1
|
Koller F, Cieslak M. A perspective from the EU: unintended genetic changes in plants caused by NGT-their relevance for a comprehensive molecular characterisation and risk assessment. Front Bioeng Biotechnol 2023; 11:1276226. [PMID: 37965049 PMCID: PMC10641861 DOI: 10.3389/fbioe.2023.1276226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Several regions in the world are currently holding discussions in regard to the regulation of new genomic techniques (NGTs) and their application in agriculture. The European Commission, for instance, is proposing the introduction of specific regulation for NGT plants. Various questions need to be answered including e.g., the extent to which NGT-induced intended and unintended genetic modifications must be subjected to a mandatory risk assessment as part of an approval procedure. This review mostly focuses on findings in regard to unintended genetic changes that can be caused by the application of NGTs. More specifically, the review deals with the application of the nuclease CRISPR/Cas, which is currently the most important tool for developing NGT plants, and its potential to introduce double strand breaks (DSBs) at a targeted DNA sequence. For this purpose, we identified the differences in comparison to non-targeted mutagenesis methods used in conventional breeding. The review concludes that unintended genetic changes caused by NGT processes are relevant to risk assessment. Due to the technical characteristics of NGTs, the sites of the unintended changes, their genomic context and their frequency (in regard to specific sites) mean that the resulting gene combinations (intended or unintended) may be unlikely to occur with conventional methods. This, in turn, implies that the biological effects (phenotypes) can also be different and may cause risks to health and the environment. Therefore, we conclude that the assessment of intended as well as unintended genetic changes should be part of a mandatory comprehensive molecular characterisation and risk assessment of NGT plants that are meant for environmental releases or for market authorisation.
Collapse
Affiliation(s)
- Franziska Koller
- Fachstelle Gentechnik und Umwelt (FGU), Munich, Bavaria, Germany
| | | |
Collapse
|
2
|
Luo J, Rouse MN, Hua L, Li H, Li B, Li T, Zhang W, Gao C, Wang Y, Dubcovsky J, Chen S. Identification and characterization of Sr22b, a new allele of the wheat stem rust resistance gene Sr22 effective against the Ug99 race group. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:554-563. [PMID: 34695276 PMCID: PMC8882774 DOI: 10.1111/pbi.13737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 05/09/2023]
Abstract
Wheat stem (or black) rust, caused by Puccinia graminis f. sp. tritici (Pgt), has been historically among the most devastating global fungal diseases of wheat. The recent occurrence and spread of new virulent races such as Ug99 have prompted global efforts to identify and isolate more effective stem rust resistance (Sr) genes. Here, we report the map‐based cloning of the Ug99‐effective SrTm5 gene from diploid wheat Triticum monococcum accession PI 306540 that encodes a typical coiled‐coil nucleotide‐binding leucine‐rich repeat protein. This gene, designated as Sr22b, is a new allele of Sr22 with a rare insertion of a large (13.8‐kb) retrotransposon into its second intron. Biolistic transformation of an ~112‐kb circular bacterial artificial chromosome plasmid carrying Sr22b into the susceptible wheat variety Fielder was sufficient to confer resistance to stem rust. In a survey of 168 wheat genotypes, Sr22b was present only in cultivated T. monococcum subsp. monococcum accessions but absent in all tested tetraploid and hexaploid wheat lines. We developed a diagnostic molecular marker for Sr22b and successfully introgressed a T. monococcum chromosome segment containing this gene into hexaploid wheat to accelerate its deployment and pyramiding with other Sr genes in wheat breeding programmes. Sr22b can be a valuable component of gene pyramids or transgenic cassettes combining different resistance genes to control this devastating disease.
Collapse
Affiliation(s)
- Jing Luo
- Peking University Institute of Advanced Agricultural SciencesWeifangShandong261000China
| | - Matthew N. Rouse
- USDA‐ARS Cereal Disease Laboratory and Department of Plant PathologyUniversity of MinnesotaSt. PaulMN55108USA
| | - Lei Hua
- Peking University Institute of Advanced Agricultural SciencesWeifangShandong261000China
| | - Hongna Li
- Peking University Institute of Advanced Agricultural SciencesWeifangShandong261000China
| | - Boshu Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringCenter for Genome EditingInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Tianya Li
- College of Plant ProtectionShenyang Agricultural UniversityShenyangLiaoning110000China
| | - Wenjun Zhang
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome EngineeringCenter for Genome EditingInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringCenter for Genome EditingInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Jorge Dubcovsky
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
- Howard Hughes Medical InstituteChevy ChaseMD20815USA
| | - Shisheng Chen
- Peking University Institute of Advanced Agricultural SciencesWeifangShandong261000China
| |
Collapse
|
3
|
Then C, Miyazaki J, Bauer-Panskus A. Deficiencies in the Risk Assessment of Genetically Engineered Bt Cowpea Approved for Cultivation in Nigeria: A Critical Review. PLANTS 2022; 11:plants11030380. [PMID: 35161361 PMCID: PMC8838765 DOI: 10.3390/plants11030380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022]
Abstract
We analyze the application filed for the marketing and cultivation of genetically engineered Bt cowpea (event AAT 709A) approved in Nigeria in 2019. Cowpea (Vigna ungiguiculata) is extensively grown throughout sub-Saharan Africa and consumed by around two hundred million people. The transgenic plants produce an insecticidal, recombinant Bt toxin meant to protect the plants against the larvae of Maruca vitrata, which feed on the plants and are also known as pod borer. Our analysis of the application reveals issues of concern regarding the safety of the Bt toxins produced in the plants. These concerns include stability of gene expression, impact on soil organisms, effects on non-target species and food safety. In addition, we show deficiencies in the risk assessment of potential gene flow and uncontrolled spread of the transgenes and cultivated varieties as well as the maintenance of seed collections. As far as information is publicly available, we analyze the application by referring to established standards of GMO risk assessment. We take the provisions of the Cartagena Protocol on Biosafety (CPB) into account, of which both Nigeria and the EU are parties. We also refer to the EU standards for GMO risk assessment, which are complementary to the provisions of the CPB.
Collapse
|
4
|
Kawall K. The Generic Risks and the Potential of SDN-1 Applications in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2259. [PMID: 34834620 PMCID: PMC8622673 DOI: 10.3390/plants10112259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
The use of site-directed nucleases (SDNs) in crop plants to alter market-oriented traits is expanding rapidly. At the same time, there is an on-going debate around the safety and regulation of crops altered with the site-directed nuclease 1 (SDN-1) technology. SDN-1 applications can be used to induce a variety of genetic alterations ranging from fairly 'simple' genetic alterations to complex changes in plant genomes using, for example, multiplexing approaches. The resulting plants can contain modified alleles and associated traits, which are either known or unknown in conventionally bred plants. The European Commission recently published a study on new genomic techniques suggesting an adaption of the current GMO legislation by emphasizing that targeted mutagenesis techniques can produce genomic alterations that can also be obtained by natural mutations or conventional breeding techniques. This review highlights the need for a case-specific risk assessment of crop plants derived from SDN-1 applications considering both the characteristics of the product and the process to ensure a high level of protection of human and animal health and the environment. The published literature on so-called market-oriented traits in crop plants altered with SDN-1 applications is analyzed here to determine the types of SDN-1 application in plants, and to reflect upon the complexity and the naturalness of such products. Furthermore, it demonstrates the potential of SDN-1 applications to induce complex alterations in plant genomes that are relevant to generic SDN-associated risks. In summary, it was found that nearly half of plants with so-called market-oriented traits contain complex genomic alterations induced by SDN-1 applications, which may also pose new types of risks. It further underscores the need for data on both the process and the end-product for a case-by-case risk assessment of plants derived from SDN-1 applications.
