1
|
Ludueña RF, Walss-Bass C, Portyanko A, Guo J, Yeh IT. Nuclear βII-Tubulin and its Possible Utility in Cancer Diagnosis, Prognosis and Treatment. Front Cell Dev Biol 2022; 10:870088. [PMID: 35706904 PMCID: PMC9190298 DOI: 10.3389/fcell.2022.870088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules are organelles that usually occur only in the cytosol. Walss et al. (1999) discovered the βII isotype of tubulin, complexed with α, in the nuclei of certain cultured cells, in non-microtubule form. When fluorescently labeled tubulins were microinjected into the cells, only αβII appeared in the nucleus, and only after one cycle of nuclear disassembly and reassembly. It appeared as if αβII does not cross the nuclear envelope but is trapped in the nucleus by the re-forming nuclear envelope in whose reassembly βII may be involved. βII is present in the cytoplasm and nuclei of many tumor cells. With some exceptions, normal tissues that expressed βII rarely had βII in their nuclei. It is possible that βII is involved in nuclear reassembly and then disappears from the nucleus. Ruksha et al. (2019) observed that patients whose colon cancer cells in the invasive front showed no βII had a median survival of about 5.5 years, which was more than halved if they had cytosolic βII and further lessened if they had nuclear βII, suggesting that the presence and location of βII in biopsies could be a useful prognostic indicator and also that βII may be involved in cancer progression. Yeh and Ludueña. (2004) observed that many tumors were surrounded by non-cancerous cells exhibiting cytosolic and nuclear βII, suggesting a signaling pathway that causes βII to be synthesized in nearby cells and localized to their nuclei. βII could be useful in cancer diagnosis, since the presence of βII in non-cancerous cells could indicate a nearby tumor. Investigation of this pathway might reveal novel targets for chemotherapy. Another possibility would be to combine αβII with CRISPR-Cas9. This complex would likely enter the nucleus of a cancer cell and, if guided to the appropriate gene, might destroy the cancer cell or make it less aggressive; possible targets will be discussed here. The possibilities raised here about the utility of βII in cancer diagnosis, prognosis, biology and therapy may repay further investigation.
Collapse
Affiliation(s)
- Richard F Ludueña
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | | | - I-Tien Yeh
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
2
|
Ludueña RF. Possible Roles of Specific Amino Acids in β-Tubulin Isotypes in the Growth and Maintenance of Neurons: Novel Insights From Cephalopod Mollusks. Front Mol Neurosci 2022; 15:838393. [PMID: 35493322 PMCID: PMC9048481 DOI: 10.3389/fnmol.2022.838393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Microtubules, are formed of the protein tubulin, which is a heterodimer of α- and β-tubulin subunits. Both α- and β-tubulin exist as numerous isotypes, differing in amino acid sequence and tissue distribution. Among the vertebrate β isotypes, βIII has a very narrow distribution, being found primarily in neurons and in advanced cancers. The places in the amino acid sequence where βIII differs from the other β isotypes are highly conserved in evolution. βIII appears to be highly resistant to reactive oxygen species and it forms highly dynamic microtubules. The first property would be very useful in neurons, which have high concentrations of free radicals, and the high dynamicity would aid neurite outgrowth. The same properties make βIII useful in cancers. Examination of the amino acid sequences indicates a cysteine cluster at positions 124-129 in βIII (CXXCXC). This occurs in all βIII isotypes but not in βI, βII, or βIV. βIII also lacks the easily oxidized C239. Both features could play roles in free radical resistance. Many aggressive tumors over-express βIII. However, a recent study of breast cancer patients showed that many of them mutated their βI, βII, and βIV at particular places to change the residues to those found at the corresponding sites in βIII; these are all sites that are highly conserved in vertebrate βIII. It is possible that these residues are important, not only in the resistance to free radicals, but also in the high dynamicity of βIII. The cephalopod mollusks are well known to be highly intelligent and can remodel their own brains. Interestingly, several cephalopods contain the cysteine cluster as well as up to 7 of the 17 residues that are highly conserved in vertebrate βIII, but are not found in βI, βII, or βIV. In short, it is possible that we are looking at a case of convergent evolution, that a βIII-like isotype may be required for neuronal growth and function and that a structure-function study of the particular residues conserved between vertebrate βIII and cephalopod tubulin isotypes could greatly increase our understanding of the role of the various tubulin isotypes in neuronal growth and function and could aid in the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
- Richard F. Ludueña
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
3
|
Winter CC, He Z, Jacobi A. Axon Regeneration: A Subcellular Extension in Multiple Dimensions. Cold Spring Harb Perspect Biol 2022; 14:a040923. [PMID: 34518340 PMCID: PMC8886981 DOI: 10.1101/cshperspect.a040923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Axons are a unique cellular structure that allows for the communication between neurons. Axon damage compromises neuronal communications and often leads to functional deficits. Thus, developing strategies that promote effective axon regeneration for functional restoration is highly desirable. One fruitful approach is to dissect the regenerative mechanisms used by some types of neurons in both mammalian and nonmammalian systems that exhibit spontaneous regenerative capacity. Additionally, numerous efforts have been devoted to deciphering the barriers that prevent successful axon regeneration in the most regeneration-refractory system-the adult mammalian central nervous system. As a result, several regeneration-promoting strategies have been developed, but significant limitations remain. This review is aimed to summarize historic progression and current understanding of this exciting yet incomplete endeavor.
