1
|
Li JY, Zhou CM, Jin RL, Song JH, Yang KC, Li SL, Tan BH, Li YC. The detection methods currently available for protein aggregation in neurological diseases. J Chem Neuroanat 2024; 138:102420. [PMID: 38626816 DOI: 10.1016/j.jchemneu.2024.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Protein aggregation is a pathological feature in various neurodegenerative diseases and is thought to play a crucial role in the onset and progression of neurological disorders. This pathological phenomenon has attracted increasing attention from researchers, but the underlying mechanism has not been fully elucidated yet. Researchers are increasingly interested in identifying chemicals or methods that can effectively detect protein aggregation or maintain protein stability to prevent aggregation formation. To date, several methods are available for detecting protein aggregates, including fluorescence correlation spectroscopy, electron microscopy, and molecular detection methods. Unfortunately, there is still a lack of methods to observe protein aggregation in situ under a microscope. This article reviews the two main aspects of protein aggregation: the mechanisms and detection methods of protein aggregation. The aim is to provide clues for the development of new methods to study this pathological phenomenon.
Collapse
Affiliation(s)
- Jing-Yi Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Cheng-Mei Zhou
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Rui-Lin Jin
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Jia-Hui Song
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Ke-Chao Yang
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Shu-Lei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
2
|
Kanjo K, Chattopadhyay G, Malladi SK, Singh R, Jayatheertha S, Varadarajan R. Biophysical Correlates of Enhanced Immunogenicity of a Stabilized Variant of the Receptor Binding Domain of SARS-CoV-2. J Phys Chem B 2023; 127:1704-1714. [PMID: 36790910 PMCID: PMC9942533 DOI: 10.1021/acs.jpcb.2c07262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The receptor binding domain (RBD) of SARS-CoV-2 is the primary target of neutralizing antibodies. We have previously reported the design and characterization of a mammalian cell expressed RBD derivative, mRBD1-3.2, that has higher thermal stability and greatly enhanced immunogenicity relative to the wild type mRBD. The protein is highly thermotolerant and immunogenic and is being explored for use in room temperature stable Covid-19 vaccine formulations. In the current study, we have investigated the folding pathway of both WT and stabilized RBD. It was found that chemical denaturation of RBD proceeds through a stable equilibrium intermediate. Thermal and chemical denaturation is reversible, as assayed by binding to the receptor ACE2. Unusually, in its native state, RBD binds to the hydrophobic probe ANS, and enhanced ANS binding is observed for the equilibrium intermediate state. Further characterization of the folding of mRBD1-3.2, both in solution and after reconstitution of lyophilized protein stored for a month at 37 °C, revealed a higher stability represented by higher Cm, faster refolding, slower unfolding, and enhanced resistance to proteolytic cleavage relative to WT. In contrast to WT RBD, the mutant showed decreased interaction with the hydrophobic moiety linoleic acid. Collectively, these data suggest that the enhanced immunogenicity results from reduced conformational fluctuations that likely enhance in vivo half-life as well as reduce the exposure of irrelevant non-neutralizing epitopes to the immune system.
Collapse
Affiliation(s)
- Kawkab Kanjo
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| | | | - Sameer Kumar Malladi
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| | - Randhir Singh
- Mynvax Private Limited, Fourth Floor, Brigade MLR Center, 50, Vanivilas Rd, Gandhi Bazaar, Basavanagudi, Bangalore, Karnataka 560004, India
| | - Sowrabha Jayatheertha
- Mynvax Private Limited, Fourth Floor, Brigade MLR Center, 50, Vanivilas Rd, Gandhi Bazaar, Basavanagudi, Bangalore, Karnataka 560004, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India.,Mynvax Private Limited, Fourth Floor, Brigade MLR Center, 50, Vanivilas Rd, Gandhi Bazaar, Basavanagudi, Bangalore, Karnataka 560004, India
| |
Collapse
|
3
|
Lai Z, Bai S, Li A, Feng X, He Q. Trimacrocyclic hexasubstituted benzenes for recognition of guanidinium and their anti-cancer and antimicrobial activities. Org Chem Front 2022. [DOI: 10.1039/d2qo00619g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report the facile synthesis of two trimacrocyclic hexasubstituted benzenes for selective guanidinium recognition and extraction, along with their anti-cancer and antimicrobial activities.