Collapse
Affiliation(s)
- Katharina Kawall
- Fachstelle Gentechnik und Umwelt, Frohschammerstr. 14, 80807 Munich, Germany
| |
Collapse
|
5
|
Deragon E, Schuler M, Aiese Cigliano R, Dellero Y, Si Larbi G, Falconet D, Jouhet J, Maréchal E, Michaud M, Amato A, Rébeillé F. An Oil Hyper-Accumulator Mutant Highlights Peroxisomal ATP Import as a Regulatory Step for Fatty Acid Metabolism in Aurantiochytrium limacinum. Cells 2021; 10:2680. [PMID: 34685660 PMCID: PMC8534400 DOI: 10.3390/cells10102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Thraustochytrids are marine protists that naturally accumulate triacylglycerol with long chains of polyunsaturated fatty acids, such as ω3-docosahexaenoic acid (DHA). They represent a sustainable response to the increasing demand for these "essential" fatty acids (FAs). Following an attempt to transform a strain of Aurantiochytrium limacinum, we serendipitously isolated a clone that did not incorporate any recombinant DNA but contained two to three times more DHA than the original strain. Metabolic analyses indicated a deficit in FA catabolism. However, whole transcriptome analysis did not show down-regulation of genes involved in FA catabolism. Genome sequencing revealed extensive DNA deletion in one allele encoding a putative peroxisomal adenylate transporter. Phylogenetic analyses and yeast complementation experiments confirmed the gene as a peroxisomal adenylate nucleotide transporter (AlANT1), homologous to yeast ScANT1 and plant peroxisomal adenylate nucleotide carrier AtPNC genes. In yeast and plants, a deletion of the peroxisomal adenylate transporter inhibits FA breakdown and induces FA accumulation, a phenotype similar to that described here. In response to this metabolic event, several compensatory mechanisms were observed. In particular, genes involved in FA biosynthesis were upregulated, also contributing to the high FA accumulation. These results support AlANT1 as a promising target for enhancing DHA production in Thraustochytrids.
Collapse
Affiliation(s)
- Etienne Deragon
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Martin Schuler
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | | | - Younès Dellero
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
- Institute of Genetic, Environment and Plant Protection, UMR 1349 IGEPP INRA, Agrocampus Ouest Rennes, Université Rennes 1, Domaine de la Motte BP35327, CEDEX, 35653 Le Rheu, France
| | - Gregory Si Larbi
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| |
Collapse
|
6
|
Singh K, Sharmila P, Kumar PA, Pardha-Saradhi P. Successful expression of the synthetic merBps gene in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:874-883. [PMID: 34537577 DOI: 10.1016/j.plaphy.2021.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Organomercury is the most toxic biomagnifiable state of mercury, and to date, no natural organomercurial detoxification mechanism is encountered in plants. Bacterial merB gene encoding organomercury lyase show low expression in transgenic plants. For ideal expression, a synthetic merBps gene possessing143 out of 213 codons discrete from native merB gene from Escherichia. coli was fabricated based on codon usage in tobacco. Through Agrobacterium-mediated transformation, the merBps gene got successfully integrated into tobacco. Of several putative merBps transformants selected with 200 μg ml-1 kanamycin, only ∼45% were PCR positive for both nptII and merBps genes. Healthy and vigorously growing shoots of few PCR-positive putative transgenic lines were multiplied and rooted. After transplantation and acclimatization, the resultant plants flowered and fruited in pots. Southern analysis revealed the presence of a single copy of the merBps gene in four lines. RT-PCR and Western investigations established successful transcription and translation of the merBps gene in these transgenic lines, respectively. Fabrication of fully functional organomercury lyase in merBps transgenic lines was established based on the potential of their (i) seeds to germinate; (ii) shoots to grow and multiply; and (iii) leaf disc to remain green, even in the presence of 4 nmole ml-1 phenylmercuryacetate (PMA) while the wild type was susceptible to even 1 nmole ml-1 PMA. These findings confirmed that the synthetic merBps gene could be effectively expressed in plants and exploited for remediation of organomercurial contaminated sites.
Collapse
Affiliation(s)
- Kavita Singh
- Department of Environmental Studies, University of Delhi, Delhi, 110007, India; National Research Center on Plant Biotechnology, Indian Agricultural Research Institute, NewDelhi, 110012, India
| | - Peddisetty Sharmila
- Department of Environmental Studies, University of Delhi, Delhi, 110007, India
| | - P Ananda Kumar
- National Research Center on Plant Biotechnology, Indian Agricultural Research Institute, NewDelhi, 110012, India
| | - P Pardha-Saradhi
- Department of Environmental Studies, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
7
|
Then C, Kawall K, Valenzuela N. Spatiotemporal Controllability and Environmental Risk Assessment of Genetically Engineered Gene Drive Organisms from the Perspective of European Union Genetically Modified Organism Regulation. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:555-568. [PMID: 32250054 PMCID: PMC7496464 DOI: 10.1002/ieam.4278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 03/30/2020] [Indexed: 05/12/2023]
Abstract
Gene drive organisms are a recent development created by using methods of genetic engineering; they inherit genetic constructs that are passed on to future generations with a higher probability than with Mendelian inheritance. There are some specific challenges inherent to the environmental risk assessment (ERA) of genetically engineered (GE) gene drive organisms because subsequent generations of these GE organisms might show effects that were not observed or intended in the former generations. Unintended effects can emerge from interaction of the gene drive construct with the heterogeneous genetic background of natural populations and/or be triggered by changing environmental conditions. This is especially relevant in the case of gene drives with invasive characteristics and typically takes dozens of generations to render the desired effect. Under these circumstances, "next generation effects" can substantially increase the spatial and temporal complexity associated with a high level of uncertainty in ERA. To deal with these problems, we suggest the introduction of a new additional step in the ERA of GE gene drive organisms that takes 3 criteria into account: the biology of the target organisms, their naturally occurring interactions with the environment (biotic and abiotic), and their intended biological characteristics introduced by genetic engineering. These 3 criteria are merged to form an additional step in ERA, combining specific "knowns" and integrating areas of "known unknowns" and uncertainties, with the aim of assessing the spatiotemporal controllability of GE gene drive organisms. The establishment of assessing spatiotemporal controllability can be used to define so-called "cut-off criteria" in the risk analysis of GE gene drive organisms: If it is likely that GE gene drive organisms escape spatiotemporal controllability, the risk assessment cannot be sufficiently reliable because it is not conclusive. Under such circumstances, the environmental release of the GE gene drive organisms would not be compatible with the precautionary principle (PP). Integr Environ Assess Manag 2020;16:555-568. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Christoph Then
- Testbiotech e.V., Institute for Independent Impact Assessment of BiotechnologyMunichGermany
| | | | - Nina Valenzuela
- Testbiotech e.V., Institute for Independent Impact Assessment of BiotechnologyMunichGermany
| |
Collapse
|
8
|
