1
|
Subongkot T, Charernsriwilaiwat N, Chanasongkram R, Rittem K, Ngawhirunpat T, Opanasopit P. Development and Skin Penetration Pathway Evaluation Using Confocal Laser Scanning Microscopy of Microemulsions for Dermal Delivery Enhancement of Finasteride. Pharmaceutics 2022; 14:pharmaceutics14122784. [PMID: 36559277 PMCID: PMC9787414 DOI: 10.3390/pharmaceutics14122784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to develop microemulsions using poloxamer 124 as a surfactant to improve the skin penetration of finasteride and to investigate the skin penetration pathways of these microemulsions by colocalization techniques using confocal laser scanning microscopy (CLSM). The prepared finasteride-loaded microemulsions had average particle sizes ranging from 80.09 to 136.97 nm with particle size distributions within acceptable ranges and exhibited negative surface charges. The obtained microemulsions could significantly increase the skin penetration of finasteride compared to a finasteride solution. According to the skin penetration pathway evaluation conducted with CLSM, the microemulsions were hair follicle-targeted formulations due to penetration via the transfollicular pathway as a major skin penetration pathway. Additionally, this study found that the microemulsions also penetrated via the intercluster pathway more than via the intercellular pathway and transcellular pathway. The intercluster pathway, intercellular pathway, and transcellular pathway were considered only minor pathways.
Collapse
Affiliation(s)
- Thirapit Subongkot
- Research Unit of Pharmaceutical Innovations of Natural Products Unit (PhInNat), Faculty of Pharmaceutical Sciences, Burapha University, Saen Suk, Mueang, Chonburi 20131, Thailand
- Correspondence: ; Tel./Fax: +66-38-102610
| | - Natthan Charernsriwilaiwat
- Research Unit of Pharmaceutical Innovations of Natural Products Unit (PhInNat), Faculty of Pharmaceutical Sciences, Burapha University, Saen Suk, Mueang, Chonburi 20131, Thailand
| | | | - Kantawat Rittem
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Burapha University, Saen Suk, Mueang, Chonburi 20131, Thailand
| | - Tanasait Ngawhirunpat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
2
|
Stubbs S, Yousaf S, Khan I. A review on the synthesis of bio-based surfactants using green chemistry principles. Daru 2022; 30:407-426. [PMID: 36190619 PMCID: PMC9715898 DOI: 10.1007/s40199-022-00450-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/14/2022] [Indexed: 06/16/2023] Open
Abstract
OBJECTIVES With increasing awareness of the potential adverse impact of conventional surfactants on the environment and human health, there is mounting interest in the development of bio-based surfactants (which are deemed to be safer, more affordable, are in abundance, are biodegradable, biocompatible and possess scalability, mildness and performance in formulation) in personal care products. METHOD A comprehensive literature review around alkyl polyglucosides (APGs) and sucrose esters (SEs) as bio-based surfactants, through the lens of the 12 green chemistry principles was conducted. An overview of the use of bio-based surfactants in personal care products was also provided. RESULTS Bio-based surfactants are derived primarily from natural sources (i.e. both the head and tail molecular group). One of the more common types of bio-based surfactants are those with carbohydrate head groups, where alkyl polyglucosides (APGs) and sucrose esters (SEs) lead this sub-category. As global regulations and user mandate for sustainability and safety increase, evidence to further support these bio-based surfactants as alternatives to their petrochemical counterparts is advantageous. Use of the green chemistry framework is a suitable way to do this. While many of the discussed principles are enforced industrially, others have only yet been applied at a laboratory scale or are not apparent in literature. CONCLUSION Many of the principles of green chemistry are currently used in the synthesis of APGs and SEs. These and other bio-based surfactants should, therefore, be considered suitable and sustainable alternatives to conventional surfactants. To further encourage the use of these novel surfactants, industry must make an effort to implement and improve the use of the remaining principles at a commercial level.
Collapse
Affiliation(s)
- Shea Stubbs
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Sakib Yousaf
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
3
|
The Potential of Pharmaceutical Hydrogels in the Formulation of Topical Administration Hormone Drugs. Polymers (Basel) 2022; 14:polym14163307. [PMID: 36015564 PMCID: PMC9413899 DOI: 10.3390/polym14163307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Hormones have attracted considerable interest in recent years due to their potential use in treatment of many diseases. Their ability to have a multidirectional effect leads to searching for new and increasingly effective drugs and therapies. Limitations in formulating drug forms containing hormones are mainly due to their low enzymatic stability, short half-life and limited bioavailability. One of the solutions may be to develop a hydrogel as a potential hormone carrier, for epidermal and transdermal application. This review discusses the main research directions in developing this drug formulation. The factors determining the action of hormones as drugs are presented. An analysis of hydrogel substrates and permeation enhancers that have the potential to enhance the efficacy of hormones applied to the skin is reviewed.
Collapse
|
4
|
Scott LN, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Gill LJ, Heldreth B. Safety Assessment of Saccharide Esters as Used in Cosmetics. Int J Toxicol 2021; 40:52S-116S. [PMID: 34514895 DOI: 10.1177/10915818211016378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This is a safety assessment of 40 saccharide ester ingredients as used in cosmetics. The saccharide esters are reported to function in cosmetics as emollients, skin-conditioning agents, fragrance ingredients, and emulsion stabilizers. The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the relevant data for these ingredients. The Panel concluded that the saccharide esters are safe in cosmetics in the present practices of use and concentrations described in this safety assessment.
Collapse
Affiliation(s)
- Laura N Scott
- 44002Cosmetic Ingredient Review Former Scientific Analyst/Writer
| | | | | | - Ronald A Hill
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | - James G Marks
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | | | | | | |
Collapse
|
5
|
Co-polymer mixed micelles enhanced transdermal transport of Lornoxicam: in vitro characterization, and in vivo assessment of anti-inflammatory effect and antinociceptive activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Strati F, Neubert RHH, Opálka L, Kerth A, Brezesinski G. Non-ionic surfactants as innovative skin penetration enhancers: insight in the mechanism of interaction with simple 2D stratum corneum model system. Eur J Pharm Sci 2021; 157:105620. [PMID: 33122012 DOI: 10.1016/j.ejps.2020.105620] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
Transdermal drug delivery is a passive diffusion process of an active compound through the skin which is affected by drug solubility in the multilamellar lipidic matrix of the stratum corneum (SC). Widely used non-ionic surfactants (NIS) can be added into transdermal formulations to enhance the penetration of drugs by influencing the packing of the stratum corneum lipidic matrix. Objective of our study was to analyse the interaction between selected NIS and a simple SC lipidic matrix model system using a variety of surface-sensitive techniques based on the application of Langmuir monolayers. In this work, the well-known surfactant Polysorbate 80 was compared with a modern surfactant Sucrose monolaurate. Infrared reflection-absorption spectroscopy (IRRAS) and epifluorescence microscopy provide information about the effects of those surfactants on the SC model system. Monolayer isotherms of the SC model mixture indicate a very stiff and well-packed layer, however, packing defects are evidenced in epifluorescence studies. The injection of the two NIS underneath the SC monolayers proved their potential to penetrate into the SC model at the air-water interface having a maximum insertion pressure (MIP) above the assumed lateral pressure of biological membranes. The NIS adsorbed preferentially into packing defects seen in epifluorescence microscopy studies with Sucrose monolaurate being more active than Polysorbate 80 in disordering the SC monolayer.
