: 10.1007/s12035-009-8071-2] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 04/14/2009] [Indexed: 12/12/2022]
Abstract
Fast-transmitting vertebrate axons are electrically insulated with multiple layers of nonconductive plasma membrane of glial cell origin, termed myelin. The myelin membrane is dominated by lipids, and its protein composition has historically been viewed to be of very low complexity. In this review, we discuss an updated reference compendium of 342 proteins associated with central nervous system myelin that represents a valuable resource for analyzing myelin biogenesis and white matter homeostasis. Cataloging the myelin proteome has been made possible by technical advances in the separation and mass spectrometric detection of proteins, also referred to as proteomics. This led to the identification of a large number of novel myelin-associated proteins, many of which represent low abundant components involved in catalytic activities, the cytoskeleton, vesicular trafficking, or cell adhesion. By mass spectrometry-based quantification, proteolipid protein and myelin basic protein constitute 17% and 8% of total myelin protein, respectively, suggesting that their abundance was previously overestimated. As the biochemical profile of myelin-associated proteins is highly reproducible, differential proteome analyses can be applied to material isolated from patients or animal models of myelin-related diseases such as multiple sclerosis and leukodystrophies.
Collapse
|
5
|
Rubio V. The Spanish Society of Biochemistry and Molecular Biology, the development of biochemistry in Spain, and IUBMB. IUBMB Life 2008; 60:270-4. [DOI: 10.1002/iub.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Affiliation(s)
- Arnulf H Koeppen
- Neurology Service (127), VA Medical Center, 113 Holland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
7
|
Ghandour MS, Feutz AC, Jalabi W, Taleb O, Bessert D, Cypher M, Carlock L, Skoff RP. Trafficking of PLP/DM20 and cAMP signaling in immortalized jimpy oligodendrocytes. Glia 2002; 40:300-11. [PMID: 12420310 DOI: 10.1002/glia.10122] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The synthesis, transport, and insertion of jimpy proteolipid protein and DM20 were studied in normal (158N) and jimpy (158JP) immortalized oligodendrocyte lines. Four different expression vectors encoding fusion proteins composed of native PLP and DM20 or jimpy PLP or DM20 were linked to enhanced green fluorescent protein (EGFP). All four transfected fusion proteins had similar distributions in the cell bodies and processes of the two cell types. Both normal and jimpy PLP-EGFP and DM20-EGFP were detected in both cell lines as far as 200 microM from the cell body, indicating synthesis and transport of mutated PLP and DM20 toward the plasma membrane. Immunocytochemistry of fixed normal and jimpy cells with the O10 antibody, which recognizes a conformationally sensitive PLP/DM20 epitope, confirmed that normal and jimpy PLP and DM20 were transported to the plasma membrane. Live staining of normal and jimpy cells transiently transfected with the native PLP showed positive staining, indicating PLP was correctly inserted into the membrane of both normal and jimpy oligodendrocytes. However, live staining of normal and jimpy cells transiently transfected with jimpy PLP showed no positive staining, indicating the mutated protein is abnormally inserted into the plasma membrane. Electrophysiological recordings of the resting membrane potential measured in the whole cell mode of the patch-clamp technique showed the absence of a developmentally regulated negative shift in the membrane potential in jimpy cells compared to normal native or immortalized oligodendrocytes. Treatment of 158N cells and native oligodendrocytes with dibutyryl cAMP (dbcAMP) caused morphological and biochemical differentiation, but failed to do so in 158JP cells, suggesting an abnormal signaling pathway in jimpy. The defect in cAMP signaling in jimpy oligodendrocytes was associated with the suppression of increase in mRNA level of the inducible cAMP early repressor (ICER). When the jimpy oligodendrocyte line was transfected with normal PLP or DM20 and exposed to dbcAMP, the cells failed to differentiate. This finding suggests that improper insertion of jimpy protein into the plasma membrane alters the membrane in such a way that certain signaling pathways are permanently altered. The abnormal insertion of jimpy PLP/DM20 into the plasma membrane may be the basis for the lack of cell signaling and abnormal resting potential in jimpy oligodendrocytes.
Collapse
|
8
|
Abstract
Pelizaeus-Merzbacher disease (PMD) can now be defined as an X-linked recessive leukodystrophy that is caused by a mutation in the proteolipid protein (PLP) gene on chromosome Xq22. The most common mutation is gene duplication followed in frequency by missense mutations, insertions, and deletions. The clinical spectrum ranges from severe neonatal cases to relatively benign adult forms and X-linked recessive spastic paraplegia type 2. The lack of PLP is accompanied by deficits in the other myelin proteins of the central nervous system, including myelin basic protein, myelin-associated glycoprotein, and cyclic nucleotide phosphodiesterase. Surprisingly, the total absence of PLP due to gene deletion or a null allele causes a relatively benign form of PMD. Abnormal PLP is thought to impair protein trafficking and to induce apoptosis in oligodendroglia. Immunocytochemistry with specific antibodies reveals the PLP deficiency and insufficient generation of myelin sheaths with the remaining proteins. Both excessive biosynthesis of PLP, as in gene duplications, or conformational change of the protein, as in missense mutations, are detrimental to myelination. Several naturally occurring and transgenic animal models with PLP gene mutations or deletions have contributed to our understanding of dysmyelination in PMD and the general knowledge of myelination and myelin repair.
