1
|
Tu J, Wang Z, Yang F, Liu H, Qiao G, Zhang A, Wang S. The Female-Biased General Odorant Binding Protein 2 of Semiothisa cinerearia Displays Binding Affinity for Biologically Active Host Plant Volatiles. BIOLOGY 2024; 13:274. [PMID: 38666886 PMCID: PMC11048283 DOI: 10.3390/biology13040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Herbivorous insects rely on volatile chemical cues from host plants to locate food sources and oviposition sites. General odorant binding proteins (GOBPs) are believed to be involved in the detection of host plant volatiles. In the present study, one GOBP gene, ScinGOBP2, was cloned from the antennae of adult Semiothisa cinerearia. Reverse-transcription PCR and real-time quantitative PCR analysis revealed that the expression of ScinGOBP2 was strongly biased towards the female antennae. Fluorescence-based competitive binding assays revealed that 8 of the 27 host plant volatiles, including geranyl acetone, decanal, cis-3-hexenyl n-valerate, cis-3-hexenyl butyrate, 1-nonene, dipentene, α-pinene and β-pinene, bound to ScinGOBP2 (KD = 2.21-14.94 μM). The electrical activities of all eight ScinGOBP2 ligands were confirmed using electroantennography. Furthermore, oviposition preference experiments showed that eight host volatiles, such as decanal, cis-3-hexenyl n-valerate, cis-3-hexenyl butyrate, and α-pinene, had an attractive effect on female S. cinerearia, whereas geranyl acetone, 1-nonene, β-pinene, and dipentene inhibited oviposition in females. Consequently, it can be postulated that ScinGOBP2 may be implicated in the perception of host plant volatiles and that ScinGOBP2 ligands represent significant semiochemicals mediating the interactions between plants and S. cinerearia. This insight could facilitate the development of a chemical ecology-based approach for the management of S. cinerearia.
Collapse
Affiliation(s)
- Jingjing Tu
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China;
| | - Zehua Wang
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Fan Yang
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Han Liu
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Guanghang Qiao
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Aihuan Zhang
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China;
| | - Shanning Wang
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| |
Collapse
|
2
|
Brandt K, Dötterl S, Fuchs R, Navarro DMDAF, Machado ICS, Dobler D, Reiser O, Ayasse M, Milet-Pinheiro P. Subtle Chemical Variations with Strong Ecological Significance: Stereoselective Responses of Male Orchid Bees to Stereoisomers of Carvone Epoxide. J Chem Ecol 2019; 45:464-473. [DOI: 10.1007/s10886-019-01072-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
|
4
|
Abstract
A wide variety of organisms communicate via the chemical channel using small molecules. A structural feature quite often found is the lactone motif. In the present paper, the current knowledge on such lactones will be described, concentrating on the structure, chemistry, function, biosynthesis and synthesis of these compounds. Lactone semiochemicals from insects, vertebrates and bacteria, which this article will focus on, are particularly well investigated. In addition, some ideas on the advantageous use of lactones as volatile signals, which promoted their evolutionary development, will be discussed.
Collapse
Affiliation(s)
- Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | | |
Collapse
|
6
|
Byers JA. Modeling and Regression Analysis of Semiochemical Dose–Response Curves of Insect Antennal Reception and Behavior. J Chem Ecol 2013; 39:1081-9. [DOI: 10.1007/s10886-013-0328-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/25/2013] [Accepted: 07/16/2013] [Indexed: 11/30/2022]
|
7
|
Unusual macrocyclic lactone sex pheromone of Parcoblatta lata, a primary food source of the endangered red-cockaded woodpecker. Proc Natl Acad Sci U S A 2011; 109:E490-6. [PMID: 22184232 DOI: 10.1073/pnas.1111748109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wood cockroaches in the genus Parcoblatta, comprising 12 species endemic to North America, are highly abundant in southeastern pine forests and represent an important prey of the endangered red-cockaded woodpecker, Picoides borealis. The broad wood cockroach, Parcoblatta lata, is among the largest and most abundant of the wood cockroaches, constituting >50% of the biomass of the woodpecker's diet. Because reproduction in red-cockaded woodpeckers is affected dramatically by seasonal and spatial changes in arthropod availability, monitoring P. lata populations could serve as a useful index of habitat suitability for woodpecker conservation and forest management efforts. Female P. lata emit a volatile, long-distance sex pheromone, which, once identified and synthesized, could be deployed for monitoring cockroach populations. We describe here the identification, synthesis, and confirmation of the chemical structure of this pheromone as (4Z,11Z)-oxacyclotrideca-4,11-dien-2-one [= (3Z,10Z)-dodecadienolide; herein referred to as "parcoblattalactone"]. This macrocyclic lactone is a previously unidentified natural product and a previously unknown pheromonal structure for cockroaches, highlighting the great chemical diversity that characterizes olfactory communication in cockroaches: Each long-range sex pheromone identified to date from different genera belongs to a different chemical class. Parcoblattalactone was biologically active in electrophysiological assays and attracted not only P. lata but also several other Parcoblatta species in pine forests, underscoring its utility in monitoring several endemic wood cockroach species in red-cockaded woodpecker habitats.