Collapse
Affiliation(s)
- Fabio Strati
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, D-06120 Halle (Saale), Germany.
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, D-06120 Halle (Saale), Germany
| | - Lukáš Opálka
- Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Andreas Kerth
- Institute of Chemistry - Physical Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - Gerald Brezesinski
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, D-06120 Halle (Saale), Germany
| |
Collapse
|
7
|
Vasyuchenko EP, Orekhov PS, Armeev GA, Bozdaganyan ME. CPE-DB: An Open Database of Chemical Penetration Enhancers. Pharmaceutics 2021; 13:66. [PMID: 33430205 PMCID: PMC7825720 DOI: 10.3390/pharmaceutics13010066] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/21/2022] Open
Abstract
The cutaneous delivery route currently accounts for almost 10% of all administered drugs and it is becoming more common. Chemical penetration enhancers (CPEs) increase the transport of drugs across skin layers by different mechanisms that depend on the chemical nature of the penetration enhancers. In our work, we created a chemical penetration enhancer database (CPE-DB) that is, to the best of our knowledge, the first CPE database. We collected information about known enhancers and their derivatives in a single database, and classified and characterized their molecular diversity in terms of scaffold content, key chemical moieties, molecular descriptors, etc. CPE-DB can be used for virtual screening and similarity search to identify new potent and safe enhancers, building quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) models, and other machine-learning (ML) applications for the prediction of biological activity.
Collapse
Affiliation(s)
- Ekaterina P. Vasyuchenko
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.P.V.); (P.S.O.); (G.A.A.)
| | - Philipp S. Orekhov
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.P.V.); (P.S.O.); (G.A.A.)
- Institute of Personalized Medicine, Sechenov University, 119991 Moscow, Russia
- Research Center of Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Grigoriy A. Armeev
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.P.V.); (P.S.O.); (G.A.A.)
| | - Marine E. Bozdaganyan
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.P.V.); (P.S.O.); (G.A.A.)
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of ChemBioTech, Polytechnic University, B. Semyonovskaya 38, 107023 Moscow, Russia
| |
Collapse
|
8
|
Tailoring solulan C24 based niosomes for transdermal delivery of donepezil: In vitro characterization, evaluation of pH sensitivity, and microneedle-assisted Ex vivo permeation studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Formulation development of lipid nanoparticles: Improved lipid screening and development of tacrolimus loaded nanostructured lipid carriers (NLC). Int J Pharm 2020; 576:118918. [DOI: 10.1016/j.ijpharm.2019.118918] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 01/01/2023]
|
10
|
McCartney F, Rosa M, Brayden DJ. Evaluation of Sucrose Laurate as an Intestinal Permeation Enhancer for Macromolecules: Ex Vivo and In Vivo Studies. Pharmaceutics 2019; 11:E565. [PMID: 31683652 PMCID: PMC6921008 DOI: 10.3390/pharmaceutics11110565] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Oral delivery of macromolecules requires permeation enhancers (PEs) adaptable to formulation. Sucrose laurate (SL) (D1216), a food grade surfactant, was assessed in Caco-2 monolayers, isolated rat intestinal tissue mucosae, and rat intestinal instillations. Accordingly, 1 mM SL increased the apparent permeability coefficient (Papp) of [14C]-mannitol and reduced transepithelial electrical resistance (TEER) across monolayers. It altered expression of the tight junction protein, ZO-1, increased plasma membrane potential, and decreased mitochondrial membrane potential in Caco-2 cells. The concentrations that increased flux were of the same order as those that induced cytotoxicity. In rat colonic tissue mucosae, the same patterns emerged in respect to the concentration-dependent increases in paracellular marker fluxes and TEER reductions with 5 mM being the key concentration. While the histology revealed some perturbation, ion transport capacity was retained. In rat jejunal and colonic instillations, 50 and 100 mM SL co-administered with insulin induced blood glucose reductions and achieved relative bioavailability values of 2.4% and 8.9%, respectively, on a par with the gold standard PE, sodium caprate (C10). The histology of the intestinal loops revealed little damage. In conclusion, SL is a candidate PE with high potential for emulsion-based systems. The primary action is plasma membrane perturbation, leading to tight junction openings and a predominant paracellular flux.
Collapse
Affiliation(s)
- Fiona McCartney
- UCD School of Veterinary Medicine and UCD Conway Institute, University, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Mónica Rosa
- Sublimity Therapeutics, DCU Alpha Innovation Campus, Dublin, Dublin 11, Ireland.
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
11
|
Osborne DW, Musakhanian J. Skin Penetration and Permeation Properties of Transcutol®-Neat or Diluted Mixtures. AAPS PharmSciTech 2018; 19:3512-3533. [PMID: 30421383 PMCID: PMC6848246 DOI: 10.1208/s12249-018-1196-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/24/2018] [Indexed: 01/14/2023] Open
Abstract
A heightened interest in (trans)dermal delivery is in part driven by the need to improve the existing skin therapies and also the demand for alternative routes of administration, notably for pharmaceutical actives with undesirable oral absorption characteristics. The premise of delivering difficult actives to the skin or via the skin however is weighed down by the barrier function properties of the stratum corneum. Short of disrupting the skin by physical means, scientists have resorted to formulation with excipients known to enhance the skin penetration and permeation of drugs. A vehicle that has emerged over the years as a safe solubilizer and enhancer for a broad range of drug actives is the highly purified NF/EP grade of diethylene glycol monoethyl ether (DEGEE) commercially known as Transcutol®. Whereas numerous studies affirm its enhancing effect on drug solubilization, percutaneous absorption rate, and/or drug retention in the skin, there are few publications that unite the body of the published literature in describing the precise role and mechanisms of action for Transcutol®. In view of the current mechanistic understanding of skin barrier properties, this paper takes on a retrospective review of the published works and critically evaluates the data for potential misses due to experimental variables such as formulation design, skin model, skin hydration levels, and drug properties. The goal of this review is to mitigate the incongruence of the published works and to construct a unified, comprehensive understanding of how Transcutol® influences skin penetration and permeation. Graphical Abstract Transcutol has affinity for the hydrophilic head groups of the stratum corneum structures.