Collapse
Affiliation(s)
- Zhenzhen Lai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
4
|
The Effect of Salt on the Gelling Properties and Protein Phosphorylation of Surimi-Crabmeat Mixed Gels. Gels 2021; 8:gels8010010. [PMID: 35049545 PMCID: PMC8774505 DOI: 10.3390/gels8010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
The effects of different salt additions (1.0%, 1.5%, 2.0%, 2.5%, 3.0%, and 3.5%) on the gelling properties and protein phosphorylation of the mixed gels (MG) formed by silver carp (Hypophthalmichthys molitrix) surimi with 10% crabmeat were investigated. The MG's breaking force, deformation, gel strength, and water-holding capacity (WHC) increased as the salt concentration increased. The intrinsic fluorescence intensity of the samples initially decreased and then increased, reaching the lowest when the NaCl concentration was 2.5%. The result of SDS-polyacrylamide gel electrophoresis indicated that large aggregates were formed by protein-protein interaction in the MG containing 2.5% or 3.0% NaCl, decreasing the protein band intensity. It was also found that with the addition of NaCl, the phosphorus content initially increased and then decreased, reaching the maximum when the NaCl concentration was 2% or 2.5%, which was similar to the changing trend of actin band intensity reported in the results of Western blot. These results revealed that the amount of salt used had a significant effect on the degree of phosphorylation of the MG protein. The increase in phosphorylation was linked to improved gelling properties, which could lead to new ideas for manufacturing low-salt surimi products in the future.
Collapse
|
5
|
Characterization of Conjugates between α-Lactalbumin and Benzyl Isothiocyanate-Effects on Molecular Structure and Proteolytic Stability. Molecules 2021; 26:molecules26206247. [PMID: 34684828 PMCID: PMC8539348 DOI: 10.3390/molecules26206247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/27/2022] Open
Abstract
In complex foods, bioactive secondary plant metabolites (SPM) can bind to food proteins. Especially when being covalently bound, such modifications can alter the structure and, thus, the functional and biological properties of the proteins. Additionally, the bioactivity of the SPM can be affected as well. Consequently, knowledge of the influence of chemical modifications on these properties is particularly important for food processing, food safety, and nutritional physiology. As a model, the molecular structure of conjugates between the bioactive metabolite benzyl isothiocyanate (BITC, a hydrolysis product of the glucosinolate glucotropaeolin) and the whey protein α-lactalbumin (α-LA) was investigated using circular dichroism spectroscopy, anilino-1-naphthalenesulfonic acid fluorescence, and dynamic light scattering. Free amino groups were determined before and after the BITC conjugation. Finally, mass spectrometric analysis of the BITC-α-LA protein hydrolysates was performed. As a result of the chemical modifications, a change in the secondary structure of α-LA and an increase in surface hydrophobicity and hydrodynamic radii were documented. BITC modification at the ε-amino group of certain lysine side chains inhibited tryptic hydrolysis. Furthermore, two BITC-modified amino acids were identified, located at two lysine side chains (K32 and K113) in the amino acid sequence of α-LA.
Collapse
|
6
|
Kleiner D, Shmulevich F, Zarivach R, Shahar A, Sharon M, Ben-Nissan G, Bershtein S. The interdimeric interface controls function and stability of Ureaplasma urealiticum methionine S-adenosyltransferase. J Mol Biol 2019; 431:4796-4816. [PMID: 31520601 DOI: 10.1016/j.jmb.2019.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/20/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
Methionine S-adenosyltransferases (MATs) are predominantly homotetramers, comprised of dimers of dimers. The larger, highly conserved intradimeric interface harbors two active sites, making the dimer the obligatory functional unit. However, functionality of the smaller, more diverged, and recently evolved interdimeric interface is largely unknown. Here, we show that the interdimeric interface of Ureaplasmaurealiticum MAT has evolved to control the catalytic activity and structural integrity of the homotetramer in response to product accumulation. When all four active sites are occupied with the product, S-adenosylmethionine (SAM), binding of four additional SAM molecules to the interdimeric interface prompts a ∼45° shift in the dimer orientation and a concomitant ∼60% increase in the interface area. This rearrangement inhibits the enzymatic activity by locking the flexible active site loops in a closed state and renders the tetramer resistant to proteolytic degradation. Our findings suggest that the interdimeric interface of MATs is subject to rapid evolutionary changes that tailor the molecular properties of the entire homotetramer to the specific needs of the organism.