Michno JM, Virdi K, Stec AO, Liu J, Wang X, Xiong Y, Stupar RM. Integration, abundance, and transmission of mutations and transgenes in a series of CRISPR/Cas9 soybean lines. BMC Biotechnol 2020; 20:10. [PMID: 32093670 PMCID: PMC7038615 DOI: 10.1186/s12896-020-00604-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/13/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND As with many plant species, current genome editing strategies in soybean are initiated by stably transforming a gene that encodes an engineered nuclease into the genome. Expression of the transgene results in a double-stranded break and repair at the targeted locus, oftentimes resulting in mutation(s) at the intended site. As soybean is a self-pollinating species with 20 chromosome pairs, the transgene(s) in the T0 plant are generally expected to be unlinked to the targeted mutation(s), and the transgene(s)/mutation(s) should independently assort into the T1 generation, resulting in Mendellian combinations of transgene presence/absence and allelic states within the segregating family. This prediction, however, is not always consistent with observed results. RESULTS In this study, we investigated inheritance patterns among three different CRISPR/Cas9 transgenes and their respective induced mutations in segregating soybean families. Next-generation resequencing of four T0 plants and four T1 progeny plants, followed by broader assessments of the segregating families, revealed both expected and unexpected patterns of inheritance among the different lineages. These unexpected patterns included: (1) A family in which T0 transgenes and mutations were not transmitted to progeny; (2) A family with four unlinked transgene insertions, including two respectively located at paralogous CRISPR target break sites; (3) A family in which mutations were observed and transmitted, but without evidence of transgene integration nor transmission. CONCLUSIONS Genome resequencing provides high-resolution of transgene integration structures and gene editing events. Segregation patterns of these events can be complicated by several potential mechanisms. This includes, but is not limited to, plant chimeras, multiple unlinked transgene integrations, editing of intended and paralogous targets, linkage between the transgene integration and target site, and transient expression of the editing reagents without transgene integration into the host genome.
Collapse
Affiliation(s)
- Jean-Michel Michno
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN USA
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, Saint Paul, MN 55108 USA
| | - Kamaldeep Virdi
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, Saint Paul, MN 55108 USA
| | - Adrian O. Stec
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, Saint Paul, MN 55108 USA
| | - Junqi Liu
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, Saint Paul, MN 55108 USA
| | - Xiaobo Wang
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, Saint Paul, MN 55108 USA
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yer Xiong
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, Saint Paul, MN 55108 USA
| | - Robert M. Stupar
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN USA
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, 411 Borlaug Hall, Saint Paul, MN 55108 USA
| |
Collapse
|
9
|
Targeting transgene to seed resulted in high rate of morphological abnormalities of Camelina transformants. NOVA BIOTECHNOLOGICA ET CHIMICA 2019. [DOI: 10.2478/nbec-2019-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
False flax (Camelina sativa L.) is currently under-exploited but highly promising oilseed crop. Combining Camelina’s attractive agronomic traits with its unprecedented ease for genetic engineering makes it an ideal plant chassis for biotechnology applications, in particular synthetic biology strategies. For targeted expression of transgene particularly to seeds requires identification and application of seed specific promoters. In the present study two cultivars of Camelina, namely Zuzana and Smilowska, were used for transformation at early flowering stage using the floral dip method. The plants were inoculated with Agrobacterium bearing a construct for expression of red fluorescent protein (RFP) under the control of the seed specific cruciferin promoter CRUC from Arabidopsis. Transgenic seeds and plants were identified on the basis of red fluorescence (RFP) and kanamycin resistance. Relatively high transformation efficiency of 8 % was achieved particularly for the cultivar Zuzana. However, many of regenerants exerted developmental deformations such as lack of shoot apical meristem, deformed or absent cotyledons, etc. Furthermore, the activity of the CRUC promoter was still active also in true leaves rendering this promoter as inappropriate for seed targeting of the transgene. Nevertheless, genetic transformation remains a tool for direct modulation of pathways for oil synthesis in oilseed crops.
Collapse
|
10
|
The Mechanism of T-DNA Integration: Some Major Unresolved Questions. Curr Top Microbiol Immunol 2018; 418:287-317. [DOI: 10.1007/82_2018_98] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Effect of gene order in DNA constructs on gene expression upon integration into plant genome. 3 Biotech 2017; 7:94. [PMID: 28555430 DOI: 10.1007/s13205-017-0729-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/29/2017] [Indexed: 10/19/2022] Open
Abstract
Several plant biotechnology applications are based on the expression of multiple genes located on a single transformation vector. The principles of stable expression of foreign genes in plant cells include integration of full-length gene fragments consisting of promoter and transcription terminator sequences, and avoiding converging orientation of the gene transcriptional direction. Therefore, investigators usually generate constructs in which genes are assembled in the same orientation. However, no specific information is available on the effect of the order in which genes should be assembled in the construct to support optimum expression of each gene upon integration in the genome. While many factors, including genomic position and the integration structure, could affect gene expression, the investigators judiciously design DNA constructs to avoid glitches. However, the gene order in a multigene assembly remains an open question. This study addressed the effect of gene order in the DNA construct on gene expression in rice using a simple design of two genes placed in two possible orders with respect to the genomic context. Transgenic rice lines containing green fluorescent protein (GFP) and β-glucuronidase (GUS) genes in two distinct orders were developed by Cre-lox-mediated site-specific integration. Gene expression analysis of transgenic lines showed that both genes were expressed at similar levels in either orientation, and different transgenic lines expressed each gene within 1-2× range. Thus, no significant effect of the gene order on gene expression was found in the transformed rice lines containing precise site-specific integrations and stable gene expression in plant cells could be obtained with altered gene orders. Therefore, gene orientation and integration structures are more important factors governing gene expression than gene orders in the genomic context.
Collapse
|
12
|
Yu W, Yau YY, Birchler JA. Plant artificial chromosome technology and its potential application in genetic engineering. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1175-1182. [PMID: 26369910 DOI: 10.1111/pbi.12466] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/16/2015] [Accepted: 08/07/2015] [Indexed: 06/05/2023]
Abstract
Genetic engineering with just a few genes has changed agriculture in the last 20 years. The most frequently used transgenes are the herbicide resistance genes for efficient weed control and the Bt toxin genes for insect resistance. The adoption of the first-generation genetically engineered crops has been very successful in improving farming practices, reducing the application of pesticides that are harmful to both human health and the environment, and producing more profit for farmers. However, there is more potential for genetic engineering to be realized by technical advances. The recent development of plant artificial chromosome technology provides a super vector platform, which allows the management of a large number of genes for the next generation of genetic engineering. With the development of other tools such as gene assembly, genome editing, gene targeting and chromosome delivery systems, it should become possible to engineer crops with multiple genes to produce more agricultural products with less input of natural resources to meet future demands.