Collapse
|
12
|
Abd-Elsalam WH, El-Zahaby SA, Al-Mahallawi AM. Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery. Drug Deliv 2018; 25:484-492. [PMID: 29411650 PMCID: PMC6058577 DOI: 10.1080/10717544.2018.1436098] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of the current study was to formulate terconazole (TCZ) loaded polymeric mixed micelles (PMMs) incorporating Cremophor EL as a stabilizer and a penetration enhancer. A 23 full factorial design was performed using Design-Expert® software for the optimization of the PMMs which were formulated using Pluronic P123 and Pluronic F127 together with Cremophor EL. To confirm the role of Cremophor EL, PMMs formulation lacking Cremophor EL was prepared for the purpose of comparison. Results showed that the optimal PMMs formulation (F7, where the ratio of total Pluronics to drug was 40:1, the weight ratio of Pluronic P123 to Pluronic F127 was 4:1, and the percentage of Cremophor EL in aqueous phase was 5%) had a high micellar incorporation efficiency (92.98 ± 0.40%) and a very small micellar size (33.23 ± 8.00 nm). Transmission electron microscopy revealed that PMMs possess spherical shape and good dispersibility. The optimal PMMs exhibited superior physical stability when compared with the PMMs formulation of the same composition but lacking Cremophor EL. Ex vivo studies demonstrated that the optimal PMMs formula markedly improved the dermal TCZ delivery compared to PMMs lacking Cremophor EL and TCZ suspension. In addition, it was found that the optimal PMMs exhibited a greater extent of TCZ deposition in the rat dorsal skin relative to TCZ suspension. Moreover, histopathological studies revealed the safety of the optimal PMMs upon topical application to rats. Consequently, PMMs enriched with Cremophor EL, as a stable nano-system, could be promising for the skin delivery of TCZ.
Collapse
Affiliation(s)
- Wessam H. Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sally A. El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Abdulaziz M. Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Abd-Elsalam WH, El-Zahaby SA, Al-Mahallawi AM. Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery. Drug Deliv 2018. [DOI: https://doi.org/10.1080/10717544.2018.1436098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Wessam H. Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sally A. El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Abdulaziz M. Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Perinelli DR, Lucarini S, Fagioli L, Campana R, Vllasaliu D, Duranti A, Casettari L. Lactose oleate as new biocompatible surfactant for pharmaceutical applications. Eur J Pharm Biopharm 2017; 124:55-62. [PMID: 29258912 DOI: 10.1016/j.ejpb.2017.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Sugar fatty acid esters are an interesting class of non-ionic, biocompatible and biodegradable sugar-based surfactants, recently emerged as a valid alternative to the traditional commonly employed (e.g. polysorbates and polyethylene glycol derivatives). By varying the polar head (carbohydrate moiety) and the hydrophobic tail (fatty acid), surfactants with different physico-chemical characteristics can be easily prepared. While many research papers have focused on sucrose derivatives, relatively few studies have been carried out on lactose-based surfactants. In this work, we present the synthesis and the physico-chemical characterization of lactose oleate. The new derivative was obtained by enzymatic mono-esterification of lactose with oleic acid. Thermal, surface, and aggregation properties of the surfactant were studied in detail and the cytotoxicity profile was investigated by MTS and LDH assays on intestinal Caco-2 monolayers. Transepithelial electrical resistance (TEER) measurements on Caco-2 cells showed a transient and reversible effect on the tight junctions opening, which correlates with the increased permeability of 4 kDa fluorescein-labelled dextran (as model for macromolecular drugs) in a concentration dependent manner. Moreover, lactose oleate displayed a satisfactory antimicrobial activity over a range of Gram-positive and Gram-negative bacteria. Overall, the obtained results are promising for a further development of lactose oleate as an intestinal absorption enhancer and/or an alternative biodegradable preservative for pharmaceutical and food applications.
Collapse
Affiliation(s)
- D R Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino (MC) 62032, Italy
| | - S Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento n° 6, Urbino (PU) 61029, Italy
| | - L Fagioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento n° 6, Urbino (PU) 61029, Italy
| | - R Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento n° 6, Urbino (PU) 61029, Italy
| | - D Vllasaliu
- School of Pharmacy, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| | - A Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento n° 6, Urbino (PU) 61029, Italy
| | - L Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento n° 6, Urbino (PU) 61029, Italy.
| |
Collapse
|
15
|
Bernal-Chávez SA, Pérez-Carreto LY, Nava-Arzaluz MG, Ganem-Rondero A. Alkylglycerol Derivatives, a New Class of Skin Penetration Modulators. Molecules 2017; 22:molecules22010185. [PMID: 28117757 PMCID: PMC6155712 DOI: 10.3390/molecules22010185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/03/2017] [Accepted: 01/17/2017] [Indexed: 12/02/2022] Open
Abstract
The absorption modulating activity of two alkylglycerol derivatives (batyl and chimyl alcohol) on skin barrier properties was evaluated. Biophysical tests such as transepidermal water loss (TEWL) and attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy, as well as in vitro skin permeation studies, were performed in order to determine the effect of these compounds as chemical absorption modulators. Four drugs were used as models: three NSAIDS (diclofenac, naproxen, and piroxicam) and glycyrrhizic acid. The results showed that treatment of the skin with alkylglycerols caused (i) a reduction on the amount of drug permeated; (ii) a reduction in TEWL; and (iii) changes in the ATR-FTIR peaks of stratum corneum lipids, indicative of a more ordered structure. All of these findings confirm that alkyl glycerols have an absorption retarding effect on the drugs tested. Such effects are expected to give rise to important applications in the pharmaceutical and cosmetic sectors, in cases where it is desirable for the drug to remain in the superficial layers of the skin to achieve a local effect.
Collapse
Affiliation(s)
- Sergio Alberto Bernal-Chávez
- Division de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli 54740, Estado de Mexico, Mexico.
| | - Lilia Yazmín Pérez-Carreto
- Division de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli 54740, Estado de Mexico, Mexico.
| | - María Guadalupe Nava-Arzaluz
- Division de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli 54740, Estado de Mexico, Mexico.
| | - Adriana Ganem-Rondero
- Division de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli 54740, Estado de Mexico, Mexico.
| |
Collapse
|
16
|
Todosijević MN, Brezesinski G, Savić SD, Neubert RHH. Sucrose esters as biocompatible surfactants for penetration enhancement: An insight into the mechanism of penetration enhancement studied using stratumcorneum model lipids and Langmuir monolayers. Eur J Pharm Sci 2016; 99:161-172. [PMID: 27940082 DOI: 10.1016/j.ejps.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/19/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022]
Abstract
Up to now, the molecular mechanism of the penetration enhancing effect of sucrose esters (SEs) on stratumcorneum (SC) has not been explained in details. In this study, variety of surface sensitive techniques, including surface pressure-area (π-A) isotherms, infrared reflection-absorption spectroscopy (IRRAS), and Brewster angle microscopy (BAM), have been used to investigate interactions between SEs and SC intercellular lipids. A monolayer of the mixture of ceramide AS C18:18, stearic acid and cholesterol in the molar ratio of 1:1:0.7 on an aqueous subphase is a good model to mimic a single layer of intercellular SC lipids. The π-A isotherms of mixed monolayers and parameters derived from the curves demonstrated the interaction between nonionic surfactants such as SEs and SC lipids. With increasing SE concentration, the resultant monolayer films became more fluid and better compressible. IRRAS measurements showed that SEs disordered the acyl chains of SC lipids, and the BAM images demonstrated the modification of the domain structures in SC monolayers. Longer chain-SE has a stronger disordering effect and is better miscible with ceramides in comparison to SE with a shorter hydrophobic part. In conclusion, this study demonstrates the disordering effect of SEs on the biomimetic SC model, pointing out that small changes in the structure of surfactant may have a strong influence on a penetration enhancement of lipophilic drugs through intercellular lipids of skin.
