1
|
Iyshwarya B, Vajagathali M, Ramakrishnan V. Investigation of Genetic Polymorphism in Autism Spectrum Disorder: a Pathogenesis of the Neurodevelopmental Disorder. ADVANCES IN NEURODEVELOPMENTAL DISORDERS 2022; 6:136-146. [DOI: 10.1007/s41252-022-00251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 12/07/2023]
|
2
|
Raznahan A, Lee Y, Vaituzis C, Tran L, Mackie S, Tiemeier H, Clasen L, Lalonde F, Greenstein D, Pierson R, Giedd JN. Allelic variation within the putative autism spectrum disorder risk gene homeobox A1 and cerebellar maturation in typically developing children and adolescents. Autism Res 2012; 5:93-100. [PMID: 22359339 DOI: 10.1002/aur.238] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 11/02/2011] [Indexed: 12/13/2022]
Abstract
Homeobox A1 (HOXA1) has been proposed as a candidate gene for autism spectrum disorder (ASD) as it regulates embryological patterning of hind-brain structures implicated in autism neurobiology. In line with this notion, a nonsynonymous single nucleotide polymorphism within a highly conserved domain of HOXA1--A218G (rs10951154)--has been linked to both ASD risk, and cross-sectional differences in superior posterior lobar cerebellar anatomy in late adulthood. Despite evidence for early onset and developmentally dynamic cerebellar involvement in ASD, little is known of the relationship between A218G genotype and maturation of the cerebellum over early development. We addressed this issue using 296 longitudinally acquired structural magnetic resonance imaging brain scans from 116 healthy individuals between 5 and 23 years of age. Mixed models were used to compare the relationship between age and semi-automated measures of cerebellar volume in A-homozygotes (AA) and carriers of the G allele (Gcar). Total cerebellar volume increased between ages of 5 and 23 years in both groups. However, this was accelerated in the Gcar relative to the AA group (Genotype-by-age interaction term, P = 0.03), and driven by genotype-dependent differences in the rate of bilateral superior posterior lobar volume change with age (P = 0.002). Resultantly, although superior posterior lobar volume did not differ significantly between genotype groups at age 5 (P = 0.9), by age 23 it was 12% greater in Gcar than AA (P = 0.002). Our results suggest that common genetic variation within this putative ASD risk gene has the capacity to modify the development of cerebellar systems implicated in ASD neurobiology.
Collapse
Affiliation(s)
- Armin Raznahan
- Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Song RR, Zou L, Zhong R, Zheng XW, Zhu BB, Chen W, Liu L, Miao XP. An integrated meta-analysis of two variants in HOXA1/HOXB1 and their effect on the risk of autism spectrum disorders. PLoS One 2011; 6:e25603. [PMID: 21980499 PMCID: PMC3183057 DOI: 10.1371/journal.pone.0025603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/07/2011] [Indexed: 01/13/2023] Open
Abstract
Background HOXA1 and HOXB1 have been strongly posed as candidate genes for autism spectrum disorders (ASD) given their important role in the development of hindbrain. The A218G (rs10951154) in HOXA1 and the insertion variant in HOXB1 (nINS/INS, rs72338773) were of special interest for ASD but with inconclusive results. Thus, we conducted a meta-analysis integrating case-control and transmission/disequilibrium test (TDT) studies to clearly discern the effect of these two variants in ASD. Methods and Findings Multiple electronic databases were searched to identify studies assessing the A218G and/or nINS/INS variant in ASD. Data from case-control and TDT studies were analyzed in an allelic model using the Catmap software. A total of 10 and 7 reports were found to be eligible for meta-analyses of A218G and nINS/INS variant, respectively. In overall meta-analysis, the pooled OR for the 218G allele and the INS allele was 0.97 (95% CI = 0.76-1.25, Pheterogeneity = 0.029) and 1.14 (95% CI = 0.97-1.33, Pheterogeneity = 0.269), respectively. No significant association was also identified between these two variants and ASD risk in stratified analysis. Further, cumulative meta-analysis in chronologic order showed the inclination toward null-significant association for both variants with continual adding studies. Additionally, although the between-study heterogeneity regarding the A218G is not explained by study design, ethnicity, and sample size, the sensitive analysis indicated the stability of the result. Conclusions This meta-analysis suggests the HOXA1 A218G and HOXB1 nINS/INS variants may not contribute significantly to ASD risk.
