1
|
Halpert G, Halperin Sheinfeld M, Monteran L, Sharif K, Volkov A, Nadler R, Schlesinger A, Barshak I, Kalechman Y, Blank M, Shoenfeld Y, Amital H. The tellurium-based immunomodulator, AS101 ameliorates adjuvant-induced arthritis in rats. Clin Exp Immunol 2021; 203:375-384. [PMID: 33205391 PMCID: PMC7874835 DOI: 10.1111/cei.13553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022] Open
Abstract
Despite undeniable improvement in the management of rheumatoid arthritis (RA), the discovery of more effective, less toxic and, ideally, less immune suppressive drugs are much needed. In the current study, we set to explore the potential anti-rheumatic activity of the non-toxic, tellurium-based immunomodulator, AS101 in an experimental animal model of RA. The effect of AS101 was assessed on adjuvant-induced arthritis (AIA) rats. Clinical signs of arthritis were assessed. Histopathological examination was used to assess inflammation, synovial changes and tissue lesions. Very late antigen-4 (VLA-4)+ cellular infiltration was detected using immunohistochemical staining. Enzyme-linked immunosorbent assay (ELISA) was used to measure circulating anti-cyclic citrullinated-peptide autoantibody (ACPA) and real-time polymerase chain reaction (PCR) was used to measure the in-vitro effect of AS101 on interleukin (IL)-6 and IL-1β expression in activated primary human fibroblasts. Prophylactic treatment with intraperitoneal AS101 reduced clinical arthritis scores in AIA rats (P < 0·01). AS101 abrogated the migration of active chronic inflammatory immune cells, particularly VLA-4+ cells, into joint cartilage and synovium, reduced the extent of joint damage and preserved joint architecture. Compared to phosphate-buffered saline (PBS)-treated AIA rats, histopathological inflammatory scores were significantly reduced (P < 0·05). Furthermore, AS101 resulted in a marked reduction of circulating ACPA in comparison to PBS-treated rats (P < 0·05). Importantly, AS101 significantly reduced mRNA levels of proinflammatory mediators such as IL-6 (P < 0·05) and IL-1β (P < 0·01) in activated primary human fibroblasts. Taken together, we report the first demonstration of the anti-rheumatic/inflammatory activity of AS101 in experimental RA model, thereby supporting an alternative early therapeutic intervention and identifying a promising agent for therapeutic intervention.
Collapse
Affiliation(s)
- G. Halpert
- Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine,Tel Aviv UniversityTel AvivIsrael
| | - M. Halperin Sheinfeld
- The Safdié Institute for Cancer, AIDS and Immunology Research; Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - L. Monteran
- The Safdié Institute for Cancer, AIDS and Immunology Research; Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
- Present address:
Department of Pathology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - K. Sharif
- Internal Medicine B and Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - A. Volkov
- Institute of PathologySheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| | - R. Nadler
- The Academic Center of Law and ScienceHod HasharonIsrael
| | - A. Schlesinger
- Department of GeriatricsRabin Medical Center (Beilinson Campus)Petah TikvaIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - I. Barshak
- Institute of PathologySheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Y. Kalechman
- The Safdié Institute for Cancer, AIDS and Immunology Research; Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - M. Blank
- Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine,Tel Aviv UniversityTel AvivIsrael
| | - Y. Shoenfeld
- Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine,Tel Aviv UniversityTel AvivIsrael
- Laboratory of the Mosaics of AutoimmunitySaint Petersburg UniversitySaint PetersburgRussian Federation
| | - H. Amital
- Internal Medicine B and Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| |
Collapse
|
2
|
Agnew-Francis KA, Williams CM. Squaramides as Bioisosteres in Contemporary Drug Design. Chem Rev 2020; 120:11616-11650. [DOI: 10.1021/acs.chemrev.0c00416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kylie A. Agnew-Francis
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Bicho D, Ajami S, Liu C, Reis RL, Oliveira JM. Peptide-biofunctionalization of biomaterials for osteochondral tissue regeneration in early stage osteoarthritis: challenges and opportunities. J Mater Chem B 2019; 7:1027-1044. [DOI: 10.1039/c8tb03173h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteoarthritis is a degenerative joint disease characterized by the progressive deterioration of articular cartilage, synovial inflammation and changes in periarticular and subchondral bone, being a leading cause of disability.