Collapse
Affiliation(s)
- Marija N Todosijević
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Snežana D Savić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
17
|
Kwek JW, Kim S. Characterization of Adsorption Behavior of Sucrose Monolaurate on Gold Substrate Using the Quartz Crystal Microbalance (QCM). J SURFACTANTS DETERG 2016. [DOI: 10.1007/s11743-016-1827-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Balázs B, Vizserálek G, Berkó S, Budai-Szűcs M, Kelemen A, Sinkó B, Takács-Novák K, Szabó-Révész P, Csányi E. Investigation of the Efficacy of Transdermal Penetration Enhancers Through the Use of Human Skin and a Skin Mimic Artificial Membrane. J Pharm Sci 2016; 105:1134-40. [DOI: 10.1016/s0022-3549(15)00172-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/27/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
|
19
|
Isailović T, Ðorđević S, Marković B, Ranđelović D, Cekić N, Lukić M, Pantelić I, Daniels R, Savić S. Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design. J Pharm Sci 2016; 105:308-23. [PMID: 26539935 DOI: 10.1002/jps.24706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/02/2015] [Accepted: 10/05/2015] [Indexed: 11/11/2022]
Abstract
We aimed to develop lecithin-based nanoemulsions intended for effective aceclofenac (ACF) skin delivery utilizing sucrose esters [sucrose palmitate (SP) and sucrose stearate (SS)] as additional stabilizers and penetration enhancers. To find the suitable surfactant mixtures and levels of process variables (homogenization pressure and number of cycles - high pressure homogenization manufacturing method) that result in drug-loaded nanoemulsions with minimal droplet size and narrow size distribution, a combined mixture-process experimental design was employed. Based on optimization data, selected nanoemulsions were evaluated regarding morphology, surface charge, drug-excipient interactions, physical stability, and in vivo skin performances (skin penetration and irritation potential). The predicted physicochemical properties and storage stability were proved satisfying for ACF-loaded nanoemulsions containing 2% of SP in the blend with 0%-1% of SS and 1%-2% of egg lecithin (produced at 50°C/20 cycles/800 bar). Additionally, the in vivo tape stripping demonstrated superior ACF skin absorption from these nanoemulsions, particularly from those containing 2% of SP, 0.5% of SS, and 1.5% of egg lecithin, when comparing with the sample costabilized by conventional surfactant - polysorbate 80. In summary, the combined mixture-process experimental design was shown as a feasible tool for formulation development of multisurfactant-based nanosized delivery systems with potentially improved overall product performances.
Collapse
|
20
|
Yutani R, Komori Y, Takeuchi A, Teraoka R, Kitagawa S. Prominent efficiency in skin delivery of resveratrol by novel sucrose oleate microemulsion. J Pharm Pharmacol 2016; 68:46-55. [DOI: 10.1111/jphp.12497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/17/2015] [Indexed: 12/23/2022]
Abstract
Abstract
Objectives
To achieve an efficient skin delivery of resveratrol using sucrose fatty acid ester microemulsions and to clarify the mechanism of enhanced penetration.
Methods
Skin delivery of resveratrol using different sucrose fatty acid ester microemulsions was examined in vitro. Vehicle–skin interaction was assessed by applying blank microemulsions to skin. Skin incorporation of microemulsion components was also assessed.
Key findings
The microemulsion consisting of sucrose oleate (SO), ethanol, isopropyl myristate (IPM) and water (MESO-E) showed a prominent increase in the amount of skin incorporation of resveratrol, which was more than 5-fold higher than those of all microemulsions we previously examined. Using MESO-E, resveratrol was rapidly incorporated into skin and mainly located in the dermis. When applied in the concentration range of 5–55 mm, the amount of skin incorporation of resveratrol increased with the applied concentration up to 30 mm, whereas skin incorporation efficiency was inversely proportional to the concentration. The microemulsion–skin interaction seemed to be involved in the enhanced skin delivery process of resveratrol by MESO-E. Stratum corneum modification due to the penetration of IPM, ethanol and SO is also involved in this interaction.
Conclusions
MESO-E would be a promising vehicle for the efficient skin delivery of resveratrol, especially when applied at a low concentration.
Collapse
Affiliation(s)
- Reiko Yutani
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Yuka Komori
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Atsuko Takeuchi
- Analytical Laboratory, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Reiko Teraoka
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Shuji Kitagawa
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| |
Collapse
|
21
|
Todosijević MN, Savić MM, Batinić BB, Marković BD, Gašperlin M, Ranđelović DV, Lukić MŽ, Savić SD. Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance. Int J Pharm 2015; 496:931-41. [DOI: 10.1016/j.ijpharm.2015.10.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 02/03/2023]
|
22
|
Lémery E, Briançon S, Chevalier Y, Bordes C, Oddos T, Gohier A, Bolzinger MA. Skin toxicity of surfactants: Structure/toxicity relationships. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.01.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Hoppel M, Holper E, Baurecht D, Valenta C. Monitoring the distribution of surfactants in the stratum corneum by combined ATR-FTIR and tape-stripping experiments. Skin Pharmacol Physiol 2015; 28:167-75. [PMID: 25612540 DOI: 10.1159/000368444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022]
Abstract
Combined ATR-FTIR (attenuated total reflection-Fourier transform infrared) spectroscopy and tape-stripping experiments in vitro on porcine ear skin were used to investigate the spatial distribution of different surfactants in the stratum corneum (SC). To reveal a possible connection between the size of the formed micelles and skin penetration, dynamic light-scattering measurements of the aqueous surfactant solutions were also taken. Compared to an alkyl polyglycoside and sucrose laurate, a deeper skin penetration of the anionic surfactants sodium dodecyl sulfate (SDS) und sodium lauryl ether sulfate (SLES) could be related to a smaller size of the formed micelles. Beside the differences in spatial distribution, a link between the physical presence of anionic surfactants in the SC and a decrease of skin hydration was found. Furthermore, the incorporation of SDS and SLES into the SC, even after a brief, consumer-orientated washing procedure with commercially available hair shampoos, was confirmed.