Collapse
Affiliation(s)
- Weichang Yu
- Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Yuan-Yeu Yau
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Baktavachalam GB, Delaney B, Fisher TL, Ladics GS, Layton RJ, Locke ME, Schmidt J, Anderson JA, Weber NN, Herman RA, Evans SL. Transgenic maize event TC1507: Global status of food, feed, and environmental safety. GM CROPS & FOOD 2016; 6:80-102. [PMID: 26018138 PMCID: PMC5033190 DOI: 10.1080/21645698.2015.1054093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Maize (Zea mays) is a widely cultivated cereal that has been safely consumed by humans and animals for centuries. Transgenic or genetically engineered insect-resistant and herbicide-tolerant maize, are commercially grown on a broad scale. Event TC1507 (OECD unique identifier: DAS-Ø15Ø7–1) or the Herculex®# I trait, an insect-resistant and herbicide-tolerant maize expressing Cry1F and PAT proteins, has been registered for commercial cultivation in the US since 2001. A science-based safety assessment was conducted on TC1507 prior to commercialization. The safety assessment addressed allergenicity; acute oral toxicity; subchronic toxicity; substantial equivalence with conventional comparators, as well as environmental impact. Results from biochemical, physicochemical, and in silico investigations supported the conclusion that Cry1F and PAT proteins are unlikely to be either allergenic or toxic to humans. Also, findings from toxicological and animal feeding studies supported that maize with TC1507 is as safe and nutritious as conventional maize. Maize with TC1507 is not expected to behave differently than conventional maize in terms of its potential for invasiveness, gene flow to wild and weedy relatives, or impact on non-target organisms. These safety conclusions regarding TC1507 were acknowledged by over 20 regulatory agencies including United States Environment Protection Agency (US EPA), US Department of Agriculture (USDA), Canadian Food Inspection Agency (CFIA), and European Food Safety Authority (EFSA) before authorizing cultivation and/or food and feed uses. A comprehensive review of the safety studies on TC1507, as well as some benefits, are presented here to serve as a reference for regulatory agencies and decision makers in other countries where authorization of TC1507 is or will be pursued.
Collapse
Key Words
- Bt, Bacillus thuringiensis
- CFIA, Canadian Food Inspection Agency
- CTNBio, Comissão Técnica Nacional de Biossegurança
- Cry, crystalline
- Cry1F
- DA-BPI, Department of Agriculture-Bureau of Plant Industry
- DNA, deoxyribonucleic acid
- EFSA, European Food Safety Authority
- ELISA, enzyme-linked immunosorbent assay
- ERA, environmental risk assessment
- EU, European Union
- FAO, Food and Agriculture Organization of the United Nations
- FDA, Food and Drug Administration
- FFP, food, feed, and processing
- FSANZ, Food Standards Australia New Zealand
- GAIN, Global Agricultural Information Network
- GE maize
- GE, genetically engineered
- HGT, horizontal gene transfer
- ISAAA, International Service for the Acquisition of Agri-biotech Applications
- LD50, median lethal dose
- NCGA, National Corn Growers Association
- NTOs, non-target organisms
- OECD, Organisation for Economic Co-operation and Development
- PAT, phosphinothricin-N-acetyltransferase
- PCR, polymerase chain reaction
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- SE, Substantial Equivalence
- SGF, simulated gastric fluid
- TC1507
- US EPA, United States Environment Protection Agency
- USDA APHIS, US Department of Agriculture-Animal and Plant Health Inspection Service
- WHO, World Health Organization
- aa, amino acid
- environmental safety
- food and feed safety
- global authorizations
- nptII, neomycin phosphotransferase II
Collapse
|
14
|
Schnell J, Steele M, Bean J, Neuspiel M, Girard C, Dormann N, Pearson C, Savoie A, Bourbonnière L, Macdonald P. A comparative analysis of insertional effects in genetically engineered plants: considerations for pre-market assessments. Transgenic Res 2014; 24:1-17. [PMID: 25344849 PMCID: PMC4274372 DOI: 10.1007/s11248-014-9843-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/16/2014] [Indexed: 01/20/2023]
Abstract
During genetic engineering, DNA is inserted into a plant’s genome, and such insertions are often accompanied by the insertion of additional DNA, deletions and/or rearrangements. These genetic changes are collectively known as insertional effects, and they have the potential to give rise to unintended traits in plants. In addition, there are many other genetic changes that occur in plants both spontaneously and as a result of conventional breeding practices. Genetic changes similar to insertional effects occur in plants, namely as a result of the movement of transposable elements, the repair of double-strand breaks by non-homologous end-joining, and the intracellular transfer of organelle DNA. Based on this similarity, insertional effects should present a similar level of risk as these other genetic changes in plants, and it is within the context of these genetic changes that insertional effects must be considered. Increased familiarity with genetic engineering techniques and advances in molecular analysis techniques have provided us with a greater understanding of the nature and impact of genetic changes in plants, and this can be used to refine pre-market assessments of genetically engineered plants and food and feeds derived from genetically engineered plants.
Collapse
Affiliation(s)
- Jaimie Schnell
- Plant and Biotechnology Risk Assessment Unit, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, ON, K1A 0Y9, Canada,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kinkema M, Geijskes J, Delucca P, Palupe A, Shand K, Coleman HD, Brinin A, Williams B, Sainz M, Dale JL. Improved molecular tools for sugar cane biotechnology. PLANT MOLECULAR BIOLOGY 2014; 84:497-508. [PMID: 24150836 DOI: 10.1007/s11103-013-0147-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/16/2013] [Indexed: 06/02/2023]
Abstract
Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.
Collapse
Affiliation(s)
- Mark Kinkema
- Syngenta Centre for Sugar Cane Biofuels Development, Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, 4001, Australia,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
A new dual plasmid calibrator for the quantification of the construct specific GM canola Oxy-235 with duplex real-time PCR. Food Chem 2013; 145:49-56. [PMID: 24128448 DOI: 10.1016/j.foodchem.2013.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 06/05/2013] [Accepted: 08/07/2013] [Indexed: 11/20/2022]
Abstract
To overcome the difficulties of obtaining the Certified Reference Material (CRM) and according to the key documents of the European Union Reference Laboratory (EU-RL), a new standard reference molecule containing the construct specific of the canola event Oxy-235 (3'-junction Nitrilase/Tnos) and the canola endogenous reference gene (acety-CoA-carboxylase) was constructed and used for duplex real-time quantitative analysis. The limits of detection (LOD) were less than 5 Haploid Genome Copy (HGC) and the limits of quantification (LOQ) were about 10 HGC. Furthermore, mixed GM and non-GM canola samples were analysed with duplex QRT-PCR to evaluate the performance criteria as required for validation procedures in the EU-RL, namely, the precision and the accuracy. The accuracy expressed as bias ranged from 2% to 10% and the precision (repeatability and reproducibility) expressed as the RSDr and RSDR was from 2.2 to 5.12 and 2.15 to 5.46 respectively. All these indicated that the developed construct specific method and the reference molecule are suitable for the identification and the quantification of the canola event Oxy-235.