Collapse
Affiliation(s)
- Carla C Winter
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Neurology and Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA
- PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Neurology and Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Neurology and Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
4
|
Ruksha K, Mezheyeuski A, Nerovnya A, Bich T, Tur G, Gorgun J, Luduena R, Portyanko A. Over-Expression of βII-Tubulin and Especially Its Localization in Cell Nuclei Correlates with Poorer Outcomes in Colorectal Cancer. Cells 2019; 8:cells8010025. [PMID: 30621030 PMCID: PMC6357106 DOI: 10.3390/cells8010025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 11/16/2022] Open
Abstract
Tubulin is a heterodimer of α and β subunits, both existing as isotypes differing in amino acid sequence encoded by different genes. Specific isotypes of tubulin have associations with cancer that are not well understood. Previous studies found that βII-tubulin is expressed in a number of transformed cells and that this isotype is found in cell nuclei in non-microtubule form. The association of βII expression and its nuclear localization with cancer progression has not previously been addressed. We here used a monoclonal antibody to βII to examine patients with colorectal cancer and found that patients whose tumors over-express βII have a greatly decreased life expectancy which is even shorter in those patients with nuclear βII. Our results suggest that βII-tubulin may facilitate cancer growth and metastasis and, to accomplish this, may not need to be in microtubule form. Furthermore, βII expression and localization could be a useful prognostic marker. We also found that βII appears in the nuclei of otherwise normal cells adjacent to the tumor. It is possible therefore that cancer cells expressing βII influence nearby cells to do the same and to localize βII in their nuclei by an as yet uncharacterized regulatory pathway.
Collapse
Affiliation(s)
- Kseniya Ruksha
- N.N. Alexandrov National Cancer Centre of Belarus, 223040 Minsk, Belarus.
| | - Artur Mezheyeuski
- Department of Pathology, Belarusian State Medical University, 220116 Minsk, Belarus.
| | - Alexander Nerovnya
- Department of Pathology, Belarusian State Medical University, 220116 Minsk, Belarus.
| | - Tatyana Bich
- Department of Pathology, Belarusian State Medical University, 220116 Minsk, Belarus.
| | - Gennady Tur
- Minsk City Clinical Oncologic Dispensary, 220013 Minsk, Belarus.
| | - Julia Gorgun
- Department of Gastroenterology and Nutrition, Belarusian Medical Academy of Post-Graduate Education, 220013 Minsk, Belarus.
| | - Richard Luduena
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| | - Anna Portyanko
- Department of Pathology, Belarusian State Medical University, 220116 Minsk, Belarus.
| |
Collapse
|
5
|
Guo J, Kim HS, Asmis R, Ludueña RF. Interactions of β tubulin isotypes with glutathione in differentiated neuroblastoma cells subject to oxidative stress. Cytoskeleton (Hoboken) 2018; 75:283-289. [PMID: 29663696 DOI: 10.1002/cm.21447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/16/2018] [Accepted: 04/11/2018] [Indexed: 01/23/2023]
Abstract
Microtubules are a major component of the neuronal cytoskeleton. Tubulin, the subunit protein of microtubules, is an α/β heterodimer. Both α and β exist as families of isotypes, whose members are encoded by different genes and have different amino acid sequences. The βII and βIII isotypes are very prominent in the nervous system. Our previous work has suggested that βII may play a role in neuronal differentiation, but the role of βIII in neurons is not well understood. In the work reported here, we examined the roles of the different β-tubulin isotypes in response to glutamate/glycine treatment, and found that both βII and βIII bind to glutathione in the presence of ROS, especially βIII. In contrast, βI did not bind to glutathione. Our results suggest that βII and βIII, but especially βIII, may play an important role in the response of neuronal cells to stress. In view of the high levels of βII and βIII expressed in the nervous system it is conceivable that these tubulin isotypes may use their sulfhydryl groups to scavenge ROS and protect neuronal cells against oxidative stress.