Collapse
Affiliation(s)
- Daniel Kleiner
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel
| | - Fannia Shmulevich
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel; Macromolecular Crystallography Research Center (MCRC), The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anat Shahar
- Macromolecular Crystallography Research Center (MCRC), The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shimon Bershtein
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel.
| |
Collapse
|
7
|
Jain R, Pandey N, Pandey A. Aggregation properties of cold-active lipase produced by a psychrotolerant strain of Pseudomonas palleroniana (GBPI_508). BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1666829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rahul Jain
- Centre for Environmental Assessment and Climate Change, G B Pant National Institute of Himalayan Environment and Sustainable Development, Almora, India
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Neha Pandey
- Centre for Environmental Assessment and Climate Change, G B Pant National Institute of Himalayan Environment and Sustainable Development, Almora, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Anita Pandey
- Centre for Environmental Assessment and Climate Change, G B Pant National Institute of Himalayan Environment and Sustainable Development, Almora, India
| |
Collapse
|
8
|
Datki Z, Olah Z, Macsai L, Pakaski M, Galik B, Mihaly G, Kalman J. Application of BisANS fluorescent dye for developing a novel protein assay. PLoS One 2019; 14:e0215863. [PMID: 31002721 PMCID: PMC6474611 DOI: 10.1371/journal.pone.0215863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/09/2019] [Indexed: 11/23/2022] Open
Abstract
In many biology- and chemistry-related research fields and experiments the quantification of the peptide and/or protein concentration in samples are essential. Every research environment has unique requirements, e.g. metal ions, incubation times, photostability, pH, protease inhibitors, chelators, detergents, etc. A new protein assay may be adequate in different experiments beyond or instead of the well-known standard protocols (e.g. Qubit, Bradford or bicinchoninic acid) in related conceptions. Based on our previous studies, we developed a novel protein assay applying the 4,4′-Dianilino-1,1′-binaphthyl-5,5′-disulfonic acid dipotassium salt (BisANS) fluorescent dye. This molecule has several advantageous properties related to protein detection: good solubility in water, high photostability at adequate pH, quick interaction kinetics (within seconds) with proteins and no exclusionary sensitivity to the chelator, detergent and inhibitor ingredients. The protocol described in this work is highly sensitive in a large spectrum to detect protein (100-fold diluted samples) concentrations (from 0.28 up to more than 100 μg/mL). The BisANS protein assay is valid and applicable for quantification of the amount of protein in different biological and/or chemical samples.
