1
|
Reitsema RD, Boots AMH, van der Geest KSM, Sandovici M, Heeringa P, Brouwer E. CD8+ T Cells in GCA and GPA: Bystanders or Active Contributors? Front Immunol 2021; 12:654109. [PMID: 33815414 PMCID: PMC8015776 DOI: 10.3389/fimmu.2021.654109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
Vasculitis refers to inflammation of blood vessels and can cause a variety of serious complications depending on which vessels are affected. Two different forms of vasculitis are Giant Cell Arteritis (GCA) and Granulomatosis with Polyangiitis (GPA). GCA is the most common form of vasculitis in adults affecting the large arteries and can lead to visual impairment and development of aneurysms. GPA affects small- and medium-sized blood vessels predominantly in the lungs and kidneys resulting in organ failure. Both diseases can potentially be fatal. Although the pathogenesis of GCA and GPA are incompletely understood, a prominent role for CD4+ T cells has been implicated in both diseases. More recently, the role of CD8+ T cells has gained renewed interest. CD8+ T cells are important players in the adaptive immune response against intracellular microorganisms. After a general introduction on the different forms of vasculitis and their association with infections and CD8+ T cells, we review the current knowledge on CD8+ T-cell involvement in the immunopathogenesis of GCA and GPA focusing on phenotypic and functional features of circulating and lesional CD8+ T cells. Furthermore, we discuss to which extent aging is associated with CD8+ T-cell phenotype and function in GCA and GPA.
Collapse
Affiliation(s)
- Rosanne D Reitsema
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Annemieke M H Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Cai Y, Liu R, Lu X, Zhang Q, Wang X, Lian H, Wang H. Correlation in gene expression between the aggravation of chronic obstructive pulmonary disease and the occurrence of complications. Bioengineered 2020; 11:1245-1257. [PMID: 33108241 PMCID: PMC8291885 DOI: 10.1080/21655979.2020.1839216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aggravation of the chronic obstructive pulmonary disease (COPD) often leads to a slew of complications, but the correlation between COPD aggravation and the complications on the basis of molecular level remains unclear. In this study, gene expression profiles of COPD in patients at early and aggravation stages were collected and differentially-expressed genes were selected. Meanwhile, gene expression data implicated in COPD complications were analyzed to establish a regulatory network of COPD aggravation and COPD related complications. In addition, the gene enrichment function of DAVID6.7 was utilized to evaluate the similarities between COPD aggravation and COPD complications in term of biological process. By analyzing the genes of COPD aggravation and the COPD complications, we found 18 genes highly related to COPD aggravation, among which haptoglobin (HP) was correlated with 14 complications, followed by ADRB2, LCK and CA1, which were related to 13, 11 and 11 complications, respectively. As far as the complications concerned, obesity was regulated by 17 of the 18 genes, which indicated that there was a close correlation between COPD aggravation and obesity. Meanwhile, lung cancer, diabetes and heart failure were regulated by 15, 15 and 14 genes, respectively, among the 18 selected genes. This study suggested the driver genes of COPD aggravation were capable of extensively regulating COPD complications, which would provide a theoretical basis for development of cures for COPD and its complications.