Collapse
Affiliation(s)
- Ran-Ran Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Epidemiology and Biostatistics and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia-Wen Zheng
- Department of Epidemiology and Biostatistics and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bei-Bei Zhu
- Department of Epidemiology and Biostatistics and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- Department of Epidemiology and Biostatistics and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Guangdong Key Lab of Molecular Epidemiology and Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- * E-mail: (XM); (LL)
| | - Xiao-Ping Miao
- Department of Epidemiology and Biostatistics and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (XM); (LL)
| |
Collapse
|
4
|
Schaaf CP, Sabo A, Sakai Y, Crosby J, Muzny D, Hawes A, Lewis L, Akbar H, Varghese R, Boerwinkle E, Gibbs RA, Zoghbi HY. Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders. Hum Mol Genet 2011; 20:3366-75. [PMID: 21624971 PMCID: PMC3153303 DOI: 10.1093/hmg/ddr243] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of neuro-developmental disorders. While significant progress has been made in the identification of genes and copy number variants associated with syndromic autism, little is known to date about the etiology of idiopathic non-syndromic autism. Sanger sequencing of 21 known autism susceptibility genes in 339 individuals with high-functioning, idiopathic ASD revealed de novo mutations in at least one of these genes in 6 of 339 probands (1.8%). Additionally, multiple events of oligogenic heterozygosity were seen, affecting 23 of 339 probands (6.8%). Screening of a control population for novel coding variants in CACNA1C, CDKL5, HOXA1, SHANK3, TSC1, TSC2 and UBE3A by the same sequencing technology revealed that controls were carriers of oligogenic heterozygous events at significantly (P < 0.01) lower rate, suggesting oligogenic heterozygosity as a new potential mechanism in the pathogenesis of ASDs.
Collapse
Affiliation(s)
- Christian P Schaaf
- Department of Molecular and Human Genetics, Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Canu E, Boccardi M, Ghidoni R, Benussi L, Duchesne S, Testa C, Binetti G, Frisoni GB. HOXA1 A218G polymorphism is associated with smaller cerebellar volume in healthy humans. J Neuroimaging 2009; 19:353-8. [PMID: 19018953 DOI: 10.1111/j.1552-6569.2008.00326.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The Homeobox A1 (HOXA1) gene plays a critical role during development of the hindbrain in mice. Little is currently known about the relation between this gene and human brain development. The HOXA1 A218G polymorphism has been found to be associated with autism and larger head circumference in autistic patients. Similar effects were revealed also in healthy children but not in adult controls. The aim of this study was to investigate the role of the A218G polymorphism on the hindbrain structure of healthy adults. METHODS Healthy persons from two independent groups underwent 3-dimensional high resolution magnetic resonance (MR) exam. Group A was made of 80 persons (27 G allele carriers and 53 non-carriers) and Group B of 72 (26 carriers and 46 non-carriers). Statistical parametric mapping 2 (SPM2) were used to perform voxel-based analysis of the gray matter (GM) of the hindbrain in carriers and non. Significance threshold was set at .05 with small volume correction using a cerebellar mask. RESULTS In Group A, G carriers exhibited decreased GM volume in the superior posterior and anterior lobe of the cerebellum bilaterally. In Group B, decreased GM volume were found across the entire left cerebellar cortex. CONCLUSIONS These data suggest that the HOXA1 A218G polymorphism may affect cerebellar development in humans.
Collapse
Affiliation(s)
- Elisa Canu
- LENITEM Laboratory of Epidemiology, Neuroimaging, and Telemedicin-IRCCS Centro S Giovanni di Dio-FBF, Brescia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Engrailed2 and Cerebellar Development in the Pathogenesis of Autism Spectrum Disorders. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2008. [DOI: 10.1007/978-1-60327-489-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Abstract
Twin and family studies in autistic disorders (AD) have elucidated a high heritability of the narrow and broad phenotype of AD. In this review on the genetics of AD, we will initially delineate the phenotype of AD and discuss aspects of differential diagnosis, which are particularly relevant with regard to the genetics of autism. Cytogenetic and molecular genetic studies will be presented in detail, and the possibly involved aetiopathological pathways will be described. Implications of the different genetic findings for genetic counselling will be mentioned.