Collapse
|
8
|
Mori K. Significance of chirality in pheromone science. Bioorg Med Chem 2007; 15:7505-23. [PMID: 17855097 DOI: 10.1016/j.bmc.2007.08.040] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/08/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
Abstract
Pheromones play important roles in chemical communication among organisms. Various chiral and non-racemic pheromones have been identified since the late 1960s. Their enantioselective syntheses could establish the absolute configuration of the naturally occurring pheromones and clarified the relationships between absolute configuration and bioactivity. For example, neither the (R)- nor (S)-enantiomer of sulcatol, the aggregation pheromone of an ambrosia beetle Gnathotrichus sulcatus, is behaviorally active, while their mixture is bioactive. In the case of olean, the olive fruit fly pheromone, its (R)-isomer is active for the males, and the (S)-isomer is active for the females. About 140 chiral pheromones are reviewed with regard to their stereochemistry-bioactivity relationships. Problems encountered in studying chirality of pheromones were examined and analyzed to think about possible future directions in pheromone science.
Collapse
Affiliation(s)
- Kenji Mori
- Photosensitive Materials Research Center, Toyo Gosei Co., Ltd, Wakahagi 4-2-1, Inba-mura, Inba-gun, Chiba 270-609, Japan
| |
Collapse
|
9
|
Gemeno C, Sans A, López C, Albajes R, Eizaguirre M. Pheromone antagonism in the European corn borer moth Ostrinia nubilalis. J Chem Ecol 2006; 32:1071-84. [PMID: 16739024 DOI: 10.1007/s10886-006-9046-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 12/09/2005] [Accepted: 01/19/2006] [Indexed: 11/28/2022]
Abstract
Mixing the sex pheromones of the Mediterranean corn borer, Sesamia nonagrioides, and the European corn borer, Ostrinia nubilalis, results in significantly lower captures of O. nubilalis when compared to traps loaded with its pheromone alone. Rubber septa loaded with a constant concentration of the pheromone of O. nubilalis and different percentages of the S. nonagrioides pheromone (from 1 to 100%) causes dose-dependent antagonism in the field. Electroantennograms of O. nubilalis males showed high antennal responses to its own pheromone components, followed by smaller responses to the major, [(Z)-11-hexadecenyl acetate (Z11-16:Ac)], and two minor components [dodecyl acetate (12:Ac) and (Z)-11-hexadecenal (Z11-16:Ald)] of the S. nonagrioides pheromone. There was almost no response to the S. nonagrioides minor component (Z)-11-hexadecenol (Z11-16:OH). Field tests that used traps baited with the O. nubilalis pheromone plus individual components of S. nonagrioides showed that Z11-16:Ald causes the antagonism. Adding 1% Z11-16:Ald to the pheromone of O. nubilalis reduced oriented flight and pheromone source contact in the wind tunnel by 26% and 83%, respectively, and trap captures in the field by 90%. The other three pheromone components of S. nonagrioides inhibited pheromone source contact but not oriented flight of O. nubilalis males and did not inhibit capture in the field. Cross-adaptation electroantennogram suggests that Z11-16:Ald stimulates a different odor receptor neuron than the pheromone components of O. nubilalis. We conclude that Z11-16:Ald is a potent antagonist of the behavioral response of O. nubilalis.
Collapse
Affiliation(s)
- César Gemeno
- Centre UdL-IRTA, Universitat de Lleida, Avda. Alcalde Rovira Roure 191, Lleida 25198, Spain.
| | | | | | | | | |
Collapse
|
10
|
Thibout E, Arnault I, Auger J, Petersen KS, Oliver JE. Characterization of a Behaviorally Active, Gender-Specific Volatile Compound from the Male Asparagus Fly Plioreocepta poeciloptera. J Chem Ecol 2005; 31:893-909. [PMID: 16124258 DOI: 10.1007/s10886-005-3551-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult male asparagus flies exhibit typical calling behaviors (suggestive of pheromone production) during which they emit a single volatile compound that was identified as isopropyl (S)-5-hydroxyhexanoate. In laboratory bioassays, synthetic samples elicited an arrestant response in females, but did not appear to attract females. On the other hand, the synthetic material attracted conspecific males in olfactometer bioassays.
Collapse
Affiliation(s)
- E Thibout
- Faculty of Sciences, IRBI, UMR CNRS 6035, Parc Grandmont 37200 Tours, France.
| | | | | | | | | |
Collapse
|