Collapse
Affiliation(s)
- Magdalena Hoppel
- Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigations of Involved Mechanisms', University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
24
|
Roohinejad S, Middendorf D, Burritt DJ, Bindrich U, Everett DW, Oey I. Capacity of natural β-carotene loaded microemulsion to protect Caco-2 cells from oxidative damage caused by exposure to H2O2. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Simultaneous analysis of skin penetration of surfactant and active drug from fluorosurfactant-based microemulsions. Eur J Pharm Biopharm 2014; 88:34-9. [PMID: 24892508 DOI: 10.1016/j.ejpb.2014.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to investigate the penetrated amount of the incorporated model drug diclofenac-sodium and of a fluorosurfactant as specific vehicle constituent of topically applied microemulsions at the same time. To this end, the penetration depth of each compound was elucidated through tape stripping studies by the simultaneous quantification of diclofenac-sodium and the fluorosurfactant from the same sample. A new approach was made by using the very sensitive and specific (19)F NMR (nuclear magnetic resonance) for quantification of the fluorinated vehicle component. The tape stripping experiments with the microemulsions showed an almost similar penetration velocity of diclofenac-sodium and fluorosurfactant, suggesting that the surfactant within the microemulsion-structure intensified the stratum corneum uptake of the incorporated active constituent. Moreover, ATR-FTIR studies on porcine ear skin revealed significant shifts of the CH₂ stretching absorbances, which are associated with an enhanced disorder of the SC lipids resulting in a decreased skin barrier function, after application of the microemulsions. However, the application of pure fluorosurfactant did not cause any shifts in the CH₂ stretching absorbances. It can be thereby concluded that the prepared microemulsions exerted specific effects on skin integrity resulting in a "push" of diclofenac-sodium penetration.
Collapse
|
26
|
Namjoshi S, Toth I, Blanchfield JT, Trotter N, Mancera RL, Benson HAE. Enhanced transdermal peptide delivery and stability by lipid conjugation: epidermal permeation, stereoselectivity and mechanistic insights. Pharm Res 2014; 31:3304-12. [PMID: 24842663 DOI: 10.1007/s11095-014-1420-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/12/2014] [Indexed: 11/24/2022]
Abstract
PURPOSE Efficient delivery of therapeutic peptides to the skin will facilitate better outcomes in dermatology. The tetrapeptide AAPV, an elastase inhibitor with potential utility in the management of psoriasis was coupled to short chain lipoamino acids (Laa: C6-C10) to enhance the peptide permeation into and through human epidermis. METHODS AAPV was conjugated to Laas by solid phase synthesis. Peptide stability, skin distribution and permeation, elastase activity and surface activity were determined. RESULTS Laas increased peptide permeation into the skin. The permeation lag time and amount of peptide remaining in the skin increased with the carbon chain length of the Laa conjugate. We also demonstrated stereoselective permeation enhancement in favour of the D-diastereomer. Importantly, the elastase inhibition activity of the peptide was largely retained after coupling to the Laa conjugates, showing potential therapeutic utility. The Laa-peptide structures were shown to be surface active, suggesting that this surfactant-like activity coupled with enhanced lipophilicity may contribute to their interaction with and permeation through the lipid domains of the stratum corneum. CONCLUSIONS This study suggests that the Laa conjugation approach may be useful for enhancing the permeation of moderately sized peptide drugs with potential application in the treatment of skin disorders.
Collapse
Affiliation(s)
- Sarika Namjoshi
- School of Pharmacy, CHIRI-Biosciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Stahl J, Mielke S, Pankow WR, Kietzmann M. Ceruminal diffusion activities and ceruminolytic characteristics of otic preparations - an in-vitro study. BMC Vet Res 2013; 9:70. [PMID: 23574753 PMCID: PMC3641987 DOI: 10.1186/1746-6148-9-70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 03/13/2013] [Indexed: 11/10/2022] Open
Abstract
Background An in-vitro setup was established in order to determine a) the diffusion activities of eight otic preparations (Aurizon®, Eas Otic®, Epi Otic®, Otifree®, Otomax®, Panolog®, Posatex®, Surolan®) through synthetic cerumen, and b) the ceruminolytic capacity and impregnation effects of these products. The main lipid classes of canine cerumen produced with moderate, non-purulent otitis externa were determined by thin layer chromatography and were subsequently used to produce a standardised synthetic cerumen (SCC). SCC was filled into capillary tubes, all of which were loaded with six commercially available multipurpose otic medications and two ear cleaners, each mixed with two markers in two experimental setups. These two marker compounds (Oil red O and marbofloxacin) were chosen, since they exhibit different physicochemical drug characteristics by which it is possible to determine and verify the diffusion activity of different types of liquids (i.e. the otic preparations). A synthetic cerumen described in the literature (JSL) was also used for comparison as its lipid composition was different to SCC. The diffusion activities of the otic preparations through both types of synthetic cerumen were studied over 24 hours. A second in-vitro experiment determined both the ceruminolytic activity and impregnation effect of the otic preparations by comparing the weight loss or weight gain after repeated incubation of JSL. Results Canine cerumen is mainly composed of triglycerides, sterol esters, fatty acid esters and squalene. The diffusion experiments showed a high diffusion efficacy along with a high impregnation effect for one test product. All the other products exhibited a lower diffusion activity with a mild to moderate impregnation effect. A mild ceruminolytic activity was observed for the two ear cleaners but not for any of the otic medications. Conclusions The present study demonstrates that there are significant differences in the diffusion characteristics and ceruminolytic properties of the eight tested otic preparations.
Collapse
|
28
|
Ujhelyi Z, Fenyvesi F, Váradi J, Fehér P, Kiss T, Veszelka S, Deli M, Vecsernyés M, Bácskay I. Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in Caco-2 cell monolayer. Eur J Pharm Sci 2012; 47:564-73. [PMID: 22841998 DOI: 10.1016/j.ejps.2012.07.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 07/05/2012] [Accepted: 07/05/2012] [Indexed: 10/28/2022]
Abstract
The objective of this study was to examine the cellular effects of the members of two non-ionic amphiphilic tenside groups and their mixtures on human Caco-2 cell monolayers as dependent upon their chemical structures and physicochemical properties. The first group of polyethylene glycol esters is represented by Polysorbates and Labrasol alone and in blends, while the members of the second group. Capryol 90, Capryol PGMC, Lauroglycol 90 and Lauroglycol FCC were used as propylene glycol esters. They are increasingly used in SMEDDS as recent tensides or co-tensides to increase hydrophobic bioavailability of a drug. Critical micelle concentration was measured by determination of surface tension. CMC refers to the ability of solubilization of surfactants. Cytotoxicity tests were performed on Caco-2 cell monolayers by MTT and LDH methods. Paracellular permeability as a marker of the integrity of cell monolayers, was examined with Lucifer yellow assays combined with TransEpithelial Electrical Resistance (TEER) measurements. The effect of these surfactants on tight junctions as evidence for paracellular pathway was also characterized. The results of cytotoxicity assays were in agreement, and showed significant differences among the cytotoxic properties of surfactants in a concentration-dependent manner. Polysorbates 20, 60, 80 are the most toxic compounds. In the case of Labrasol, the degree of esterification and lack of sorbit component decreased cytotoxicity. If the hydrophyl head was changed from polyethylene glycol to propylene glycol the main determined factor of cytotoxicity was the monoester content and the length of carbon chain. In our CMC experiments, we found that only Labrasol showed expressed cytotoxicity above the CMC. It refers to good ability of micelle solubilization of Labrasol. In our paracellular transport experiments each of polyethylene glycol surfactants (Polysorbates and Labrasol) altered TEER values, but propylene glycol esters did not modify the monolayer integrity. Polyethylene glycol esters alone and in blends (0.05% Labrasol--0.001% Polysorbates 20, 60, 80) were able to increase Lucifer yellow permeability significantly below the IC₅₀ concentration. On the other hand Labrasol and Polysorbates 20 have expressed effect on tight junctions of Caco-2 monolayer. It could be concluded that polyethylene glycol ester-type tensides were able to enhance the paracellular permeability by the redistribution of junctional proteins. Our results might ensure useful data for selection of suitable tensides, co-tensides and tenside mixtures for SMEDDS formulations.