Collapse
Affiliation(s)
- Zsolt Datki
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary
- * E-mail: ,
| | - Zita Olah
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Lilla Macsai
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Magdolna Pakaski
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Bence Galik
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Gabor Mihaly
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Janos Kalman
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
9
|
A mechanistic insight into protein-ligand interaction, folding, misfolding, aggregation and inhibition of protein aggregates: An overview. Int J Biol Macromol 2018; 106:1115-1129. [DOI: 10.1016/j.ijbiomac.2017.07.185] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 11/22/2022]
|
10
|
Kuchibhotla B, Kola SR, Medicherla JV, Cherukuvada SV, Dhople VM, Nalam MR. Combinatorial Labeling Method for Improving Peptide Fragmentation in Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1216-1226. [PMID: 28349438 DOI: 10.1007/s13361-017-1606-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/30/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Annotation of peptide sequence from tandem mass spectra constitutes the central step of mass spectrometry-based proteomics. Peptide mass spectra are obtained upon gas-phase fragmentation. Identification of the protein from a set of experimental peptide spectral matches is usually referred as protein inference. Occurrence and intensity of these fragment ions in the MS/MS spectra are dependent on many factors such as amino acid composition, peptide basicity, activation mode, protease, etc. Particularly, chemical derivatizations of peptides were known to alter their fragmentation. In this study, the influence of acetylation, guanidinylation, and their combination on peptide fragmentation was assessed initially on a lipase (LipA) from Bacillus subtilis followed by a bovine six protein mix digest. The dual modification resulted in improved fragment ion occurrence and intensity changes, and this resulted in the equivalent representation of b- and y-type fragment ions in an ion trap MS/MS spectrum. The improved representation has allowed us to accurately annotate the peptide sequences de novo. Dual labeling has significantly reduced the false positive protein identifications in standard bovine six peptide digest. Our study suggests that the combinatorial labeling of peptides is a useful method to validate protein identifications for high confidence protein inference. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Bhanuramanand Kuchibhotla
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Sankara Rao Kola
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Jagannadham V Medicherla
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Swamy V Cherukuvada
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Vishnu M Dhople
- Department of Functional Genomics, University Medicine Greifswald, Interface Institute Genetics & Functional Genomics, D-17475, Greifswald, Germany
| | - Madhusudhana Rao Nalam
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
11
|
Jain R, Pandey A, Pasupuleti M, Pande V. Prolonged Production and Aggregation Complexity of Cold-Active Lipase from Pseudomonas proteolytica (GBPI_Hb61) Isolated from Cold Desert Himalaya. Mol Biotechnol 2017; 59:34-45. [PMID: 28013401 DOI: 10.1007/s12033-016-9989-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pseudomonas, being the common inhabitant of colder environments, are suitable for the production of cold-active enzymes. In the present study, a newly isolated strain of Pseudomonas from cold desert site in Indian Himalayan Region, was investigated for the production of cold-active lipase. The bacteria were identified as Pseudomonas proteolytica by 16S rDNA sequencing. Lipase production by bacteria was confirmed by qualitative assay using tributyrin and rhodamine-B agar plate method. The bacterium produced maximum lipase at 25 °C followed by production at 15 °C while utilizing olive, corn, as well as soybean oil as substrate in lipase production broth. Enzyme produced by bacteria was partially purified using ammonium sulphate fractionation. GBPI_Hb61 showed aggregation behaviour which was confirmed using several techniques including gel filtration chromatography, dynamic light scattering, and native PAGE. Molecular weight determined by SDS-PAGE followed by in-gel activity suggested two lipases of nearly similar molecular weight of ~50 kDa. The enzyme showed stability in wide range of pH from 5 to 11 and temperature up to 50 °C. The enzyme from GBPI_Hb61 exhibited maximum activity toward p-nitrophenyldecanoate (C10). The stability of enzyme was not affected with methanol while it retained more than 75% activity when incubated with ethanol, acetone, and hexane. The bacterium is likely to be a potential source for production of cold-active lipase with efficient applicability under multiple conditions.
Collapse
Affiliation(s)
- Rahul Jain
- Biotechnological Applications, G B Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India
| | - Anita Pandey
- Biotechnological Applications, G B Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, 263 643, India.