Collapse
Affiliation(s)
- Jiayan Guo
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 72290-3900
| | - Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Reto Asmis
- Clinical Laboratory Science, University of Texas Health Science Center at San Antonio, San Antonio, Texas 72290-3900
| | - Richard F Ludueña
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 72290-3900
| |
Collapse
|
6
|
Abstract
Colchicine, the main alkaloid of the poisonous plant meadow saffron (Colchicum autumnale L.), is a classical drug used for the treatment of gout and familial Mediterranean fever. Although colchicine is not clinically used to treat cancer because of toxicity, it exerts antiproliferative effects through the inhibition of microtubule formation by blocking the cell cycle at the G2/M phase and triggering apoptosis. Colchicine can still be used as a lead compound for the generation of potential anticancer drugs. Thus, numerous analogues of colchicine have been synthesized in the hope of developing novel, useful drugs with more favourable pharmacological profiles. Several colchicine semisynthetics are less toxic than colchicine and research is being carried out on effective, less toxic colchicine semisynthetic formulations with potential drug-delivery strategies directly targeting multiple solid cancers. This review focuses on the anticancer role of some of colchicine-based derivatives and their therapeutic importance.
Collapse
|
7
|
Parker AL, Teo WS, McCarroll JA, Kavallaris M. An Emerging Role for Tubulin Isotypes in Modulating Cancer Biology and Chemotherapy Resistance. Int J Mol Sci 2017; 18:ijms18071434. [PMID: 28677634 PMCID: PMC5535925 DOI: 10.3390/ijms18071434] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022] Open
Abstract
Tubulin proteins, as components of the microtubule cytoskeleton perform critical cellular functions throughout all phases of the cell cycle. Altered tubulin isotype composition of microtubules is emerging as a feature of aggressive and treatment refractory cancers. Emerging evidence highlighting a role for tubulin isotypes in differentially influencing microtubule behaviour and broader functional networks within cells is illuminating a complex role for tubulin isotypes regulating cancer biology and chemotherapy resistance. This review focuses on the role of different tubulin isotypes in microtubule dynamics as well as in oncogenic changes that provide a survival or proliferative advantage to cancer cells within the tumour microenvironment and during metastatic processes. Consideration of the role of tubulin isotypes beyond their structural function will be essential to improving the current clinical use of tubulin-targeted chemotherapy agents and informing the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Wee Siang Teo
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Joshua A McCarroll
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Maria Kavallaris
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
8
|
Cirillo L, Gotta M, Meraldi P. The Elephant in the Room: The Role of Microtubules in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:93-124. [DOI: 10.1007/978-3-319-57127-0_5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Wang W, Zhang H, Wang X, Patterson J, Winter P, Graham K, Ghosh S, Lee JC, Katsetos CD, Mackey JR, Tuszynski JA, Wong GKS, Ludueña RF. Novel mutations involving βI-, βIIA-, or βIVB-tubulin isotypes with functional resemblance to βIII-tubulin in breast cancer. PROTOPLASMA 2017; 254:1163-1173. [PMID: 27943021 DOI: 10.1007/s00709-016-1060-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Tubulin is the target for very widely used anti-tumor drugs, including Vinca alkaloids, taxanes, and epothilones, which are an important component of chemotherapy in breast cancer and other malignancies. Paclitaxel and other tubulin-targeting drugs bind to the β subunit of tubulin, which is a heterodimer of α and β subunits. β-Tubulin exists in the form of multiple isotypes, which are differentially expressed in normal and neoplastic cells and differ in their ability to bind to drugs. Among them, the βIII isotype is overexpressed in many aggressive and metastatic cancers and may serve as a prognostic marker in certain types of cancer. The underpinning mechanisms accounting for the overexpression of this isotype in cancer cells are unclear. To better understand the role of β-tubulin isotypes in cancer, we analyzed over 1000 clones from 90 breast cancer patients, sequencing their β-tubulin isotypes, in search of novel mutations. We have elucidated two putative emerging molecular subgroups of invasive breast cancer, each of which involve mutations in the βI-, βIIA-, or βIVB isotypes of tubulin that increase their structural, and possibly functional, resemblance to the βIII isotype. A unifying feature of the first of the two subgroups is the mutation of the highly reactive C239 residue of βI- or βIVB-tubulin to L239, R239, Y239, or P239, culminating in probable conversion of these isotypes from ROS-sensitive to ROS-resistant species. In the second subgroup, βI, βIIA, and βIVB have up to seven mutations to the corresponding residues in βIII-tubulin. Given that βIII-tubulin has emerged as a pro-survival factor, overexpression of this isotype may confer survival advantages to certain cancer cell types. In this mini-review, we bring attention to a novel mechanism by which cancer cells may undergo adaptive mutational changes involving alternate β-tubulin isotypes to make them acquire some of the pro-survival properties of βIII-tubulin. These "hybrid" tubulins, combining the sequences and/or properties of two wild-type tubulins (βIII and either βI, βIIA, or βIVB), are novel isotypes expressed solely in cancer cells and may contribute to the molecular understanding and stratification of invasive breast cancer and provide novel molecular targets for rational drug development.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Hangxiao Zhang
- Beijing Institute of Genomics, Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xumin Wang