Collapse
Affiliation(s)
- Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical and Health Science Center, University of Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Szűts A, Szabó-Révész P. Sucrose esters as natural surfactants in drug delivery systems--a mini-review. Int J Pharm 2012; 433:1-9. [PMID: 22575672 DOI: 10.1016/j.ijpharm.2012.04.076] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/27/2012] [Accepted: 04/28/2012] [Indexed: 10/28/2022]
Abstract
Sucrose esters (SEs) are widely used in the food and cosmetic industries and there has recently been great interest in their applicability in different pharmaceutical fields. They are natural and biodegradable excipients with well-known emulsifying and solubilizing behavior. Currently the most common pharmaceutical applications of SEs are for the enhancement of drug dissolution and drug absorption/permeation, and in controlled-release systems. Although the number of articles on SEs is continuously increasing, they have not yet been widely used in the pharmaceutical industry. The aim of this review is to discuss and summarize some of the findings and applications of SEs in different areas of drug delivery. The article highlights the main properties of SEs and focuses on their use in pharmaceutical technology and on their regulatory and toxicological status.
Collapse
Affiliation(s)
- Angéla Szűts
- Department of Pharmaceutical Technology, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary
| | | |
Collapse
|
30
|
Wang X, Miao S, Wang P, Zhang S. Highly efficient synthesis of sucrose monolaurate by alkaline protease Protex 6L. BIORESOURCE TECHNOLOGY 2012; 109:7-12. [PMID: 22305537 DOI: 10.1016/j.biortech.2012.01.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/30/2011] [Accepted: 01/11/2012] [Indexed: 05/31/2023]
Abstract
An alkaline protease from Bacillus licheniformis, Protex 6L, was used for synthesis of sucrose monolaurate from sucrose and vinyl laurate in a tert-amyl alcohol/DMSO/water solvent mixture. Introducing sucrose as powder after mixing vinyl laurate with solvent mixture resulted in a higher reaction rate than when sucrose was added as a solution in DMSO. Response surface methodology (RSM) was applied to optimize the major reaction variables, water content, temperature and pH of the lyophilized enzyme. The optimal conditions derived from RSM (3.4% water content, 43 °C and pH of 10.1) provided a high initial reaction rate of 8.66 ± 0.3 mg/ml/h which agreed with the predicted value of 8.70 mg/ml/h. With 1.5 mg-enzyme/ml, 98.0% of the added sucrose was region-selectively converted to 1'-O-lauroylsucrose after 9h. Under the optimized conditions, Protex 6L exhibited a higher productivity for sucrose ester synthesis than Novozym 435 and three other commonly used enzymes.
Collapse
Affiliation(s)
- Xinran Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | |
Collapse
|
31
|
Eros G, Hartmann P, Berkó S, Csizmazia E, Csányi E, Sztojkov-Ivanov A, Németh I, Szabó-Révész P, Zupkó I, Kemény L. A novel murine model for the in vivo study of transdermal drug penetration. ScientificWorldJournal 2012; 2012:543536. [PMID: 22272176 PMCID: PMC3259504 DOI: 10.1100/2012/543536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/02/2011] [Indexed: 11/17/2022] Open
Abstract
Enhancement of the transdermal penetration of different active agents is an important research goal. Our aim was to establish a novel in vivo experimental model which provides a possibility for exact measurement of the quantity of penetrated drug. The experiments were performed on SKH-1 hairless mice. A skin fold in the dorsal region was fixed with two fenestrated titanium plates. A circular wound was made on one side of the skin fold. A metal cylinder with phosphate buffer was fixed into the window of the titanium plate. The concentration of penetrated drug was measured in the buffer. The skin fold was morphologically intact and had a healthy microcirculation. The drug appeared in the acceptor buffer after 30 min, and its concentration exhibited a continuous increase. The presence of ibuprofen was also detected in the plasma. In conclusion, this model allows an exact in vivo study of drug penetration and absorption.
Collapse
Affiliation(s)
- Gábor Eros
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Domínguez-Delgado CL, Rodríguez-Cruz IM, Escobar-Chávez JJ, Calderón-Lojero IO, Quintanar-Guerrero D, Ganem A. Preparation and characterization of triclosan nanoparticles intended to be used for the treatment of acne. Eur J Pharm Biopharm 2011; 79:102-7. [DOI: 10.1016/j.ejpb.2011.01.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 11/27/2022]
|
33
|
Okamoto H, Sakai T, Tokuyama C, Danjo K. Sugar ester J-1216 enhances percutaneous permeation of ionized lidocaine. J Pharm Sci 2011; 100:4482-90. [PMID: 21626509 DOI: 10.1002/jps.22644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/27/2011] [Accepted: 05/10/2011] [Indexed: 11/11/2022]
Abstract
Percutaneous absorption enhancers affect not only the permeability of skin but also the thermodynamic properties of active ingredients in the vehicle. The present study examined the effect of J-1216, a sucrose laurate with hydrophilic-lipophilic balance = 16, on the percutaneous permeation of lidocaine (LC) from this point of view. The percutaneous permeation of LC from aqueous vehicles (pH 6.0, 7.0, 8.0, and 10.0) with or without 1.5% J-1216 was examined with excised hairless mouse skin mounted on flow-through-type diffusion cell. The permeation of LC without J-1216 increased with an increase in the vehicle pH and could be basically explained by pH-partition theory. J-1216 increased the LC permeation at pH 6.0 and 7.0 but decreased it at pH 8.0 and 10.0. The interaction between LC and J-1216 was examined using an ultrafiltration technique. J-1216 micelles interacted predominantly with unionized LC. A theoretical calculation suggested that J-1216 enhances the permeability coefficient of ionized LC, whereas it has almost no effect on that of unionized free LC. J-1216 directly affects the skin to increase the permeation of ionized LC, whereas J-1216 micelles interact with unionized LC to decrease the permeation. The effect of J-1216 is therefore a function of vehicle pH and LC concentration.