Collapse
Affiliation(s)
- D. Bicho
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra
- Guimarães
- Portugal
- ICVS/3B's – PT Government Associate Laboratory
- Braga/Guimarães
| | - S. Ajami
- Institute of Orthopaedics and Musculo-Skeletal Sci, University College London, Royal National Orthopaedic Hospital
- Stanmore
- UK
| | - C. Liu
- Institute of Orthopaedics and Musculo-Skeletal Sci, University College London, Royal National Orthopaedic Hospital
- Stanmore
- UK
| | - R. L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra
- Guimarães
- Portugal
- ICVS/3B's – PT Government Associate Laboratory
- Braga/Guimarães
| | - J. M. Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra
- Guimarães
- Portugal
- ICVS/3B's – PT Government Associate Laboratory
- Braga/Guimarães
| |
Collapse
|
4
|
Tanaka S, Toki T, Akimoto T, Morishita K. Lipopolysaccharide accelerates collagen-induced arthritis in association with rapid and continuous production of inflammatory mediators and anti-type II collagen antibody. Microbiol Immunol 2014; 57:445-54. [PMID: 23773023 DOI: 10.1111/1348-0421.12052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/14/2013] [Accepted: 04/02/2013] [Indexed: 01/28/2023]
Abstract
Collagen-induced arthritis (CIA) is an animal model for rheumatoid arthritis (RA). Lipopolysaccharide (LPS) is known to accelerate CIA; however, the pathogenetic mechanisms are not yet fully understood. In this study, type II collagen (CII)-immunized mice were found to have marked increases in degree of expression of mRNA of inflammatory mediators such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and macrophage inflammatory protein-2 (MIP-2) in their arthritic paws and of serum anti-CII antibody concentration before the onset of arthritis induced by LPS injection. The gene expression was rapid and continuous after direct activation of nuclear factor κB. The amounts of mRNA of TNF-α, IL-1β, and MIP-2, as well as of matrix metalloproteinases and the receptor activator of nuclear factor κB ligand, increased with the development of arthritis, correlated positively with clinical severity and corresponded with histopathological changes. Moreover, anti-TNF-α neutralizing antibody inhibited the development of LPS-accelerated CIA and a single injection of recombinant mouse TNF-α induced increases in anti-CII antibody concentrations, suggesting TNF-α may contribute to the development of arthritis by both initiation of inflammation and production of autoantibodies. These data suggest that exacerbation of RA by LPS is associated with rapid and continuous production of inflammatory mediators and autoantibodies.
Collapse
Affiliation(s)
- Shinji Tanaka
- Frontier Research Laboratories, Daiichi Sankyo Co., Ltd., 1‐2‐58 Hiromachi, Tokyo 140‐8710, Japan.
| | | | | | | |
Collapse
|
5
|
Bugelski PJ, Martin PL. Concordance of preclinical and clinical pharmacology and toxicology of therapeutic monoclonal antibodies and fusion proteins: cell surface targets. Br J Pharmacol 2012; 166:823-46. [PMID: 22168282 PMCID: PMC3417412 DOI: 10.1111/j.1476-5381.2011.01811.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/14/2011] [Accepted: 11/28/2011] [Indexed: 12/20/2022] Open
Abstract
Monoclonal antibodies (mAbs) and fusion proteins directed towards cell surface targets make an important contribution to the treatment of disease. The purpose of this review was to correlate the clinical and preclinical data on the 15 currently approved mAbs and fusion proteins targeted to the cell surface. The principal sources used to gather data were: the peer reviewed Literature; European Medicines Agency 'Scientific Discussions'; and the US Food and Drug Administration 'Pharmacology/Toxicology Reviews' and package inserts (United States Prescribing Information). Data on the 15 approved biopharmaceuticals were included: abatacept; abciximab; alefacept; alemtuzumab; basiliximab; cetuximab; daclizumab; efalizumab; ipilimumab; muromonab; natalizumab; panitumumab; rituximab; tocilizumab; and trastuzumab. For statistical analysis of concordance, data from these 15 were combined with data on the approved mAbs and fusion proteins directed towards soluble targets. Good concordance with human pharmacodynamics was found for mice receiving surrogates or non-human primates (NHPs) receiving the human pharmaceutical. In contrast, there was poor concordance for human pharmacodynamics in genetically deficient mice and for human adverse effects in all three test systems. No evidence that NHPs have superior predictive value was found.
Collapse
Affiliation(s)
- Peter J Bugelski
- Biologics Toxicology, Janssen Research & Development, division of Johnson & Johnson Pharmaceutical Research & Development, LLC, Radnor, PA 19087, USA
| | | |
Collapse
|
6
|
Abstract
Integrins play an important role in cell adhesion to the extracellular matrix and other cells. Upon ligand binding, signaling is initiated and several intracellular pathways are activated. This leads to a wide variety of effects, depending on cell type. Integrin activation has been linked to proliferation, secretion of matrix-degrading enzymes, cytokine production, migration, and invasion. Dysregulated integrin expression is often found in malignant disease. Tumors use integrins to evade apoptosis or metastasize, indicating that integrin signaling has to be tightly controlled. During the course of rheumatoid arthritis, the synovial tissue is infiltrated by immune cells that secrete large amounts of cytokines. This pro-inflammatory milieu leads to an upregulation of integrin receptors and their ligands in the synovial tissue. As a consequence, integrin signaling is enhanced, leading to enhanced production of matrix-degrading enzymes and cytokines. Furthermore, in analogy to invading tumors, synovial fibroblasts start invading and degrading cartilage, thereby generating extracellular matrix debris that can further activate integrins.