Collapse
Affiliation(s)
- Yuchen Cai
- Department of Mathematics, School of Science, Hainan University , Haikou, Hainan Province, China
| | - Runhan Liu
- Department of Mathematics, School of Science, Hainan University , Haikou, Hainan Province, China
| | - Xinhe Lu
- School of Life and Pharmaceutical Science , Haikou, Hainan Province, China
| | - Qiming Zhang
- School of Electrical and Information Engineering, Anhui University of Science and Technology , Huainan, Anhui Province, China
| | - Xinwei Wang
- College of Information Science and Engineering, Ocean University of China , Qingdao, Shandong Province, China
| | - Huijing Lian
- School of Economics, Hainan University , Haikou, Hainan Province, China
| | - Haohua Wang
- Department of Mathematics, School of Science, Hainan University , Haikou, Hainan Province, China
| |
Collapse
|
3
|
Wabnitz GH, Balta E, Schindler S, Kirchgessner H, Jahraus B, Meuer S, Samstag Y. The pro-oxidative drug WF-10 inhibits serial killing by primary human cytotoxic T-cells. Cell Death Discov 2016; 2:16057. [PMID: 27551545 PMCID: PMC4979520 DOI: 10.1038/cddiscovery.2016.57] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/05/2016] [Indexed: 12/22/2022] Open
Abstract
Cytotoxic T-cells (CTLs) play an important role in many immune-mediated inflammatory diseases. Targeting cytotoxicity of CTLs would allow to interfere with immune-mediated tissue destruction. Here we demonstrate that WF-10, a pro-oxidative compound, inhibits CTL-mediated cytotoxicity. WF-10 did not influence early steps of target-cell killing, but impaired the ability of CTLs to detach from the initial target cell and to move to a second target cell. This reduced serial killing was accompanied by stronger enrichment of the adhesion molecule LFA-1 in the cytolytic immune synapse. LFA-1 clustering requires activation of the actin-bundling protein L-plastin and was accordingly diminished in L-plastin knockdown cells. Interestingly, WF-10 likely acts through regulating L-plastin: (I) It induced L-plastin activation through phosphorylation leading to enhanced LFA-1-mediated cell adhesion, and, importantly, (II) WF-10 lost its influence on target-cell killing in L-plastin knockdown cells. Finally, we demonstrate that WF-10 can improve immunosuppression by conventional drugs. Thus, while cyclosporine A alone had no significant effect on cytotoxicity of CTLs, a combination of cyclosporine A and WF-10 blocked target-cell killing synergistically. Together, our findings suggest that WF-10 – either alone or in combination with conventional immunosuppressive drugs – may be efficient to control progression of diseases, in which CTLs are crucially involved.
Collapse
Affiliation(s)
- G H Wabnitz
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - E Balta
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - S Schindler
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - H Kirchgessner
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - B Jahraus
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - S Meuer
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - Y Samstag
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| |
Collapse
|
4
|
Yosaee S, Akbari Fakhrabadi M, Shidfar F. Positive evidence for vitamin A role in prevention of type 1 diabetes. World J Diabetes 2016; 7:177-88. [PMID: 27162582 PMCID: PMC4856890 DOI: 10.4239/wjd.v7.i9.177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/23/2016] [Accepted: 04/07/2016] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) as one of the most well-known autoimmune disease, results from the destruction of β-cells in pancreas by autoimmune process. T1DM is fatal without insulin treatment. The expansion of alternative treatment to insulin is a dream to be fulfilled. Currently autoimmunity is considered as main factor in development of T1DM. So manipulation of the immune system can be considered as alternative treatment to insulin. For the past decades, vitamin A has been implicated as an essential dietary micronutrient in regulator of immune function. Despite major advantage in the knowledge of vitamin A biology, patients who present T1DM are at risk for deficiency in vitamin A and carotenoids. Applying such evidences, vitamin A treatment may be the key approach in preventing T1DM.
Collapse
|
5
|
De Cunto G, Lunghi B, Bartalesi B, Cavarra E, Fineschi S, Ulivieri C, Lungarella G, Lucattelli M. Severe Reduction in Number and Function of Peripheral T Cells Does Not Afford Protection toward Emphysema and Bronchial Remodeling Induced in Mice by Cigarette Smoke. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1814-1824. [PMID: 27157991 DOI: 10.1016/j.ajpath.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/24/2016] [Accepted: 03/04/2016] [Indexed: 11/28/2022]
Abstract
The protein Lck (p56(Lck)) is a Src family tyrosine kinase expressed at all stages of thymocyte development and is required for maturation of T cells. The targeted disruption of Lck gene in mice results in severe block in thymocyte maturation with substantial reduction in the development of CD4(+)CD8(+) thymocytes, severe reduction of peripheral T cells, and disruption of T-cell receptor signaling with defective function of T-cell responses. To investigate the role of T lymphocyte in the development of cigarette smoke-induced pulmonary changes, Lck(-/-) mice and corresponding congenic wild-type mice were chronically exposed to cigarette smoke, and their lungs were analyzed by biochemical, immunologic, and morphometric methods. Smoking mice from both genotypes showed disseminated foci of emphysema and large areas of goblet cell metaplasia in bronchial and bronchiolar epithelium. Morphometric evaluation of lung changes and lung elastin determination confirmed that mice from both genotypes showed the same degree of emphysematous lesions. Thus, cigarette smoke exposure in the presence of severe reduction in number and function of peripheral T cells does not influence the development of pulmonary changes induced by cigarette smoke. The data obtained suggest that innate immunity is a leading actor in the early development of pulmonary changes in smoking mice and that the adaptive immune response may play a role at later stages.