Collapse
Affiliation(s)
- Hirokazu Okamoto
- Faculty of Pharmacy, Meijo University, Tempaku-ku, Nagoya 468-8503, Japan.
| | | | | | | |
Collapse
|
34
|
Sucrose monolaurate synthesis with Protex 6L immobilized on electrospun TiO2 nanofiber. Biotechnol Lett 2011; 33:1831-5. [DOI: 10.1007/s10529-011-0629-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
|
35
|
Csizmazia E, Erős G, Berkesi O, Berkó S, Szabó-Révész P, Csányi E. Pénétration enhancer effect of sucrose laurate and Transcutol on ibuprofen. J Drug Deliv Sci Technol 2011. [DOI: 10.1016/s1773-2247(11)50066-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Zhao L, Fang L, Li Y, Zheng N, Xu Y, Wang J, He Z. Effect of (E)-2-isopropyl-5-methylcyclohexyl octadec-9-enoate on transdermal delivery ofAconitumalkaloids. Drug Dev Ind Pharm 2010; 37:290-9. [DOI: 10.3109/03639045.2010.510141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
El-Laithy HM, Shoukry O, Mahran LG. Novel sugar esters proniosomes for transdermal delivery of vinpocetine: preclinical and clinical studies. Eur J Pharm Biopharm 2010; 77:43-55. [PMID: 21056658 DOI: 10.1016/j.ejpb.2010.10.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 10/19/2010] [Accepted: 10/29/2010] [Indexed: 11/28/2022]
Abstract
Vinpocetine (Vin) existing oral formulations suffer poor bioavailability (∼7%) since Vin undergoes a marked first-pass effect (∼75%) and its absorption is dissolution rate-limited. In this study, a novel sustained release proniosomal system was designed using sugar esters (SEs) as non-ionic surfactants in which proniosomes were converted to niosomes upon skin water hydration following topical application under occlusive conditions. Different in vitro aspects (encapsulation efficiency, vesicle size and shape, effect of occlusion, in vitro release, skin permeation and stability) were studied leading to an optimized formula that was assessed clinically for transdermal pharmacokinetics and skin irritation. All formulae exhibited high entrapment efficiencies, regardless of the surfactant HLB. Vesicle size analysis showed that all vesicles were in the range from 0.63 μm to 2.52 μm which favored efficient transdermal delivery. The extent of drug permeation through the skin from the optimized formula--containing laurate SE with shorter fatty acid chain length and high HLB--was quite high (91%) after 48 h under occlusive conditions. The extent of absorption of Vin from proniosomes was larger when compared to the oral tablet with a relative bioavailability (F(rel)) of 206%. Histopathological evaluation revealed only moderate skin irritation when using SEs compared to skin inflammation when using Tween 80. Sugar esters proniosomes may be a promising carrier for vinpocetine, especially due to their simple scaling up and their ability to control drug release.
Collapse
Affiliation(s)
- Hanan M El-Laithy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | | | | |
Collapse
|
38
|
Csizmazia E, Erős G, Berkesi O, Berkó S, Szabó-Révész P, Csányi E. Ibuprofen penetration enhance by sucrose ester examined by ATR-FTIR in vivo. Pharm Dev Technol 2010; 17:125-8. [DOI: 10.3109/10837450.2010.508076] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Klang V, Matsko N, Zimmermann AM, Vojnikovic E, Valenta C. Enhancement of stability and skin permeation by sucrose stearate and cyclodextrins in progesterone nanoemulsions. Int J Pharm 2010; 393:152-60. [DOI: 10.1016/j.ijpharm.2010.04.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 01/05/2023]
|
40
|
Savić S, Tamburić S, Savić MM. From conventional towards new – natural surfactants in drug delivery systems design: current status and perspectives. Expert Opin Drug Deliv 2010; 7:353-69. [DOI: 10.1517/17425240903535833] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Casiraghi A, Minghetti P, Cilurzo F, Selmin F, Gambaro V, Montanari L. The effects of excipients for topical preparations on the human skin permeability of terpinen-4-ol contained in Tea tree oil: infrared spectroscopic investigations. Pharm Dev Technol 2009; 15:545-52. [PMID: 19842911 DOI: 10.3109/10837450903338387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work aimed to evaluate the effect induced by excipients conventionally used for topical dosage forms, namely isopropyl myristate (IPM) or oleic acid (OA) or polyethylene glycol 400 (PEG400) or Transcutol (TR), on the human skin permeability of terpinen-4-ol (T4OL) contained in the pure Tea tree oil. The effect of such excipients was determined by evaluating the absorption of T4OL using human epidermis and the perturbation of the organization of stratum corneum by ATR-FTIR. Among the tested excipients OA enhanced the absorption of T4OL by perturbing the stratum corneum lipid barrier. Other excipients caused a weak enhancement effect and their use should be carefully monitored.
Collapse
Affiliation(s)
- Antonella Casiraghi
- Istituto di Chimica Farmaceutica e Tossicologica, Università degli Studi di Milano, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Rodríguez G, Barbosa-Barros L, Rubio L, Cócera M, Díez A, Estelrich J, Pons R, Caelles J, De la Maza A, López O. Conformational changes in stratum corneum lipids by effect of bicellar systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:10595-10603. [PMID: 19735132 DOI: 10.1021/la901410h] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was applied to study the effects of the bicelles formed by dimyristoyl-glycero-phosphocholine (DMPC) and dihexanoyl-glycero-phosphocholine (DHPC) in porcine stratum corneum (SC) in vitro. A comparison of skin samples treated and untreated with bicelles at different temperatures was carried out. The analysis of variations after treatment in the position of the symmetric CH2 stretching, CH2 scissoring, and CH2 rocking vibrations reported important information about the effect of bicelles on the skin. Bicellar systems caused a phase transition from the gel or solid state to the liquid crystalline state in the lipid conformation of SC, reflecting the major order-disorder transition from hexagonally packed to disordered chains. Grazing incidence small and wide X-ray scattering (GISAXS and GIWAXS) techniques confirmed this effect of bicelles on the SC. These results are probably related to with the permeabilizing effect previously described for the DMPC/DHPC bicelles.
Collapse
Affiliation(s)
- Gelen Rodríguez
- Departament de Tecnologia Química i de Tensioactius, Institut de Química Avancada de Catalunya (IQAC), Consejo Superior de Investigaciones Cientificas (CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Datsyuk V, Landois P, Fitremann J, Peigney A, Galibert AM, Soula B, Flahaut E. Double-walled carbon nanotube dispersion via surfactant substitution. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b814122n] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Yamato K, Takahashi Y, Akiyama H, Tsuji K, Onishi H, Machida Y. Effect of Penetration Enhancers on Transdermal Delivery of Propofol. Biol Pharm Bull 2009; 32:677-83. [DOI: 10.1248/bpb.32.677] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yuri Takahashi
- Department of Physical Pharmacy, Nihon Pharmaceutical University
| | | | | | - Hiraku Onishi
- Department of Drug Delivery Research, Hoshi University
| | | |
Collapse
|
45
|
Calderilla-Fajardo SB, Cázares-Delgadillo J, Villalobos-García R, Quintanar-Guerrero D, Ganem-Quintanar A, Robles R. Influence of Sucrose Esters on the In Vivo Percutaneous Penetration of Octyl Methoxycinnamate Formulated in Nanocapsules, Nanoemulsion, and Emulsion. Drug Dev Ind Pharm 2008; 32:107-13. [PMID: 16455609 DOI: 10.1080/03639040500388540] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The influence of sucrose laureate and sucrose oleate on the in vivo percutaneous penetration of octyl methoxycinnamate (OMC) formulated in i) colloidal suspensions (nano-emulsions and nanocapsules), and ii) conventional o/w emulsions was evaluated. The results showed that nano-emulsions formulated with sucrose laureate exhibited the highest penetration in the stratum corneum compared to the other formulations. A two-fold increase in OMC skin deposition was observed with the nano-emulsion containing sucrose laureate when compared to the control. The data obtained suggest that the total amount of OMC detected in the stratum corneum and the penetration depth are strongly dependent upon the formulation's nature, the particle size, and the type of enhancer.