Collapse
Affiliation(s)
- Torsten Lowin
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Franz-Josef Strauß Allee 11, 93053 Regensburg, Germany.
| | | |
Collapse
|
7
|
Take Y, Nakata K, Hashimoto J, Tsuboi H, Nishimoto N, Ochi T, Yoshikawa H. Specifically modified osteopontin in rheumatoid arthritis fibroblast-like synoviocytes supports interaction with B cells and enhances production of interleukin-6. ACTA ACUST UNITED AC 2009; 60:3591-601. [DOI: 10.1002/art.25020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Abstract
PURPOSE OF REVIEW The ability of cells to adhere to other cells and extracellular matrix (ECM) through cellular adhesion molecules (CAMs) is central to tissue remodeling and inflammation. This review discusses the potential role of CAMs in development of synovial inflammation through regulating the recruitment of inflammatory cells via endothelial-leukocyte interactions, the organization and activation of leukocytes in the synovial sublining, and the formation and behavior of the hyperplastic synovial lining. RECENT FINDINGS Over the past several years valuable insight has been gained into the role of cell-cell and cell-ECM adhesive interactions in synovial organization and inflammation. Recently, cadherin-11 was identified on fibroblast-like synoviocytes and has been demonstrated to play a central role in synovial lining organization. Furthermore, studies using animal models of inflammatory arthritis have demonstrated critical roles for E- and P-selectins, CD11a/CD18 [lymphocyte function-associated antigen (LFA)-1], alpha4beta1 integrin, and cadherin-11 in the development of synovial inflammation. SUMMARY Cell-cell and cell-ECM interactions through CAMs play an important role in synovial inflammation. Future studies of CAMs are needed to define more thoroughly their role in synovial inflammation and their potential as therapeutic targets in the treatment of rheumatoid arthritis and related inflammatory arthritic conditions.
Collapse
Affiliation(s)
- Sandeep K Agarwal
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
9
|
Kummer C, Ginsberg MH. New approaches to blockade of alpha4-integrins, proven therapeutic targets in chronic inflammation. Biochem Pharmacol 2006; 72:1460-8. [PMID: 16870156 DOI: 10.1016/j.bcp.2006.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
The recruitment of leukocytes into tissue is a pivotal step in inflammation. alpha4-Integrins are adhesion receptors on circulating leukocytes that mediate attachment to the endothelium and facilitate their migration into the inflamed tissue. This multistep process is mediated by the interaction of alpha4-integrins with their counter receptors VCAM-1 and MadCAM-1 that are expressed on endothelial cells. alpha4-Integrins act as both adhesive and signaling receptors. Paxillin, a signaling adaptor molecule, binds directly to the alpha4 cytoplasmic tail and its binding is important for cell migration. Blocking the adhesive functions of alpha4-integrins has been shown to be an effective therapeutic approach in the treatment of autoimmune diseases, but also carries the risk of defects in development, hematopoiesis and immune surveillance. Interfering with alpha4 signaling by inhibiting the alpha4-paxillin interaction decreases alpha4-mediated cell migration and adhesion to VCAM-1 and MadCAM under shear flow. These in vitro effects are accompanied by a selective impairment of leukocyte migration into inflammatory sites when the alpha4-paxillin interaction is blocked in vivo. Thus, blockade of alpha4-integrin signaling may offer a novel strategy for interfering with the functions of these receptors in pathological events while sparing important physiological functions.
Collapse
Affiliation(s)
- Christiane Kummer
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive 0726, La Jolla, CA 92093, USA.
| | | |
Collapse
|
10
|
Cook AD, Visvanathan K. Molecular targets in immune-mediated diseases: focus on rheumatoid arthritis. Expert Opin Ther Targets 2005; 8:375-90. [PMID: 15469389 DOI: 10.1517/14728222.8.5.375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There are a large number of diseases involving inappropriate activation of the immune system. This review focuses on one such disease, rheumatoid arthritis (RA). Over recent years there has been a dramatic shift in the treatment of RA, in which biological agents, such as monoclonal antibodies and immuno-fusion proteins, have offered the potential to enhance or replace conventional immunosuppressive therapies. This review covers some of the novel biological molecules currently under investigation as potential therapeutic targets in RA. In addition, it covers the genomic and proteomic strategies being used to identify potential new molecular targets for future therapies. Selectively blocking the immune response, in a combination approach blocking not only inflammation but also the adaptive memory response and tissue destruction, holds great promise for the treatment of RA and many other immune-mediated diseases.
Collapse
Affiliation(s)
- Andrew D Cook
- Cooperative Research Centre for Chronic Inflammatory Diseases, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Victoria, 3010, Australia.
| | | |
Collapse
|