| | - Mukesh Pasupuleti
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226 031, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, Uttarakhand, 263 136, India
| |
Collapse
|
12
|
Kaschner M, Schillinger O, Fettweiss T, Nutschel C, Krause F, Fulton A, Strodel B, Stadler A, Jaeger KE, Krauss U. A combination of mutational and computational scanning guides the design of an artificial ligand-binding controlled lipase. Sci Rep 2017; 7:42592. [PMID: 28218303 PMCID: PMC5316958 DOI: 10.1038/srep42592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/11/2017] [Indexed: 11/09/2022] Open
Abstract
Allostery, i.e. the control of enzyme activity by a small molecule at a location distant from the enzyme’s active site, represents a mechanism essential for sustaining life. The rational design of allostery is a non-trivial task but can be achieved by fusion of a sensory domain, which responds to environmental stimuli with a change in its structure. Hereby, the site of domain fusion is difficult to predict. We here explore the possibility to rationally engineer allostery into the naturally not allosterically regulated Bacillus subtilis lipase A, by fusion of the citrate-binding sensor-domain of the CitA sensory-kinase of Klebsiella pneumoniae. The site of domain fusion was rationally determined based on whole-protein site-saturation mutagenesis data, complemented by computational evolutionary-coupling analyses. Functional assays, combined with biochemical and biophysical studies suggest a mechanism for control, similar but distinct to the one of the parent CitA protein, with citrate acting as an indirect modulator of Triton-X100 inhibition of the fusion protein. Our study demonstrates that the introduction of ligand-dependent regulatory control by domain fusion is surprisingly facile, suggesting that the catalytic mechanism of some enzymes may be evolutionary optimized in a way that it can easily be perturbed by small conformational changes.
Collapse
Affiliation(s)
- Marco Kaschner
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Oliver Schillinger
- Institute of Complex Systems ICS-6: Structural Biochemistry, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Timo Fettweiss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Christina Nutschel
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Frank Krause
- Nanolytics, Gesellschaft für Kolloidanalytik GmbH, Am Mühlenberg 11, 14476 Potsdam, Germany
| | - Alexander Fulton
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Birgit Strodel
- Institute of Complex Systems ICS-6: Structural Biochemistry, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Andreas Stadler
- Jülich Centre for Neutron Science JCNS and Institute for Complex Systems ICS, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| |
Collapse
|
13
|
Ahmed A, Shamsi A, Bano B. Characterizing harmful advanced glycation end-products (AGEs) and ribosylated aggregates of yellow mustard seed phytocystatin: Effects of different monosaccharides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 171:183-192. [PMID: 27526342 DOI: 10.1016/j.saa.2016.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/20/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Advanced glycation end products (AGEs) are at the core of variety of diseases ranging from diabetes to renal failure and hence gaining wide consideration. This study was aimed at characterizing the AGEs of phytocystatin isolated from mustard seeds (YMP) when incubated with different monosaccharides (glucose, ribose and mannose) using fluorescence, ultraviolet, circular dichroism (CD) spectroscopy and microscopy. Ribose was found to be the most potent glycating agent as evident by AGEs specific fluorescence and absorbance. YMP exists as a molten globule like structure on day 24 as depicted by high ANS fluorescence and altered intrinsic fluorescence. Glycated YMP as AGEs and ribose induced aggregates were observed at day 28 and 32 respectively. In our study we have also examined the anti-aggregative potential of polyphenol, resveratrol. Our results suggested the anti-aggregative behavior of resveratrol as it prevented the in vitro aggregation of YMP, although further studies are required to decode the mechanism by which resveratrol prevents the aggregation.
Collapse
Affiliation(s)
- Azaj Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Anas Shamsi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
14
|
Kübler D, Ingenbosch KN, Bergmann A, Weidmann M, Hoffmann-Jacobsen K. Fluorescence spectroscopic analysis of the structure and dynamics of Bacillus subtilis lipase A governing its activity profile under alkaline conditions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015. [PMID: 26224303 DOI: 10.1007/s00249-015-1061-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because of their vast diversity of substrate specificity and reaction conditions, lipases are versatile materials for biocatalysis. Lipase A from Bacillus subtilis (BSLA) is the smallest lipase yet discovered. It has the typical α/β hydrolase fold but lacks a lid covering the substrate cleft. In this study, the pH-dependence of the activity, stability, structure, and dynamics of BSLA was investigated by fluorescence spectroscopy. By use of a fluorogenic substrate it was revealed that the optimum pH for BSLA activity is 8.5 whereas thermodynamic and kinetic stability are maximum at pH 10. The origin of this behavior was clarified by investigation of ANS (8-anilino-1-naphthalenesulfonic acid) binding and fluorescence quenching of the two single tryptophan mutants W31F and W42F. Variations in segmental dynamics were investigated by use of time-resolved fluorescence anisotropy. This analysis showed that the activity maximum is governed by high surface hydrophobicity and high segmental mobility of surface loops whereas the stability optimum is a result of low segmental mobility and surface hydrophobicity.