- Beijing Institute of Genomics, Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jordan Patterson
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Philip Winter
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Kathryn Graham
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Sunita Ghosh
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - John C Lee
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Christos D Katsetos
- Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, 19134, USA
- Department of Pathology and Laboratory Medicine, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, 19134, USA
| | - John R Mackey
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Jack A Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Gane Ka-Shu Wong
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Richard F Ludueña
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
10
|
Yeh LCC, Banerjee A, Prasad V, Tuszynski JA, Weis AL, Bakos T, Yeh IT, Ludueña RF, Lee JC. Effect of CH-35, a novel anti-tumor colchicine analogue, on breast cancer cells overexpressing the βIII isotype of tubulin. Invest New Drugs 2015; 34:129-37. [PMID: 26686345 DOI: 10.1007/s10637-015-0315-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 12/11/2015] [Indexed: 11/30/2022]
Abstract
The subunit protein of microtubules is tubulin, which has been the target for some of the most successful and widely used anti-tumor drugs. Most of the drugs that target tubulin bind to the β subunit. There are many isotypes of β-tubulin and their distributions differ among different tissues. The βIII isotype is over-expressed in many tumors, particularly those that are aggressive, metastatic, and drug resistant. We have previously reported the design and synthesis of a series of compounds to fit the colchicine site on βIII but not on the other isotypes. In the current study, we tested the toxicity and the anti-tumor activity of one of these compounds, CH-35, on the human breast tumor MDA-MB-231 over-expressing βIII in a xenogeneic mouse model. We found that CH-35 was as toxic as Taxol® in vivo. Although the βIII-over-expressing cells developed into very fast-growing tumors, CH-35 was more effective against this tumor than was Taxol. Our results suggest that CH-35 is a promising candidate for future drug development.
Collapse
Affiliation(s)
- Lee-Chuan C Yeh
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Asok Banerjee
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Veena Prasad
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jack A Tuszynski
- Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander L Weis
- Oncovista Innovative Therapies, Inc., 14785 Omicron Dr, San Antonio, TX, 78245, USA
| | - Tamas Bakos
- Oncovista Innovative Therapies, Inc., 14785 Omicron Dr, San Antonio, TX, 78245, USA
| | - I-Tien Yeh
- Pathology Department, Virginia Hospital Center, 1701 N George Mason Dr, Arlington, VA, 22205, USA
| | - Richard F Ludueña
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - John C Lee
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
11
|
Mane JY, Semenchenko V, Perez-Pineiro R, Winter P, Wishart D, Tuszynski JA. Experimental and Computational Study of the Interaction of Novel Colchicinoids with a Recombinant Human αI/βI-Tubulin Heterodimer. Chem Biol Drug Des 2013; 82:60-70. [DOI: 10.1111/cbdd.12132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Jonathan Y. Mane
- Department of Oncology; University of Alberta; Edmonton; AB; Canada; T6G 1Z2
| | - Valentyna Semenchenko
- Department of Biological Sciences; University of Alberta; Edmonton; AB; Canada; T6G 2E9
| | - Rolando Perez-Pineiro
- Department of Biological Sciences; University of Alberta; Edmonton; AB; Canada; T6G 2E9
| | - Philip Winter
- Department of Oncology; University of Alberta; Edmonton; AB; Canada; T6G 1Z2
| | | | | |
Collapse
|
12
|
Ravanbakhsh S, Gajewski M, Greiner R, Tuszynski JA. Determination of the optimal tubulin isotype target as a method for the development of individualized cancer chemotherapy. Theor Biol Med Model 2013; 10:29. [PMID: 23634782 PMCID: PMC3651705 DOI: 10.1186/1742-4682-10-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/17/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND As microtubules are essential for cell growth and division, its constituent protein β-tubulin has been a popular target for various treatments, including cancer chemotherapy. There are several isotypes of human β-tubulin and each type of cell expresses its characteristic distribution of these isotypes. Moreover, each tubulin-binding drug has its own distribution of binding affinities over the various isotypes, which further complicates identifying the optimal drug selection. An ideal drug would preferentially bind only the tubulin isotypes expressed abundantly by the cancer cells, but not those in the healthy cells. Unfortunately, as the distributions of the tubulin isotypes in cancer cells overlap with those of healthy cells, this ideal scenario is clearly not possible. We can, however, seek a drug that interferes significantly with the isotype distribution of the cancer cell, but has only minor interactions with those of the healthy cells. METHODS We describe a quantitative methodology for identifying this optimal tubulin isotype profile for an ideal cancer drug, given the isotype distribution of a specific cancer type, as well as the isotype distributions in various healthy tissues, and the physiological importance of each such tissue. RESULTS We report the optimal isotype profiles for different types of cancer with various routes of delivery. CONCLUSIONS Our algorithm, which defines the best profile for each type of cancer (given the drug delivery route and some specified patient characteristics), will help to personalize the design of pharmaceuticals for individual patients. This paper is an attempt to explicitly consider the effects of the tubulin isotype distributions in both cancer and normal cell types, for rational chemotherapy design aimed at optimizing the drug's efficacy with minimal side effects.