Collapse
Affiliation(s)
- C M Freitag
- Department of Child and Adolescent Psychiatry, Saarland University Hospital, Homburg, Germany.
| |
Collapse
|
8
|
Tordjman S, Drapier D, Bonnot O, Graignic R, Fortes S, Cohen D, Millet B, Laurent C, Roubertoux PL. Animal models relevant to schizophrenia and autism: validity and limitations. Behav Genet 2006; 37:61-78. [PMID: 17160702 DOI: 10.1007/s10519-006-9120-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
Development of animal models is a crucial issue in biological psychiatry. Animal models provide the opportunity to decipher the relationships between the nervous system and behavior and they are an obligatory step for drug tests. Mouse models or rat models to a lesser extent could help to test for the implication of a gene using gene targeting or transfecting technologies. One of the main problem for the development of animal models is to define a marker of the psychiatric disorder. Several markers have been suggested for schizophrenia and autism, but for the moment no markers or etiopathogenic mechanisms have been identified for these disorders. We examined here animal models related to schizophrenia and autism and discussed their validity and limitations after first defining these two disorders and considering their similarities and differences. Animal models reviewed in this article test mainly behavioral dimensions or biological mechanisms related to autistic disorder or schizophrenia rather than providing specific categorical models of autism or schizophrenia. Furthermore, most of these studies focus on a behavioral dimension associated with an underlying biological mechanism, which does not correspond to the complexity of mental disorders. It could be useful to develop animal models relevant to schizophrenia or autism to test a behavioral profile associated with a biological profile. A multi-trait approach seems necessary to better understand multidimensional disorders such as schizophrenia and autism and their biological and clinical heterogeneity. Finally, animal models can help us to clarify complex mechanisms and to study relationships between biological and behavioral variables and their interactions with environmental factors. The main interest of animal models is to generate new pertinent hypotheses relevant to humans opening the path to innovative research.
Collapse
Affiliation(s)
- Sylvie Tordjman
- Service Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Université de Rennes 1 et Centre Hospitalier Guillaume Régnier, 154 rue de Châtillon, 35200, Rennes, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Induction of the homeotic gene Hoxa1 through valproic acid's teratogenic mechanism of action. Neurotoxicol Teratol 2006; 28:617-24. [DOI: 10.1016/j.ntt.2006.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 07/20/2006] [Accepted: 08/10/2006] [Indexed: 11/21/2022]
|
10
|
Abstract
Autism is a neurodevelopmental disorder of genetic origins, with a heritability of about 90%. Autistic disorder is classed within the broad domain of pervasive developmental disorders (PDD) that also includes Rett syndrome, childhood disintegrative disorder, Asperger syndrome, and PDD not otherwise specified (PDD-NOS). Prevalence estimates suggest a rate of 0.1-0.2% for autism and 0.6% for the range of PDD disorders. There is considerable phenotypic heterogeneity within this class of disorders as well as continued debate regarding their clinical boundaries. Autism is the prototypical PDD, and is characterized by impairments in three core domains: social interaction, language development, and patterns of behavior (restricted and stereotyped). Clinical pattern and severity of impairment vary along these dimensions, and the level of cognitive functioning of individuals with autism spans the entire range, from profound mental retardation to superior intellect. There is no single biological or clinical marker for autism, nor is it expected that a single gene is responsible for its expression; as many as 15+ genes may be involved. However, environmental influences are also important, as concordance in monozygotic twins is less than 100% and the phenotypic expression of the disorder varies widely, even within monozygotic twins. Multiple susceptibility factors are being explored using varied methodologies, including genome-wide linkage studies, and family- and case-control candidate gene association studies. This paper reviews what is currently known about the genetic and environmental risk factors, neuropathology, and psychopharmacology of autism. Discussion of genetic factors focuses on the findings from linkage and association studies, the results of which have implicated the involvement of nearly every chromosome in the human genome. However, the most consistently replicated linkage findings have been on chromosome 7q, 2q, and 15q. The positive associations from candidate gene studies are largely unreplicated, with the possible exceptions of the GABRB3 and serotonin transporter genes. No single region of the brain or pathophysiological mechanism has yet been identified as being associated with autism. Postmortem findings, animal models, and neuroimaging studies have focused on the cerebellum, frontal cortex, hippocampus, and especially the amygdala. The cerebello-thalamo-cortical circuit may also be influential in autism. There is evidence that overall brain size is increased in some individuals with autism. Presently there are no drugs that produce major improvements in the core social or pragmatic language deficits in autism, although several have limited effects on associated behavioral features. The application of new techniques in autism research is being proposed, including the investigation of abnormal regulation of gene expression, proteomics, and the use of MRI and postmortem analysis of the brain.