Collapse
|
17
|
Phenotypic changes in Cyprinus carpiovar var. Jian introduced by sperm-mediated transgenesis of rearranged homologous DNA fragments. Appl Biochem Biotechnol 2013; 171:189-97. [PMID: 23824532 DOI: 10.1007/s12010-013-0364-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Common carp, specifically the Jian variety (Cyprinus carpiovar var. Jian), is an important Chinese and global aquatic stock for commercial foodstuff. Homologous recombination of carp gene sequences has been widely used in population genetics to broadly screen for beneficial phenotypical variations, thus optimizing artificially engineered carp stocks with Jian variety and native stock varieties. Random rearrangement of homologous DNA fragments from parent specimens of C. carpiovar var. Jian were attained by digestion of genomic DNA with MspI followed by religation and redigestion with EcoR I to specifically rearrange homologous DNA fragments of myostatin and microsatellite genes. Based on known characteristics of myostatin gene function, growth pattern changes in resultant carp mutant varieties was expected. DNA fragments were introduced into metaphase-II oocytes, resulting in one to several dozen insertions of homologous fragments into the host genome by sperm-mediated transgenesis. Introduction of rearranged homologous DNA fragments often resulted in phenotypic changes in C. carpiovar var. Jian, including significant phenotypic changes linked to growth rate at 4 months.
Collapse
|
18
|
Singer K, Shiboleth YM, Li J, Tzfira T. Formation of complex extrachromosomal T-DNA structures in Agrobacterium tumefaciens-infected plants. PLANT PHYSIOLOGY 2012; 160:511-22. [PMID: 22797657 PMCID: PMC3440224 DOI: 10.1104/pp.112.200212] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 07/12/2012] [Indexed: 05/09/2023]
Abstract
Agrobacterium tumefaciens is a unique plant pathogenic bacterium renowned for its ability to transform plants. The integration of transferred DNA (T-DNA) and the formation of complex insertions in the genome of transgenic plants during A. tumefaciens-mediated transformation are still poorly understood. Here, we show that complex extrachromosomal T-DNA structures form in A. tumefaciens-infected plants immediately after infection. Furthermore, these extrachromosomal complex DNA molecules can circularize in planta. We recovered circular T-DNA molecules (T-circles) using a novel plasmid-rescue method. Sequencing analysis of the T-circles revealed patterns similar to the insertion patterns commonly found in transgenic plants. The patterns include illegitimate DNA end joining, T-DNA truncations, T-DNA repeats, binary vector sequences, and other unknown "filler" sequences. Our data suggest that prior to T-DNA integration, a transferred single-stranded T-DNA is converted into a double-stranded form. We propose that termini of linear double-stranded T-DNAs are recognized and repaired by the plant's DNA double-strand break-repair machinery. This can lead to circularization, integration, or the formation of extrachromosomal complex T-DNA structures that subsequently may integrate.
Collapse
MESH Headings
- Agrobacterium tumefaciens/pathogenicity
- Ampicillin/pharmacology
- Cloning, Molecular
- DNA End-Joining Repair
- DNA, Bacterial/genetics
- DNA, Circular/genetics
- DNA, Single-Stranded/genetics
- Drug Resistance, Bacterial
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Genetic Vectors/genetics
- Plant Diseases/microbiology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- Plasmids/genetics
- Sequence Analysis, DNA/methods
- Nicotiana/genetics
- Nicotiana/metabolism
- Nicotiana/microbiology
- Transformation, Genetic
Collapse
Affiliation(s)
- Kamy Singer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA.
| | | | | | | |
Collapse
|
19
|
Tizaoui K, Kchouk ME. Genetic approaches for studying transgene inheritance and genetic recombination in three successive generations of transformed tobacco. Genet Mol Biol 2012; 35:640-9. [PMID: 23055804 PMCID: PMC3459415 DOI: 10.1590/s1415-47572012000400015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 05/21/2012] [Indexed: 11/22/2022] Open
Abstract
Transgene integration into plant genomes is a complex process accompanied by molecular rearrangements. Classic methods that are normally used to study transgenic population genetics are generally inadequate for assessing such integration. Two major characteristics of transgenic populations are that a transgenic genome may harbor many copies of the transgene and that molecular rearrangements can create an unstable transgenic locus. In this work, we examined the segregation of T1, T2 and T3 transgenic tobacco progenies. Since transfer DNA (T-DNA) contains the NptII selectable marker gene that confers resistance to kanamycin, we used this characteristic in developing a method to estimate the number of functional inserts integrated into the genome. This approach was based on calculation of the theoretical segregation ratios in successive generations. Mendelian ratios of 3:1, 15:1 and 63:1 were confirmed for five transformation events whereas six transformation events yielded non-segregating progenies, a finding that raised questions about causal factors. A second approach based on a maximum likelihood method was performed to estimate recombination frequencies between linked inserts. Recombination estimates varied among transformation events and over generations. Some transgenic loci were unstable and evolved continuously to segregate independently in the T3 generation. Recombination and amplification of the transgene and filler DNA yielded additional transformed genotypes.
Collapse
Affiliation(s)
- Kalthoum Tizaoui
- Department of Biology, Faculty of Sciences, El Manar, Tunis, Tunisia
| | | |
Collapse
|
20
|
Xu C, Cheng Z, Yu W. Construction of rice mini-chromosomes by telomere-mediated chromosomal truncation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:1070-1079. [PMID: 22268496 DOI: 10.1111/j.1365-313x.2012.04916.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Telomere truncation has been shown to be an efficient technology for the creation of mini-chromosomes that can be used as artificial chromosome platforms for genetic engineering. Artificial chromosome-based genetic engineering is considered to be superior to the existing techniques of randomized gene integration by Agrobacterium or biolistic-mediated genetic transformation. It organizes multiple transgenes as a unique genetic linkage block for subsequent manipulations in breeding. Telomere truncation technology relies on three components: the telomere sequence that mediates chromosomal truncation, a selection marker that allows the selection of transgenic events, and a site-specific recombination system that can be used to accept future genes into the mini-chromosome by gene targeting. These elements are usually pre-assembled before transformation, a process that is both time and labor consuming. We found in this research that the three elements could be mixed to transform plant cells in a biolistic transformation, and produced efficient chromosomal truncations and mini-chromosomes in rice. This system will allow rapid construction of mini-chromosomes with a flexible selection of resistant markers, site-specific recombination systems and other desirable elements. In addition, a rice telotrisomic line was used as the starting material for chromosomal truncations. Mini-chromosomes from the truncations of both the telocentric chromosome and other chromosomes were recovered. The mini-chromosomes remained stable during 2 years of subculture. The construction of mini-chromosomes in rice, an economically important crop, will provide a platform for future artificial chromosome-based genetic engineering of rice for stacking multiple genes.
Collapse
Affiliation(s)
- Chunhui Xu
- State Key Laboratory for Agrobiotechnology, Institute of Plant Molecular Biology and Agricultural Biotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | | |
Collapse
|
21
|
Lee HJ, Abdula SE, Jee MG, Jang DW, Cho YG. High-efficiency and Rapid Agrobacterium-mediated genetic transformation method using germinating rice seeds. ACTA ACUST UNITED AC 2011. [DOI: 10.5010/jpb.2011.38.4.251] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Assessment of the genetic stability of GMOs with a detailed examination of MON810 using Scorpion probes. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1487-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Liu X, Jin W, Liu J, Zhao H, Guo A. Transformation of wheat with the HMW-GS 1Bx14 gene without markers. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411010066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Latham JR, Wilson AK, Steinbrecher RA. The mutational consequences of plant transformation. J Biomed Biotechnol 2010; 2006:25376. [PMID: 16883050 PMCID: PMC1559911 DOI: 10.1155/jbb/2006/25376] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plant transformation is a genetic engineering tool for introducing transgenes into plant genomes. It is now being used for the
breeding of commercial crops. A central feature of transformation is insertion of the transgene into plant chromosomal DNA.