Collapse
Affiliation(s)
- Siamak Ravanbakhsh
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
| | | | | | | |
Collapse
|
13
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Craddock TJA, St. George M, Freedman H, Barakat KH, Damaraju S, Hameroff S, Tuszynski JA. Computational predictions of volatile anesthetic interactions with the microtubule cytoskeleton: implications for side effects of general anesthesia. PLoS One 2012; 7:e37251. [PMID: 22761654 PMCID: PMC3382613 DOI: 10.1371/journal.pone.0037251] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/19/2012] [Indexed: 11/19/2022] Open
Abstract
The cytoskeleton is essential to cell morphology, cargo trafficking, and cell division. As the neuronal cytoskeleton is extremely complex, it is no wonder that a startling number of neurodegenerative disorders (including but not limited to Alzheimer's disease, Parkinson's disease and Huntington's disease) share the common feature of a dysfunctional neuronal cytoskeleton. Recently, concern has been raised about a possible link between anesthesia, post-operative cognitive dysfunction, and the exacerbation of neurodegenerative disorders. Experimental investigations suggest that anesthetics bind to and affect cytoskeletal microtubules, and that anesthesia-related cognitive dysfunction involves microtubule instability, hyper-phosphorylation of the microtubule-associated protein tau, and tau separation from microtubules. However, exact mechanisms are yet to be identified. In this paper the interaction of anesthetics with the microtubule subunit protein tubulin is investigated using computer-modeling methods. Homology modeling, molecular dynamics simulations and surface geometry techniques were used to determine putative binding sites for volatile anesthetics on tubulin. This was followed by free energy based docking calculations for halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the tubulin body, and C-terminal regions for specific tubulin isotypes. Locations of the putative binding sites, halothane binding energies and the relation to cytoskeleton function are reported in this paper.
Collapse
Affiliation(s)
| | - Marc St. George
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Holly Freedman
- Center of Marine Sciences, Foundation for Science and Technology, University of Algarve, Campus Gambelas, Faro, Portugal
| | - Khaled H. Barakat
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Sambasivarao Damaraju
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Stuart Hameroff
- Departments of Anesthesiology and Psychology, Center for Consciousness Studies, The University of Arizona Health Sciences Center, Tucson, Arizona, United States of America
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Massarotti A, Coluccia A, Silvestri R, Sorba G, Brancale A. The Tubulin Colchicine Domain: a Molecular Modeling Perspective. ChemMedChem 2011; 7:33-42. [DOI: 10.1002/cmdc.201100361] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/14/2011] [Indexed: 01/24/2023]
|
16
|
Guo J, Walss-Bass C, Ludueña RF. The beta isotypes of tubulin in neuronal differentiation. Cytoskeleton (Hoboken) 2010; 67:431-41. [PMID: 20506160 DOI: 10.1002/cm.20455] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The differences among the vertebrate beta isotypes of tubulin are highly conserved in evolution, suggesting that they have functional significance. To address this, we have used differentiating neuroblastoma cells as a model system. These cells express the betaI, betaII, and betaIII isotypes. Although there is no difference prior to differentiation, a striking difference is seen after differentiation. Both betaI and betaIII occur in cell bodies and neurites, while betaII occurs mostly in neurites. Knocking down betaI causes a large decrease in cell viability while silencing betaII and betaIII does not. Knocking down betaII causes a large decrease in neurite outgrowth without affecting viability. Knocking down betaIII has little effect on neurite outgrowth and only decreases viability if cells are treated with glutamate and glycine, a combination known to generate free radicals and reactive oxygen species. It appears, therefore, that betaI is required for cell viability, betaII for neurite outgrowth and betaIII for protection against free radicals and reactive oxygen species.