Collapse
Affiliation(s)
- S B Calderilla-Fajardo
- División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán/Universidad Nacional Autónoma de México, Av. 1 de Mayo S/N, Cuautitlán Izcalli, Estado de México, México, 54750
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
In-vivo human data on percutaneous absorption are scarce, although they are indispensable for health risk assessment of dermal exposure. In addition, they are considered to be the gold standard for the evaluation of in-vitro systems as well as predictive mathematical models. Dermal absorption in vivo can be assessed using different approaches. The most used methods for determination of in-vivo dermal absorption are the measurement of the parent chemical and/or its metabolite level in biological material, the microdialysis technique and stratum corneum tape stripping. Recently, the non-invasive spectrophotometric methods based on infrared and Raman spectroscopy showed themselves as promising tools for studying percutaneous absorption though these approaches are still in their developmental stages and requires further optimization and validation. The aim of this article is to review different methods for determination of percutaneous absorption in vivo in humans. The advantages and limitations are discussed with respect to generating data for comparison with in-vitro or predictive mathematical models or health risk assessment of chemicals. Furthermore, the importance of the volunteer experiments in generating relevant data for human risk assessment as well as for the development and implementation of biological monitoring in occupational settings will be addressed.
Collapse
Affiliation(s)
- S Kezic
- Academic Medical Center, Coronel Institute of Occupational Health, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Okuno M, Takahashi Y, Isowa K, Machida Y. Effect of Iontophoresis and Switching Iontophoresis on Skin Accumulation of Ketoprofen. Biol Pharm Bull 2008; 31:487-92. [DOI: 10.1248/bpb.31.487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Herkenne C, Alberti I, Naik A, Kalia YN, Mathy FX, Préat V, Guy RH. In vivo methods for the assessment of topical drug bioavailability. Pharm Res 2008; 25:87-103. [PMID: 17985216 PMCID: PMC2217624 DOI: 10.1007/s11095-007-9429-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 07/24/2007] [Indexed: 11/26/2022]
Abstract
This paper reviews some current methods for the in vivo assessment of local cutaneous bioavailability in humans after topical drug application. After an introduction discussing the importance of local drug bioavailability assessment and the limitations of model-based predictions, the focus turns to the relevance of experimental studies. The available techniques are then reviewed in detail, with particular emphasis on the tape stripping and microdialysis methodologies. Other less developed techniques, including the skin biopsy, suction blister, follicle removal and confocal Raman spectroscopy techniques are also described.
Collapse
Affiliation(s)
- Christophe Herkenne
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
- Debio Recherche Pharmaceutique S.A., Route du Levant 146, CH-1920 Martigny, Switzerland
| | - Ingo Alberti
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
- Antares Pharma AG, Gewerbestrasse 18, 4123 Allschwil, Switzerland
| | - Aarti Naik
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - François-Xavier Mathy
- Université catholique de Louvain, Unité de pharmacie galénique, industrielle et officinale, Avenue E. Mounier 73, 1200 Brussels, Belgium
- UCB SA, Chemin du Foriest 1, 1420 Braine-l’Alleud, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Unité de pharmacie galénique, industrielle et officinale, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Richard H. Guy
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY Allschwil, UK
| |
Collapse
|
49
|
Trommer H, Neubert RHH. Overcoming the Stratum Corneum: The Modulation of Skin Penetration. Skin Pharmacol Physiol 2006; 19:106-21. [PMID: 16685150 DOI: 10.1159/000091978] [Citation(s) in RCA: 348] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 01/27/2006] [Indexed: 11/19/2022]
Abstract
It is preferred that topically administered drugs act either dermally or transdermally. For that reason they have to penetrate into the deeper skin layers or permeate the skin. The outermost layer of the human skin, the stratum corneum, is responsible for its barrier function. Most topically administered drugs do not have the ability to penetrate the stratum corneum. In these cases modulations of the skin penetration profiles of these drugs and skin barrier manipulations are necessary. A skin penetration enhancement can be achieved either chemically, physically or by use of appropriate formulations. Numerous chemical compounds have been evaluated for penetration-enhancing activity, and different modes of action have been identified for skin penetration enhancement. In addition to chemical methods, skin penetration of drugs can be improved by physical options such as iontophoresis and phonophoresis, as well as by combinations of both chemical and physical methods or by combinations of several physical methods. There are cases where skin penetration of the drug used in the formulation is not the aim of the topical administration. Penetration reducers can be used to prevent chemicals entering the systemic circulation. This article concentrates on the progress made mainly over the last decade by use of chemical penetration enhancers. The different action modes of these substances are explained, including the basic principles of the physical skin penetration enhancement techniques and examples for their application.
Collapse
Affiliation(s)
- H Trommer
- School of Pharmacy, Institute of Pharmaceutics and Biopharmaceutics, Martin Luther University, Halle, Germany.
| | | |
Collapse
|
50
|
Wartewig S, Neubert RHH. Pharmaceutical applications of Mid-IR and Raman spectroscopy. Adv Drug Deliv Rev 2005; 57:1144-70. [PMID: 15885850 DOI: 10.1016/j.addr.2005.01.022] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 01/19/2005] [Indexed: 11/25/2022]
Abstract
Mid-IR and Raman spectroscopy are versatile tools in pharmaceutics and biopharmaceutics, with a wide field of applications ranging from characterization of drug formulations to elucidation of kinetic processes in drug delivery. After an introduction to the basic principles of IR and Raman spectroscopy, new developments in applications of these methods for studying drug delivery systems, in particular topical drug delivery, will be reviewed. FTIR-ATR is a well-established standard method used to study drug release in semisolid formulations, drug penetration, and influence of penetration modifiers; it is also capable of in vivo studies. FTIR-PAS has been applied to measure drug content in semisolid and solid formulations, to determine drug penetration into artificial and biological membranes. The big advantage of this technique is the possibility of spectral depth profiling. However, FTIR-PAS is so far limited to in vitro investigations. Raman spectroscopy can be used to characterize the structure of colloidal drug carrier systems. Raman spectroscopy is readily applicable to in vivo studies, but such investigations must fulfill the relevant laser safety guideline. Recently, there has been tremendous technical improvement in vibrational microspectroscopy. FTIR imaging shows great promise in its ability to visualize the drug and excipient distribution in pharmaceutical formulations such as tablets and therapeutic transdermal systems, as well as to reveal the mechanism of drug release. Furthermore, this unique technique offers completely new possibilities to study the lateral diffusion of drugs.
Collapse
Affiliation(s)
- Siegfried Wartewig
- Institute of Applied Dermatopharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Street 4, Halle (Saale) D-06120, Germany
| | | |
Collapse
|