Transgene insertion is infrequently, if ever, a precise event. Mutations found at transgene insertion sites include deletions and
rearrangements of host chromosomal DNA and introduction of superfluous DNA. Insertion sites introduced using Agrobacterium tumefaciens tend to have simpler structures but can be associated with extensive chromosomal rearrangements, while those of particle bombardment appear invariably to be associated with deletion and extensive scrambling of inserted and chromosomal DNA. Ancillary procedures associated with plant transformation, including tissue culture and infection with A tumefaciens, can also introduce mutations. These genome-wide mutations can number from hundreds to many thousands per diploid genome.
Despite the fact that confidence in the safety and dependability of crop species rests significantly
on their genetic integrity, the frequency of transformation-induced mutations and their importance as potential biosafety hazards are poorly understood.
Collapse
Affiliation(s)
- Jonathan R. Latham
- Bioscience Resource Project, PO Box 66,
Ledbury HR8 9AE, UK
- EcoNexus, PO Box 3279, Brighton BN1 1TL, UK
- *Jonathan R. Latham:
| | - Allison K. Wilson
- Bioscience Resource Project, PO Box 66,
Ledbury HR8 9AE, UK
- EcoNexus, PO Box 3279, Brighton BN1 1TL, UK
| | | |
Collapse
|
25
|
Filipenko EA, Deineko EV, Shumnyi VK. Specific features of T-DNA insertion regions in transgenic plants. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409110040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Abstract
Ever since the first developments in plant transformation technology using model plant species in the early 1980s, there has been a body of plant science research devoted to adapting these techniques to the transformation of crop plants. For some crop species progress was relatively rapid, but in other crop groups such as the small grain cereals, which were not readily amenable to culture in vitro and were not natural hosts to Agrobacterium, it has taken nearly two decades to develop reliable and robust transformation methods.In the following chapters of this book, transformation procedures for small grain cereals are presented, together with methods for gene and protein expression and the characterization of transgenic plants. In this introductory chapter we try to put these later chapters into context, giving an overview of the development of transformation technology for small grain cereals, discussing some of the pros and cons of the techniques and what limitations still exist.
Collapse
|
27
|
Abstract
Regions of DNA that bind to the nuclear matrix, or nucleoskeleton, are known as Matrix Attachment Regions (MARs). MARs are thought to play an important role in higher-order structure and chromatin organization within the nucleus. MARs are also thought to act as boundaries of chromosomal domains that act to separate regions of gene-rich, decondensed euchromatin from highly repetitive, condensed heterochromatin. Herein I will present evidence that MARs do indeed act as domain boundaries and can prevent the spread of silencing into active genes. Many fundamental questions remain unanswered about how MARs function in the nucleus. New findings in epigenetics indicate that MARs may also play an important role in the organization of genes and the eventual transport of their mRNAs through the nuclear pore.
Collapse
|
28
|
Artificial chromosome formation in maize (Zea mays L.). Chromosoma 2008; 118:157-77. [DOI: 10.1007/s00412-008-0191-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 12/11/2022]
|
29
|
Moeller L, Wang K. Engineering with Precision: Tools for the New Generation of Transgenic Crops. Bioscience 2008. [DOI: 10.1641/b580506] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
30
|
Pleiotropic effects of the chitinase gene from Serratia plymuthica in transgenic potato. CYTOL GENET+ 2008. [DOI: 10.1007/s11956-008-2001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Zolla L, Rinalducci S, Antonioli P, Righetti PG. Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications. J Proteome Res 2008; 7:1850-61. [PMID: 18393457 DOI: 10.1021/pr0705082] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To improve the probability of detecting unintended side effects during maize gene manipulations by bombardment, proteomics was used as an analytical tool complementary to the existing safety assessment techniques. Since seed proteome is highly dynamic, depending on the species variability and environmental influence, we analyzed the proteomic profiles of one transgenic maize variety (event MON 810) in two subsequent generations (T05 and T06) with their respective isogenic controls (WT05 and WT06). Thus, by comparing the proteomic profiles of WT05 with WT06 we could determine the environmental effects, while the comparison between WT06 and T06 seeds from plants grown under controlled conditions enabled us to investigate the effects of DNA manipulation. Finally, by comparison of T05 with T06 seed proteomes, it was possible to get some indications about similarities and differences between the adaptations of transgenic and isogenic plants to the same strictly controlled growth environment. Approximately 100 total proteins resulted differentially modulated in the expression level as a consequence of the environmental influence (WT06 vs WT05), whereas 43 proteins resulted up- or down-regulated in transgenic seeds with respect to their controls (T06 vs WT06), which could be specifically related to the insertion of a single gene into a maize genome by particle bombardment. Transgenic seeds responded differentially to the same environment as compared to their respective isogenic controls, as a result of the genome rearrangement derived from gene insertion. To conclude, an exhaustive differential proteomic analysis allows to determine similarities and differences between traditional food and new products (substantial equivalence), and a case-by-case assessment of the new food should be carried out in order to have a wide knowledge of its features.
Collapse
Affiliation(s)
- Lello Zolla
- Department of Environmental Sciences, University of Tuscia, Viterbo, Italy.
| | | | | | | |
Collapse
|
32
|
Rai M, Datta K, Parkhi V, Tan J, Oliva N, Chawla HS, Datta SK. Variable T-DNA linkage configuration affects inheritance of carotenogenic transgenes and carotenoid accumulation in transgenic indica rice. PLANT CELL REPORTS 2007; 26:1221-31. [PMID: 17377795 DOI: 10.1007/s00299-007-0333-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Revised: 02/22/2007] [Accepted: 02/25/2007] [Indexed: 05/04/2023]
Abstract
Transgenics for the expression of beta-carotene biosynthetic pathway in the endosperm were developed in indica rice background by introducing phytoene synthase (psy) and phytoene desaturase (crtI) genes through Agrobacterium-mediated transformation, employing non-antibiotic positive selectable marker phosphomannose isomerase (pmi). Twenty-seven transgenic lines were characterized for the structural organization of T-DNA inserts and the expression of transgenes in terms of total carotenoid and beta-carotene accumulation in the endosperm. Ten lines were also studied for the inheritance of transgenic loci to the T(1) progenies. Copy number and sites of integration of the transgenes ranged from one to four. Almost 50% of the transgenic lines showed rearrangement of T-DNA inserts. However, most of the rearrangements occurred in the crtI expression cassette which is adjacent to the right T-DNA border. Differences in copy numbers of psy and crtI were also observed indicating partial T-DNA integration. Beyond T-DNA border transfer was also detected in 25% of the lines. Fifty percent of the lines studied showed single Mendelian locus inheritance, while two lines showed bi-locus inheritance in the T(1) progenies. Some of the lines segregating in 3:1 ratio showed two sites of integration on restriction digestion analysis indicating that the T-DNA insertion sites were tightly linked. Three transgenic lines showed nonparental types in the segregating progenies, indicating unstable transgenic locus. Evidences from the HPLC analysis showed that multiple copies of transgenes had a cumulative effect on the accumulation of carotenoid in the endosperm. T(1) progenies, in general, accumulated more carotenoids than their respective parents, the highest being 6.77 mug/g of polished seeds. High variation in the carotenoid accumulation was observed within the T(1) progenies which could be attributed to the variation in the structural organization and expression of transgenes, minor variations in the genetic background within the progeny plants, or differences in the plant microenvironments. The study identified lines worthy of further multiplication and breeding based on transgene structural integrity in the segregating progeny and high expression levels in terms of the beta-carotene accumulation.