Collapse
Affiliation(s)
- Daniel Kübler
- Department of Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
| | - Kim N Ingenbosch
- Department of Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
| | - Anna Bergmann
- Department of Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
| | - Monika Weidmann
- Department of Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
| | - Kerstin Hoffmann-Jacobsen
- Department of Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany.
| |
Collapse
|
15
|
Stability and Activity of Porcine Lipase Against Temperature and Chemical Denaturants. Appl Biochem Biotechnol 2014; 174:2711-24. [DOI: 10.1007/s12010-014-1220-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
|
16
|
Balaji L, Jayaraman G. Metal ion activated lipase from halotolerant Bacillus sp. VITL8 displays broader operational range. Int J Biol Macromol 2014; 67:380-6. [PMID: 24704541 DOI: 10.1016/j.ijbiomac.2014.03.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/22/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
Lipase producing halo tolerant Bacillus sp. VITL8 was isolated from oil contaminated areas of Vellore. The identity of the organism was established by 16S rDNA sequence, in addition to the morphological and biochemical characterization. The purified enzyme (22kDa, 8680U/mg) exhibited optimal activity at pH 7.0 and 40°C and retained more than 50% of its activity in the NaCl concentration range of 0-3.0M, pH 6.0-10.0 and 10-60°C. Secondary structure analysis, using circular dichroism, revealed that the enzyme is composed of 38% α-helix and 29% β-turns. The lipase activity significantly increased in the presence of (1mM) Mn(2+) (139%), Ca(2+) (134%) and Mg(2+) (130%). Organic solvents such as butanol and acetonitrile (25%, v/v) enhanced the activity whereas DMSO (25% v/v) retained the activity. The Km of enzyme-p-Nitrophenyl palmitate complex was determined to be 191μM with a Vmax of 68μM/mg/min. Though halotolerant Bacillus sp. has been explored for hydrocarbon degradation, to our knowledge this is the first report on the lipase activity of the isolate. The characteristics of the enzyme presented in this report, imply broader operational range of the enzyme and therefore could be suitable for many of the industrial chemical processes.
Collapse
Affiliation(s)
- Lavanya Balaji
- School of Bio Sciences and Technology, VIT University, Vellore 632014, India
| | | |
Collapse
|
17
|
Zhang Y, Zhang H, Tang Z, Kohama K, Lin Y. Inverse interaction between tropomyosin and phosphorylated myosin in the presence or absence of caldesmon. Acta Biochim Biophys Sin (Shanghai) 2013; 45:601-6. [PMID: 23665794 DOI: 10.1093/abbs/gmt047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the present study, co-sedimentation assay, intrinsic fluorescence intensity measurement, and Mg²⁺-ATPase activity analysis were carried out to investigate the direct effect of tropomyosin (TM) on unphosphorylated myosin (UM) or phosphorylated myosin (PM) in the presence or absence of caldesmon (CaD). Results showed that TM significantly decreased the sedimentation, intrinsic fluorescence intensity, and the Mg²⁺-ATPase activity of PM, but not UM. In the presence of CaD, TM also significantly decreased these parameters irrespective of myosin phosphorylation, suggesting that the interaction between TM and CaD abolished the effects of TM on PM or UM and that there was an inverse interaction between TM and PM, characterized by the decreased PM sedimentation and intrinsic fluorescence intensity.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | | | | | | | | |
Collapse
|
18
|
Augustyniak W, Brzezinska AA, Pijning T, Wienk H, Boelens R, Dijkstra BW, Reetz MT. Biophysical characterization of mutants of Bacillus subtilis lipase evolved for thermostability: factors contributing to increased activity retention. Protein Sci 2012; 21:487-97. [PMID: 22267088 DOI: 10.1002/pro.2031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/14/2011] [Accepted: 01/08/2012] [Indexed: 11/10/2022]
Abstract
Previously, Lipase A from Bacillus subtilis was subjected to in vitro directed evolution using iterative saturation mutagenesis, with randomization sites chosen on the basis of the highest B-factors available from the crystal structure of the wild-type (WT) enzyme. This provided mutants that, unlike WT enzyme, retained a large part of their activity after heating above 65 °C and cooling down. Here, we subjected the three best mutants along with the WT enzyme to biophysical and biochemical characterization. Combining thermal inactivation profiles, circular dichroism, X-ray structure analyses and NMR experiments revealed that mutations of surface amino acid residues counteract the tendency of Lipase A to undergo precipitation under thermal stress. Reduced precipitation of the unfolding intermediates rather than increased conformational stability of the evolved mutants seems to be responsible for the activity retention.