Collapse
Affiliation(s)
- Susan L Santangelo
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| | | |
Collapse
|
11
|
Murcia CL, Gulden F, Herrup K. A question of balance: a proposal for new mouse models of autism. Int J Dev Neurosci 2004; 23:265-75. [PMID: 15749251 DOI: 10.1016/j.ijdevneu.2004.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 07/01/2004] [Accepted: 07/02/2004] [Indexed: 11/24/2022] Open
Abstract
Autism spectrum disorder (ASD) represents a major mental health problem with estimates of prevalence ranging from 1/500 to 1/2000. While generally recognized as developmental in origin, little to nothing is certain about its etiology. Currently, diagnosis is made on the basis of a variety of early developmental delays and/or regressions in behavior. There are no universally agreed upon changes in brain structure or cell composition. No biomarkers of any type are available to aid or confirm the clinical diagnosis. In addition, while estimates of the heritability of the condition range from 60 to 90%, as of this writing no disease gene has been unequivocally identified. The prevalence of autism is three- to four-fold higher in males than in females, but the reason for this sexual dimorphism is unknown. In light of all of these ambiguities, a proposal to discuss potential animal models may seem the heart of madness. However, parsing autism into its individual genetic, behavioral, and neurobiological components has already facilitated a 'conversation' between the human disease and the neuropathology and biochemistry underlying the disorder. Building on these results, it should be possible to not just replicate one aspect of autism but to connect the developmental abnormalities underlying the ultimate behavioral phenotype. A reciprocal conversation such as this, wherein the human disease informs on how to make a better animal model and the animal model teaches of the biology causal to autism, would be highly beneficial.
Collapse
Affiliation(s)
- Crystal L Murcia
- Department of Neurosciences, School of Medicine, Case Western Reserve University, E504 2109 Adelbert Road, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
12
|
Abstract
Autism spectrum disorders (ASD) are among the most heritable of all neuropsychiatric disorders. Discovery of autism susceptibility genes has been the focus of intense research efforts over the last 10 years, and current estimates suggest that 10 to 20 different interacting genes are involved. Evidence from twin and family studies demonstrates increased risk in family members not only for autistic disorder, but also for a milder constellation of similar symptoms referred to as the broader phenotype. In addition, several genetic syndromes and chromosomal anomalies have been associated with ASD. Large family studies using linkage-analysis techniques have demonstrated several chromosomal regions thought to harbor genes related to the disorder. Finally, specific candidate genes based on function and location have been explored; these studies are reviewed here.
Collapse
Affiliation(s)
- Sarah J Spence
- UCLA Center for Autism Research and Treatment, UCLA Neuropsychiatric Institute, and Mattel Children's Hospital at UCLA, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
13
|
Conciatori M, Stodgell CJ, Hyman SL, O'Bara M, Militerni R, Bravaccio C, Trillo S, Montecchi F, Schneider C, Melmed R, Elia M, Crawford L, Spence SJ, Muscarella L, Guarnieri V, D'Agruma L, Quattrone A, Zelante L, Rabinowitz D, Pascucci T, Puglisi-Allegra S, Reichelt KL, Rodier PM, Persico AM. Association between the HOXA1 A218G polymorphism and increased head circumference in patients with autism. Biol Psychiatry 2004; 55:413-9. [PMID: 14960295 DOI: 10.1016/j.biopsych.2003.10.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Revised: 10/01/2003] [Accepted: 10/09/2003] [Indexed: 11/21/2022]
Abstract
BACKGROUND The HOXA1 gene plays a major role in brainstem and cranial morphogenesis. The G allele of the HOXA1 A218G polymorphism has been previously found associated with autism. METHODS We performed case-control and family-based association analyses, contrasting 127 autistic patients with 174 ethnically matched controls, and assessing for allelic transmission disequilibrium in 189 complete trios. RESULTS A, and not G, alleles were associated with autism using both case-control (chi(2) = 8.96 and 5.71, 1 df, p <.005 and <.025 for genotypes and alleles, respectively), and family-based (transmission/disequilibrium test chi(2) = 8.80, 1 df, p <.005) association analyses. The head circumference of 31 patients carrying one or two copies of the G allele displayed significantly larger median values (95.0th vs. 82.5th percentile, p <.05) and dramatically reduced interindividual variability (p <.0001), compared with 166 patients carrying the A/A genotype. CONCLUSIONS The HOXA1 A218G polymorphism explains approximately 5% of the variance in the head circumference of autistic patients and represents to our knowledge the first known gene variant providing sizable contributions to cranial morphology. The disease specificity of this finding is currently being investigated. Nonreplications in genetic linkage/association studies could partly stem from the dyshomogeneous distribution of an endophenotype morphologically defined by cranial circumference.
Collapse
Affiliation(s)
- Monica Conciatori
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Via Longoni 83, I-00155 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Collins JS, Schwartz CE. Detecting polymorphisms and mutations in candidate genes. Am J Hum Genet 2002; 71:1251-2. [PMID: 12452182 PMCID: PMC385117 DOI: 10.1086/344344] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|