Collapse
Affiliation(s)
- Mayank Rai
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| | | | | | | | | | | | | |
Collapse
|
33
|
Makarevitch I, Somers DA. Association of Arabidopsis topoisomerase IIA cleavage sites with functional genomic elements and T-DNA loci. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:697-709. [PMID: 17092318 DOI: 10.1111/j.1365-313x.2006.02915.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Topoisomerase IIA (Topo IIA) is an essential ubiquitous enzyme involved in controlling DNA topology during multiple processes of genome function, and has been implicated in the generation of double-stranded breaks (DSB) in genomic DNA prior to DNA integration in plant genomes. Despite extensive characterization of type II topoisomerases from bacteria, viruses and animals, no studies on the specificity of plant Topo IIA-mediated DNA cleavage have been reported. We mapped and characterized Arabidopsis thaliana Topo IIA (AtTopoIIA) cleavage sites and demonstrated that they were cleaved in vivo. The consensus for the AtTopoIIA cleavage sites (ANNNRN downward arrowGTACNTNNNY) was significantly different from recognition sequences reported for Topo IIA from other organisms. The mapped cleavage sites were abundant in the Arabidopsis genome, exhibited a weak consensus, and were cleaved with relatively low efficiency. Use of the systematic evolution of ligands by exponential enrichment (SELEX) protocol identified a single, efficiently cleaved sequence TATATATATGTATATATATA that was over-represented in the genome. The mapped AtTopoIIA cleavage sites and the SELEX sites differed in their genomic distribution and associations with gene regulatory elements, matrix attachment regions, stress-induced DNA duplex destabilization sequences and T-DNA loci, suggesting different genome functions. Mapped AtTopoIIA sites but not SELEX sites were strongly associated with T-DNA integration sites, providing evidence for the involvement of AtTopoIIA-mediated DSB formation in T-DNA integration.
Collapse
Affiliation(s)
- Irina Makarevitch
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Buford Circle, St Paul, MN 55108, USA
| | | |
Collapse
|
34
|
Uh M, Khattra J, Devlin RH. Transgene constructs in coho salmon (Oncorhynchus kisutch) are repeated in a head-to-tail fashion and can be integrated adjacent to horizontally-transmitted parasite DNA. Transgenic Res 2006; 15:711-27. [PMID: 16952013 DOI: 10.1007/s11248-006-9016-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Accepted: 05/19/2006] [Indexed: 11/24/2022]
Abstract
Currently, little information is available regarding the molecular organization of integrated transgenes in genetically-engineered fish. We performed a detailed structural analysis of an inserted transgene in one strain (M77) of transgenic coho salmon (Oncorhynchus kisutch) containing a salmon growth hormone gene construct (OnMTGH1). Microinjected DNA was found to have inserted into a single site in the coho salmon genome, and was organized with four complete internal copies and two partial terminal copies of the OnMTGH1 construct. All construct copies were organized in a direct-tandem (head-to-tail) repeat fashion in strain M77 and five additional strains (one also possessed a second recombinant junction fragment). For strain M77, the junctions between the transgene insert and the insertion point within the wild-type genome were cloned from strain-specific cosmid libraries and sequenced, revealing that the transgene insertion was accompanied by a deletion of 587 bp of wild-type DNA as well as a small insertion (19 bp) of unknown DNA upstream and a 14 bp direct- tandem duplication of sequence downstream. Upstream and downstream wild-type DNA sequence contained several repetitive sequence elements based on Southern blot analysis and homology to repetitive sequences in GenBank. In the downstream flank, a pseudogene sequence was also identified which has high homology to the CA membrane protein gene from Schistosoma japonicum, a parasite closely related to Sanguinicola sp. parasites which infect salmonids. Whether the presence of an inserted transgene and the presence of potentially horizontally-transmitted DNA are indicative of a genomic region with a predisposition for insertion of foreign DNA requires further study. The information derived from this transgene structure provides information useful for comparison to other transgenic organisms and for determination of the mechanism of transgene integration in lower vertebrates.
Collapse
Affiliation(s)
- Mitchell Uh
- Centre for Aquaculture and Environmental Research, Fisheries and Oceans Canada, West Vancouver, BC, Canada
| | | | | |
Collapse
|
35
|
Cotsaftis O, Guiderdoni E. Enhancing gene targeting efficiency in higher plants: rice is on the move. Transgenic Res 2005; 14:1-14. [PMID: 15865044 DOI: 10.1007/s11248-004-4066-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Meeting the challenge of routine gene targeting (GT) in higher plants is of crucial interest to researchers and plant breeders who are currently in need of a powerful tool to specifically modify a given locus in a genome. Higher plants have long been considered the last lineage resistant to targeting technology. However, a recent report described an efficient method of T-DNA-mediated targeted disruption of a non-selectable locus in rice [Terada et al., Nat Biotechnol 20: 1030-1034 (2002)]. Though this study was an obvious breakthrough, further improvement of GT frequencies may derive from a better understanding of the natural mechanisms that control homologous recombination (HR) processes. In this review, we will focus on what is known about HR and the factors which may hamper the development of routine GT by HR in higher plants. We will also present the current strategies envisaged to overcome these limitations, such as expression of recombination proteins and refinements in the design of the transformation vector.
Collapse
Affiliation(s)
- Olivier Cotsaftis
- UMR1096 PIA, Biotrop Program, Cirad-Amis, Avenue Agropolis, F-34398 Montpellier Cedex 5, France.
| | | |
Collapse
|
36
|
|
37
|
|
38
|
Francis KE, Spiker S. Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:464-77. [PMID: 15659104 DOI: 10.1111/j.1365-313x.2004.02312.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Several recent investigations of T-DNA integration sites in Arabidopsis thaliana have reported 'cold spots' of integration, especially near centromeric regions. These observations have contributed to the ongoing debate over whether T-DNA integration is random or occurs preferentially in transcriptionally active regions. When transgenic plants are identified by selecting or screening for transgenic activity, transformants with integrations into genomic regions that suppress transcription, such as heterochromatin, may not be identified. This phenomenon, which we call selection bias, may explain the perceived non-random distribution of T-DNA integration in previous studies. In order to investigate this possibility, we have characterized the sites of T-DNA integration in the genomes of transgenic plants identified by pooled polymerase chain reaction (PCR), a procedure that does not require expression of the transgene, and is therefore free of selection bias. Over 100 transgenic Arabidopsis plants were identified by PCR and compared with kanamycin-selected transformants from the same T(1) seed pool. A higher perceived transformation efficiency and a higher frequency of transgene silencing were observed in the PCR-identified lines. Together, the data suggest approximately 30% of transformation events may result in non-expressing transgenes that would preclude identification by selection. Genomic integration sites in PCR-identified lines were compared with those in existing T-DNA integration databases. In PCR-identified lines with silenced transgenes, the integration sites mapped to regions significantly underrepresented by T-DNA integrations in studies where transformants were identified by selection. The data presented here suggest that selection bias can account for at least some of the observed non-random integration of T-DNA into the Arabidopsis genome.