Collapse
Affiliation(s)
- Wojciech Augustyniak
- Max-Planck-Institut fur Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mulheim an der Ruhr, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Franken B, Eggert T, Jaeger KE, Pohl M. Mechanism of acetaldehyde-induced deactivation of microbial lipases. BMC BIOCHEMISTRY 2011; 12:10. [PMID: 21342514 PMCID: PMC3049140 DOI: 10.1186/1471-2091-12-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 02/22/2011] [Indexed: 11/23/2022]
Abstract
Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of the enzymes from buffer at pH 6.0 can provide an easy and effective way to stabilize lipases toward inactivation by acetaldehyde.
Collapse
Affiliation(s)
- Benjamin Franken
- Institute of Molecular Enzyme Technology, Heinrich-Heine University Düsseldorf, Forschungszentrum Jülich GmbH, D-52426 Jülich, Germany
| | | | | | | |
Collapse
|
20
|
Cruz JC, Pfromm PH, Tomich JM, Rezac ME. Conformational changes and catalytic competency of hydrolases adsorbing on fumed silica nanoparticles: I. Tertiary structure. Colloids Surf B Biointerfaces 2010; 79:97-104. [DOI: 10.1016/j.colsurfb.2010.03.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 11/25/2022]
|
21
|
Hawe A, Filipe V, Jiskoot W. Fluorescent molecular rotors as dyes to characterize polysorbate-containing IgG formulations. Pharm Res 2009; 27:314-26. [PMID: 20041280 PMCID: PMC2812426 DOI: 10.1007/s11095-009-0020-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/24/2009] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim was to evaluate fluorescent molecular rotors (DCVJ and CCVJ), which are mainly sensitive to viscosity, for the characterization of polysorbate-containing IgG formulations and compare them to the polarity-sensitive dyes ANS, Bis-ANS and Nile Red. METHODS IgG formulations with polysorbate 20 or 80 were stressed below the aggregation temperature and analyzed by steady-state and time-resolved fluorescence and by HP-SEC with UV and fluorescent dye detection (Bis-ANS and CCVJ). Furthermore, commercial protein preparations of therapeutic proteins (Enbrel 50 mg, Humira 40 mg and MabThera 100 mg) were aggregated accordingly and analyzed with CCVJ fluorescence and HP-SEC. RESULTS Contrarily to (Bis-)ANS and Nile Red, the molecular rotors DCVJ and CCVJ showed low background fluorescence in polysorbate-containing buffers. Time-resolved fluorescence experiments confirmed the steady-state fluorescence data. Both DCVJ and CCVJ showed enhanced fluorescence intensity for aggregated IgG formulations and were suitable for the characterization of polysorbate-containing IgG formulations in steady-state fluorescence and HP-SEC with dye detection (CCVJ). CCVJ was capable of detecting thermally induced aggregation in the commercial polysorbate-containing products Enbrel 50 mg, Humira 40 mg and MabThera 100 mg. CONCLUSION Fluorescent molecular rotors are suitable probes to detect aggregation in polysorbate-containing IgG formulations.