Collapse
Affiliation(s)
- Jiayan Guo
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
17
|
Tseng CY, Mane JY, Winter P, Johnson L, Huzil T, Izbicka E, Luduena RF, Tuszynski JA. Quantitative analysis of the effect of tubulin isotype expression on sensitivity of cancer cell lines to a set of novel colchicine derivatives. Mol Cancer 2010; 9:131. [PMID: 20509970 PMCID: PMC2890610 DOI: 10.1186/1476-4598-9-131] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 05/30/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A maximum entropy approach is proposed to predict the cytotoxic effects of a panel of colchicine derivatives in several human cancer cell lines. Data was obtained from cytotoxicity assays performed with 21 drug molecules from the same family of colchicine compounds and correlate these results with independent tubulin isoform expression measurements for several cancer cell lines. The maximum entropy method is then used in conjunction with computed relative binding energy values for each of the drug molecules against tubulin isotypes to which these compounds bind with different affinities. RESULTS We have found by using our analysis that alphabetaI and alphabetaIII tubulin isoforms are the most important isoforms in establishing predictive response of cancer cell sensitivity to colchicine derivatives. However, since alphabetaI tubulin is widely distributed in the human body, targeting it would lead to severe adverse side effects. Consequently, we have identified tubulin isotype alphabetaIII as the most important molecular target for inhibition of microtubule polymerization and hence cancer cell cytotoxicity. Tubulin isotypes alphabetaI and alphabetaII are concluded to be secondary targets. CONCLUSIONS The benefit of being able to correlate expression levels of specific tubulin isotypes and the resultant cell death effect is that it will enable us to better understand the origin of drug resistance and hence design optimal structures for the elimination of cancer cells. The conclusion of the study described herein identifies tubulin isotype alphabetaIII as a target for optimized chemotherapy drug design.
Collapse
Affiliation(s)
- Chih-Yuan Tseng
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Jonathan Y Mane
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Philip Winter
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Lorelei Johnson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Torin Huzil
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Elzbieta Izbicka
- Cancer Therapy and Research Center, The Institute for Drug Development, 14960 Omicron Drive, San Antonio, TX, 78245, USA
| | - Richard F Luduena
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Jack A Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Huzil JT, Mane J, Tuszynski JA. Computer assisted design of second-generation colchicine derivatives. Interdiscip Sci 2010; 2:169-74. [DOI: 10.1007/s12539-010-0076-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/19/2009] [Accepted: 10/25/2009] [Indexed: 10/19/2022]
|
19
|
Torin Huzil J, Winter P, Johnson L, Weis AL, Bakos T, Banerjee A, Luduena RF, Damaraju S, Tuszynski JA. Computational design and biological testing of highly cytotoxic colchicine ring A modifications. Chem Biol Drug Des 2010; 75:541-50. [PMID: 20408852 DOI: 10.1111/j.1747-0285.2010.00970.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microtubules are the primary target for many anti-cancer drugs, the majority of which bind specifically to beta-tubulin. The existence of several beta-tubulin isotypes, coupled with their varied expression in normal and cancerous cells provides a platform upon which to construct selective chemotherapeutic agents. We have examined five prevalent human beta-tubulin isotypes and identified the colchicine-binding site as the most promising for drug design based on specificity. Using this binding site as a template, we have designed several colchicine derivatives and computationally probed them for affinity to the beta-tubulin isotypes. These compounds were synthesized and subjected to cytotoxicity assays to determine their effectiveness against several cancerous cell lines. We observed a correlation between computational-binding predictions and experimentally determined IC(50) values, demonstrating the utility of computational screening in the design of more effective colchicine derivatives. The most promising derivative exhibited an IC(50) approximately threefold lower than values previously reported for either colchicine or paclitaxel, demonstrating the utility of computational design and assessment of binding to tubulin.
Collapse
Affiliation(s)
- John Torin Huzil
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G1Z2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
HUZIL JOHNTORIN, BARAKAT KHALED, TUSZYNSKI JACKA. Electrostatic Contributions to Colchicine Binding within Tubulin Isotypes. Electromagn Biol Med 2009; 28:355-64. [DOI: 10.3109/15368370903206606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Chen K, Huzil JT, Freedman H, Ramachandran P, Antoniou A, Tuszynski JA, Kurgan L. Identification of tubulin drug binding sites and prediction of relative differences in binding affinities to tubulin isotypes using digital signal processing. J Mol Graph Model 2008; 27:497-505. [PMID: 18951052 DOI: 10.1016/j.jmgm.2008.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 09/01/2008] [Accepted: 09/02/2008] [Indexed: 11/17/2022]
Abstract
Microtubules are involved in numerous cellular processes including chromosome segregation during mitosis and, as a result, their constituent protein, tubulin, has become a successful target of several chemotherapeutic drugs. In general, these drugs bind indiscriminately to tubulin within both cancerous and healthy cells, resulting in unwanted side effects. However, differences between beta-tubulin isotypes expressed in a wide range of cell types may aid in the development of anti-tubulin drugs having increased specificity for only certain types of cells. Here, we describe a digital signal processing (DSP) method that is capable of predicting hot spots for the tubulin family of proteins as well as determining relative differences in binding affinities to these hot spots based only on the primary sequence of 10 human tubulin isotypes. Due to the fact that several drug binding sites have already been characterized within beta-tubulin, we are able to correlate hot spots with the binding sites for known chemotherapy drugs. We have also verified the accuracy of this method using the correlation between the binding affinities of characterized drugs and the tubulin isotypes. Additionally, the DSP method enables the rapid estimation of relative differences in binding affinities within the binding sites of tubulin isotypes that are yet to be experimentally determined.