Collapse
Affiliation(s)
- Kirk E Francis
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
| | | |
Collapse
|
39
|
Charity JA, Holland L, Grace LJ, Walter C. Consistent and stable expression of the nptII, uidA and bar genes in transgenic Pinus radiata after Agrobacterium tumefaciens-mediated transformation using nurse cultures. PLANT CELL REPORTS 2005; 23:606-16. [PMID: 15449015 DOI: 10.1007/s00299-004-0851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 07/03/2004] [Accepted: 07/05/2004] [Indexed: 05/09/2023]
Abstract
An Agrobacterium tumefaciens-mediated transformation protocol has been developed for embryogenic cell cultures of Pinus radiata. Transgenic lines were only produced when embryogenic tissue was placed on nurse tissue during the Agrobacterium co-cultivation and recovery stages of the procedure. Plantlets were regenerated via somatic embryogenesis from ten of the 11 transgenic lines tested and at least 20 of each line were planted in a GMO glasshouse. Expression of the nptII, uidA and bar genes in up to ten plants of each individual transgenic line was evaluated by molecular, biochemical and functional analysis. As expected, expression of the nptII gene varied among the ten lines, while within ten replicates of the same line, nptII expression appeared to be consistent, with the exception of one line, K3. Likewise, the level of GUS activity varied among transgenic lines, but was relatively consistent in plants derived from the same tissue, except for two lines, G4 and G5. Moreover, similar absolute values and pattern of gene expression of uidA was observed in the transgenic plants, for two consecutive years. Plantlets from eight lines survived a spray treatment with the equivalent of 2 kg/ha and 4 kg/ha of the commercial formulation Buster, whereas non-transformed controls died. Southern hybridisation analysis of embryogenic tissue and green needle tissue from putative transgenic lines demonstrated a relatively low number of gene insertions (from one to nine) of both the bar and nptII genes in the nine transgenic lines tested.
Collapse
Affiliation(s)
- J A Charity
- Cellwall Biotechnology Centre, Forest Research, Private Bag 3020, Rotorua, New Zealand.
| | | | | | | |
Collapse
|
40
|
Song R, Segal G, Messing J. Expression of the sorghum 10-member kafirin gene cluster in maize endosperm. Nucleic Acids Res 2004; 32:e189. [PMID: 15625231 PMCID: PMC545481 DOI: 10.1093/nar/gnh183] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Functional analysis of chromosomal segments containing linked genes requires the insertion of contiguous genomic sequences from bacterial artificial chromosomes (BACs) into the genome. Therefore, we introduced a 90-kb large BAC clone carrying a 10-copy tandem array of kafirin storage protein genes from sorghum linkage group J, mixed with a selectable marker gene, directly into maize cells using the particle bombardment method. Transgenic plants were regenerated and seeds from eight different transgenic lines were produced. One such transgenic plant was selected that had the entire kafirin gene cluster on a single continuous DNA fragment spanning more than 45 kb integrated into its genome. When alcohol-soluble proteins from individual T2 and T3 seeds of this event were analyzed, significant levels of kafirin were found in addition to the endogenous zein storage proteins, demonstrating that the large exogenous DNA segment is stably integrated into the maize genome and expressed at high levels in subsequent generations. Therefore, we could provide a new utility of plant transformation by the particle bombardment method for functional genomics of multigene families and the modification of the nutritive quality of cereal grains. Despite a tandem array of highly homologous sequences at the transgenic locus, no gene silencing was observed, probably owing to the effects of co-transformed flanking sequences. The expression studies of the transgenic locus also revealed new features of storage protein gene promoters that differed from previous transient gene expression studies, thereby illustrating the significance of the concentration and configuration of DNA-protein interactions in the regulation of gene expression.
Collapse
Affiliation(s)
- Rentao Song
- Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | |
Collapse
|
41
|
Somers DA, Makarevitch I. Transgene integration in plants: poking or patching holes in promiscuous genomes? Curr Opin Biotechnol 2004; 15:126-31. [PMID: 15081050 DOI: 10.1016/j.copbio.2004.02.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transgene integration in plants transformed by either Agrobacterium or direct DNA delivery methods occurs through illegitimate recombination (IR). The precise mechanism(s) for IR-mediated transgene integration and the role of host double-strand break repair enzymes remain unknown. A recent wealth of sequenced transgene loci and investigations aimed at genetically dissecting transgene integration mechanism(s) have provided new insights into the process.
Collapse
Affiliation(s)
- David A Somers
- Department of Agronomy and Plant Genetics, Plant Molecular Genetics Institute, University of Minnesota, 1991 Upper Buford Circle, St. Paul, Minnesota, USA.
| | | |
Collapse
|
42
|
Huang CY, Ayliffe MA, Timmis JN. Simple and complex nuclear loci created by newly transferred chloroplast DNA in tobacco. Proc Natl Acad Sci U S A 2004; 101:9710-5. [PMID: 15210980 PMCID: PMC470740 DOI: 10.1073/pnas.0400853101] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 05/21/2004] [Indexed: 11/18/2022] Open
Abstract
Transfer of organelle DNA into the nuclear genome has been significant in eukaryotic evolution, because it appears to be the origin of many nuclear genes. Most studies on organelle DNA transfer have been restricted to evolutionary events but experimental systems recently became available to monitor the process in real time. We designed an experimental screen to detect plastid DNA (ptDNA) transfers to the nucleus in whole plants grown under natural conditions. The resultant genotypes facilitated investigation of the evolutionary mechanisms underlying ptDNA transfer and nuclear integration. Here we report the characterization of nuclear loci formed by integration of newly transferred ptDNA. Large, often multiple, fragments of ptDNA between 6.0 and 22.3 kb in size are incorporated into chromosomes at single Mendelian loci. The lack of chloroplast transcripts of comparable size to the ptDNA integrants suggests that DNA molecules are directly involved in the transfer process. Microhomology (2-5 bp) and rearrangements of ptDNA and nuclear DNA were frequently found near integration sites, suggesting that nonhomologous recombination plays a major role in integration. The mechanisms of ptDNA integration appear similar to those of biolistic transformation of plant cells, but no sequence preference was identified near junctions. This article provides substantial molecular analysis of real-time ptDNA transfer and integration that has resulted from natural processes with no involvement of cell injury, infection, and tissue culture. We highlight the impact of cytoplasmic organellar genome mobility on nuclear genome evolution.
Collapse
Affiliation(s)
- Chun Y Huang
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide SA 5005, Australia
| | | | | |
Collapse
|