Collapse
Affiliation(s)
- Andrea Hawe
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.
| | | | | |
Collapse
|
22
|
Shipovskov S. Homogeneous esterification by lipase fromBurkholderia cepaciain the fluorinated solvent. Biotechnol Prog 2008; 24:1262-6. [DOI: 10.1002/btpr.37] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Hawe A, Sutter M, Jiskoot W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 2008; 25:1487-99. [PMID: 18172579 PMCID: PMC2440933 DOI: 10.1007/s11095-007-9516-9] [Citation(s) in RCA: 877] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 12/05/2007] [Indexed: 11/16/2022]
Abstract
Noncovalent, extrinsic fluorescent dyes are applied in various fields of protein analysis, e.g. to characterize folding intermediates, measure surface hydrophobicity, and detect aggregation or fibrillation. The main underlying mechanisms, which explain the fluorescence properties of many extrinsic dyes, are solvent relaxation processes and (twisted) intramolecular charge transfer reactions, which are affected by the environment and by interactions of the dyes with proteins. In recent time, the use of extrinsic fluorescent dyes such as ANS, Bis-ANS, Nile Red, Thioflavin T and others has increased, because of their versatility, sensitivity and suitability for high-throughput screening. The intention of this review is to give an overview of available extrinsic dyes, explain their spectral properties, and show illustrative examples of their various applications in protein characterization.
Collapse
Affiliation(s)
- Andrea Hawe
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Marc Sutter
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Novartis Pharma AG, WSJ-316.4.14, CH-4056 Basel, Switzerland
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
24
|
Structural basis for the remarkable stability of Bacillus subtilis lipase (Lip A) at low pH. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:302-11. [DOI: 10.1016/j.bbapap.2007.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 10/01/2007] [Accepted: 10/25/2007] [Indexed: 11/24/2022]
|
25
|
Yu L, Banerjee IA, Gao X, Nuraje N, Matsui H. Fabrication and application of enzyme-incorporated peptide nanotubes. Bioconjug Chem 2006; 16:1484-7. [PMID: 16287245 PMCID: PMC6345663 DOI: 10.1021/bc050199a] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzyme engineering is a fast-growing field in the pharmaceutical and food markets. For those applications, various substrates have been examined to immobilize and stabilize enzymes. In this report, we examined peptide nanotubes as supports for enzymes. When a model enzyme, Candida rugosa lipase, was encapsulated in peptide nanotubes, the catalytic activity of nanotube-bound lipases was increased 33% as compared to free-standing lipases at room temperature. At an elevated temperature, 65 degrees C, the activity of lipases inside the nanotubes was 70% higher than free-standing lipases. The activity enhancement of lipases in the peptide nanotubes is likely induced by the conformation change of lipases to the open form (the enzymatically active structure) as lipases are adsorbed on the inner surfaces of peptide nanotubes.
Collapse
Affiliation(s)
| | | | | | | | - Hiroshi Matsui
- To whom correspondence should be addressed. . Tel: 212-650-3918, Fax: 212-772-5332
| |
Collapse
|
26
|
Purification of lipase from Cunninghamella verticillata by stepwise precipitation and optimized conditions for crystallization. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-004-1005-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Acharya P, Rajakumara E, Sankaranarayanan R, Rao NM. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase. J Mol Biol 2004; 341:1271-81. [PMID: 15321721 DOI: 10.1016/j.jmb.2004.06.059] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 06/12/2004] [Accepted: 06/18/2004] [Indexed: 11/29/2022]
Abstract
Variation in gene sequences generated by directed evolution approaches often does not assure a minimalist design for obtaining a desired property in proteins. While screening for enhanced thermostability, structural information was utilized in selecting mutations that are generated by error-prone PCR. By this approach we have increased the half-life of denaturation by 300-fold compared to the wild-type Bacillus subtilis lipase through three point mutations generated by only two cycles of error-prone PCR. At lower temperatures the activity parameters of the thermostable mutants are unaltered. High-resolution crystal structures of the mutants show subtle changes, which include stacking of tyrosine residues, peptide plane flipping and a better anchoring of the terminus, that challenge rational design and explain the structural basis for enhanced thermostability. The approach may offer an efficient and minimalist solution for the enhancement of a desired property of a protein.
Collapse
Affiliation(s)
- Priyamvada Acharya
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|