Collapse
Affiliation(s)
- Ke Chen
- Department of Electrical and Computer Engineering, University of Alberta, ECEFR, 9701 116 Street, Edmonton, AB, Canada T6G2V4
| | | | | | | | | | | | | |
Collapse
|
22
|
Mane JY, Klobukowski M, Huzil JT, Tuszynski J. Free energy calculations on the binding of colchicine and its derivatives with the alpha/beta-tubulin isoforms. J Chem Inf Model 2008; 48:1824-32. [PMID: 18712858 DOI: 10.1021/ci800054n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tubulin is the target for numerous small molecule ligands which alter microtubule dynamics leading to cell cycle arrest and apoptosis. Many of these ligands are currently used clinically for the treatment of several types of cancer, and they bind to one of three distinct binding sites within beta-tubulin (paclitaxel, vinca, and colchicine), all of which have been identified crystallographically. Unfortunately, serious side effects always accompany chemotherapy since these drugs bind to tubulin indiscriminately, leading to the death of both cancerous and healthy cells. However, the existence and distribution of divergent tubulin isoforms provide a platform upon which we may build novel chemotherapeutic drugs that can differentiate between different cell types and therefore reduce undesirable side effects. We report results of computational analysis that aims at predicting differences between the binding energies of a family of colchicine derivatives against 10 human alpha/beta-tubulin isoforms. Free energy perturbation method has been used in our calculations and the results provide a proof of principle by indicating significant differences both among the derivatives and between tubulin isoforms.
Collapse
Affiliation(s)
- Jonathan Y Mane
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | |
Collapse
|
23
|
Verrills NM, Liem NL, Liaw TYE, Hood BD, Lock RB, Kavallaris M. Proteomic analysis reveals a novel role for the actin cytoskeleton in vincristine resistant childhood leukemia--an in vivo study. Proteomics 2006; 6:1681-94. [PMID: 16456880 DOI: 10.1002/pmic.200500417] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intrinsic or acquired resistance to vincristine (VCR), an antimicrotubule agent used in the treatment of childhood acute lymphoblastic leukemia (ALL), is a major clinical problem. Using a clinically relevant NOD/SCID mouse xenograft model of ALL, we established that alterations in the actin and tubulin cytoskeleton are involved in in vivo VCR resistance. Altered protein expression between VCR-sensitive ALL xenografts, and xenografts with intrinsic or acquired VCR resistance, was identified using 2-D DIGE coupled with MS. Of the 19 proteins displaying altered expression, 11 are associated with the actin cytoskeleton. Altered expression of the actin- and/or tubulin-binding proteins gelsolin, moesin, ezrin, tropomyosin, CAP-G, HSP27, HSP70, TCP-1, and stathmin were associated with in vivo VCR resistance. The actin-regulating protein gelsolin was increased in both acquired and resistant leukemia as confirmed by immunoblotting and gene expression. The major cytoskeletal protein, gamma-actin, was down-regulated in the VCR-resistant leukemia xenografts; in contrast, there was no significant change in beta-actin expression. This study provides the first evidence for a role of the actin cytoskeleton in intrinsic and acquired in vivo antimicrotubule drug resistance in childhood leukemia and highlights the power of 2-D DIGE for the discovery of resistance markers, pharmacoproteomics, and signaling pathways in cancer.
Collapse
Affiliation(s)
- Nicole M Verrills
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Torin Huzil J, Ludueña RF, Tuszynski J. Comparative modelling of human β tubulin isotypes and implications for drug binding. NANOTECHNOLOGY 2006; 17:S90-S100. [PMID: 21727360 DOI: 10.1088/0957-4484/17/4/014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The protein tubulin is a target for several anti-mitotic drugs, which affect microtubule dynamics, ultimately leading to cell cycle arrest and apoptosis. Many of these drugs, including the taxanes and Vinca alkaloids, are currently used clinically in the treatment of several types of cancer. Another tubulin binding drug, colchicine, although too toxic to be used as a chemotherapeutic agent, is commonly used for the treatment of gout. The main disadvantage that all of these drugs share is that they bind tubulin indiscriminately, leading to the death of both cancerous and healthy cells. However, the broad cellular distribution of several tubulin isotypes provides a platform upon which to construct novel chemotherapeutic drugs that could differentiate between different cell types, reducing the undesirable side effects associated with current chemotherapeutic treatments. Here, we report an analysis of ten human β tubulin isotypes and discuss differences within each of the previously characterized paclitaxel, colchicine and vinblastine binding sites.