Collapse
Affiliation(s)
- Arnulf H Koeppen
- Neurology Research Service, Stratton VA Medical Center and Albany Medical College, NY 12208, USA
| | | |
Collapse
|
9
|
Mathisen PM, Kawczak JA, Yu M, Johnson JM, Tuohy VK. Differential DM20 mRNA expression distinguishes two distinct patterns of spontaneous recovery from murine autoimmune encephalomyelitis. J Neurosci Res 2001; 64:542-51. [PMID: 11391709 DOI: 10.1002/jnr.1106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model for multiple sclerosis (MS) mediated by T cells responding to CNS myelin proteins. Immunization of SWXJ mice with the immunodominant p139-151 peptide of myelin proteolipid protein (PLP) results in a relapsing-remitting pattern of EAE characterized by incomplete remyelination during clinical recovery. In the present study we observed two distinct clinical patterns of spontaneous remission during recovery from EAE, viz., sustained remission involving continuous neurologic improvement and aborted remission involving modest transient clinical improvement. We hypothesized that the ability to recover from autoimmune demyelination was directly linked to remyelination events that recapitulated developmental processes. Quantitative immunocytochemistry of CNS tissue showed decreased demyelination in mice undergoing sustained remission compared to mice undergoing aborted remission. Quantitative RT-PCR analysis showed elevated expression of DM20, the developmental isoform of PLP, in CNS tissue from mice undergoing sustained remission compared to mice undergoing aborted recovery. Moreover, DM20 expression was similarly elevated in CNS tissue from mice undergoing sustained recovery from EAE relapse. Our data indicate that expression of the developmental DM20 isoform of PLP is intimately associated with decreased demyelination and sustained clinical recovery from EAE. Thus, DM20 gene expression may provide an appropriate molecular target for promoting CNS remyelination and may serve as a useful marker for predicting clinical outcome and assessing the effectiveness of strategies aimed at promoting CNS tissue repair during autoimmune demyelinating disease.
Collapse
MESH Headings
- Animals
- Biomarkers/analysis
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/physiopathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Gene Expression Regulation/immunology
- Immunohistochemistry
- Mice
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Myelin Proteolipid Protein/genetics
- Myelin Proteolipid Protein/immunology
- Myelin Sheath/immunology
- Myelin Sheath/metabolism
- Myelin Sheath/pathology
- Nerve Fibers, Myelinated/immunology
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/pathology
- Nerve Tissue Proteins
- Predictive Value of Tests
- Prognosis
- Protein Isoforms/genetics
- Protein Isoforms/immunology
- RNA, Messenger/metabolism
- Recovery of Function/physiology
- Remission, Spontaneous
- Time Factors
Collapse
Affiliation(s)
- P M Mathisen
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
10
|
Dimou L, Klugmann M, Werner H, Jung M, Griffiths IR, Nave KA. Dysmyelination in mice and the proteolipid protein gene family. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 468:261-71. [PMID: 10635035 DOI: 10.1007/978-1-4615-4685-6_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- L Dimou
- Zentrum für Molekulare Biologie (ZMBH), University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Kawczak JA, Mathisen PM, Drazba JA, Fuss B, Macklin WB, Tuohy VK. Digitized image analysis reveals diffuse abnormalities in normal-appearing white matter during acute experimental autoimmune encephalomyelitis. J Neurosci Res 1998; 54:364-72. [PMID: 9819141 DOI: 10.1002/(sici)1097-4547(19981101)54:3<364::aid-jnr7>3.0.co;2-#] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Demyelination of the central nervous system is a hallmark of multiple sclerosis and its widely used animal model, experimental autoimmune encephalomyelitis (EAE). Recent studies using magnetic resonance imaging and spectroscopy on multiple sclerosis patients have revealed abnormalities of central nervous system normal-appearing white matter suggesting that micro-demyelination and/or extensive membrane turnover accompanies and perhaps precedes the appearance of manifest inflammatory lesions. In the present study, we induced EAE in SWXJ mice and analyzed digitized images of immunocytochemically stained spinal cord for detection of myelin proteolipid protein (PLP). We found that digitized image analysis is a highly sensitive, objective methodology for measuring the extent of myelin loss during EAE. Our data show that two-thirds of the measured reduction of myelin PLP occurring in EAE spinal cord could be attributed to a loss of myelin in normal-appearing white matter. The marked decrease in detection of PLP was accompanied by a corresponding decrease in PLP mRNA in the central nervous system. Our results indicate that during acute EAE, diffuse myelin abnormalities extend far beyond visibly detectable inflammatory foci and are characterized by a global decrease in the expression of myelin genes and their encoded proteins.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Demyelinating Diseases/immunology
- Demyelinating Diseases/metabolism
- Demyelinating Diseases/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Image Processing, Computer-Assisted
- Immunohistochemistry
- Mice
- Mice, Inbred Strains
- Myelin Proteolipid Protein/analysis
- Myelin Proteolipid Protein/genetics
- Myelin Proteolipid Protein/immunology
- Peptide Fragments/immunology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Spinal Cord/chemistry
- Spinal Cord/pathology
Collapse
Affiliation(s)
- J A Kawczak
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|