Collapse
Affiliation(s)
- J Torin Huzil
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2J1, Canada
| | | | | |
Collapse
|
25
|
The Vinca Alkaloids: From Biosynthesis and Accumulation in Plant Cells, to Uptake, Activity and Metabolism in Animal Cells. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2006. [DOI: 10.1016/s1572-5995(06)80041-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Margalit DN, Romberg L, Mets RB, Hebert AM, Mitchison TJ, Kirschner MW, RayChaudhuri D. Targeting cell division: small-molecule inhibitors of FtsZ GTPase perturb cytokinetic ring assembly and induce bacterial lethality. Proc Natl Acad Sci U S A 2004; 101:11821-6. [PMID: 15289600 PMCID: PMC511058 DOI: 10.1073/pnas.0404439101] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FtsZ, the ancestral homolog of eukaryotic tubulins, is a GTPase that assembles into a cytokinetic ring structure essential for cell division in prokaryotic cells. Similar to tubulin, purified FtsZ polymerizes into dynamic protofilaments in the presence of GTP; polymer assembly is accompanied by GTP hydrolysis. We used a high-throughput protein-based chemical screen to identify small molecules that target assembly-dependent GTPase activity of FtsZ. Here, we report the identification of five structurally diverse compounds, named Zantrins, which inhibit FtsZ GTPase either by destabilizing the FtsZ protofilaments or by inducing filament hyperstability through increased lateral association. These two classes of FtsZ inhibitors are reminiscent of the antitubulin drugs colchicine and Taxol, respectively. We also show that Zantrins perturb FtsZ ring assembly in Escherichia coli cells and cause lethality to a variety of bacteria in broth cultures, indicating that FtsZ antagonists may serve as chemical leads for the development of new broad-spectrum antibacterial agents. Our results illustrate the utility of small-molecule chemical probes to study FtsZ polymerization dynamics and the feasibility of FtsZ as a novel therapeutic target.
Collapse
Affiliation(s)
- Danielle N Margalit
- Institute of Chemistry and Cell Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Recent studies indicate the actin and microtubule cytoskeletons are a final common target of many signaling cascades that influence the developing neuron. Regulation of polymer dynamics and transport are crucial for the proper growth cone motility. This review addresses how actin filaments, microtubules, and their associated proteins play crucial roles in growth cone motility, axon outgrowth, and guidance. We present a working model for cytoskeletal regulation of directed axon outgrowth. An important goal for the future will be to understand the coordinated response of the cytoskeleton to signaling cascades induced by guidance receptor activation.
Collapse
Affiliation(s)
- Erik W Dent
- Biology Department, 68-270, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
28
|
Verrills NM, Walsh BJ, Cobon GS, Hains PG, Kavallaris M. Proteome analysis of vinca alkaloid response and resistance in acute lymphoblastic leukemia reveals novel cytoskeletal alterations. J Biol Chem 2003; 278:45082-93. [PMID: 12949081 DOI: 10.1074/jbc.m303378200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Vinca alkaloids are used widely in the treatment of both childhood and adult cancers. Their cellular target is the beta-tubulin subunit of alpha/beta-tubulin heterodimers, and they act to inhibit cell division by disrupting microtubule dynamics. Despite the effectiveness of these agents, drug resistance is a major clinical problem. To identify the underlying mechanisms behind vinca alkaloid resistance, we have performed high resolution differential proteome analysis. Treatment of drug-sensitive human leukemia cells (CCRF-CEM) with vincristine identified numerous proteins involved in the cellular response to vincristine. In addition, differential protein expression was analyzed in leukemia cell lines selected for resistance to vincristine (CEM/VCR R) and vinblastine (CEM/VLB100). This combined proteomic approach identified 10 proteins altered in both vinca alkaloid response and resistance: beta-tubulin, alpha-tubulin, actin, heat shock protein 90beta, 14-3-3tau, 14-3-3epsilon, L-plastin, lamin B1, heterogeneous nuclear ribonuclear protein-F, and heterogeneous nuclear ribonuclear protein-K. Several of these proteins have not previously been associated with drug resistance and are thus novel targets for elucidation of resistance mechanisms. In addition, seven of these proteins are associated with the tubulin and/or actin cytoskeletons. This study provides novel insights into the interrelationship between the microtubule and microfilament systems in vinca alkaloid resistance.
Collapse
MESH Headings
- Actins/metabolism
- Amino Acid Sequence
- Cell Line, Tumor
- Cytoskeleton/metabolism
- Drug Resistance, Neoplasm
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoblotting
- Molecular Sequence Data
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Protein Structure, Tertiary
- Proteome
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Time Factors
- Tubulin/metabolism
- Vinblastine/pharmacology
- Vinca Alkaloids/pharmacology
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Nicole M Verrills
- Children's Cancer Institute Australia for Medical Research, High St. (P. O. Box 81), Randwick, New South Wales 2031, Australia
| | | | | | | | | |
Collapse
|