Collapse
Affiliation(s)
- Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Benedetta Lunghi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Barbara Bartalesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Silvia Fineschi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| | - Monica Lucattelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
6
|
Grundy S, Plumb J, Lea S, Kaur M, Ray D, Singh D. Down regulation of T cell receptor expression in COPD pulmonary CD8 cells. PLoS One 2013; 8:e71629. [PMID: 23977094 PMCID: PMC3747211 DOI: 10.1371/journal.pone.0071629] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/02/2013] [Indexed: 11/19/2022] Open
Abstract
CD8 cells may contribute towards an autoimmune process in COPD. Down regulation of T cell receptor (TCR) signalling molecules occurs in autoimmune diseases with consequent T cell dysfunction. We hypothesise that TCR signalling is abnormal in COPD pulmonary CD8 cells. Micro-array gene expression analysis of blood and pulmonary COPD CD8 samples was performed and compared to pulmonary CD8 cells from smoker controls (S). We focused on the TCR signalling pathway, with validation of key findings using polymerase chain reaction and immunofluorescence. TCR signalling molecules in COPD pulmonary CD8 cells were down regulated compared to blood CD8 cells (CD247: fold change (FC) -2.43, Q = 0.001; LCK: FC -2.25, Q = 0.01). Micro-array analysis revealed no significant differences between COPD and S pulmonary CD8 cells. However, PCR revealed significantly lower gene expression levels of CD247 (FC -1.79, p = 0.04) and LCK (FC -1.77, p = 0.01) in COPD compared to S pulmonary CD8 cells. CD247 down regulation in COPD CD8 cells was confirmed by immunofluorescent staining of bronchoalveolar lavage cells: Significantly fewer COPD CD8 cells co-expressed CD247 compared to healthy non-smoker CD8 cells (mean 88.9 vs 75.2%, p<0.05) There is down regulation of TCR signalling molecules in COPD pulmonary CD8 cells. This may cause T cell dysfunction.
Collapse
Affiliation(s)
- Seamus Grundy
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester Foundation Trust, Manchester, United Kingdom
- * E-mail:
| | - Jonathan Plumb
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester Foundation Trust, Manchester, United Kingdom
| | - Simon Lea
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester Foundation Trust, Manchester, United Kingdom
| | - Manminder Kaur
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester Foundation Trust, Manchester, United Kingdom
| | - David Ray
- School of Medicine and Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dave Singh
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
7
|
Padgett LE, Broniowska KA, Hansen PA, Corbett JA, Tse HM. The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann N Y Acad Sci 2013; 1281:16-35. [PMID: 23323860 PMCID: PMC3715103 DOI: 10.1111/j.1749-6632.2012.06826.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type 1 diabetes (T1D) is a T cell–mediated autoimmune disease characterized by the destruction of insulin-secreting pancreatic β cells. In humans with T1D and in nonobese diabetic (NOD) mice (a murine model for human T1D), autoreactive T cells cause β-cell destruction, as transfer or deletion of these cells induces or prevents disease, respectively. CD4+ and CD8+ T cells use distinct effector mechanisms and act at different stages throughout T1D to fuel pancreatic β-cell destruction and disease pathogenesis. While these adaptive immune cells employ distinct mechanisms for β-cell destruction, one central means for enhancing their autoreactivity is by the secretion of proinflammatory cytokines, such as IFN-γ, TNF-α, and IL-1. In addition to their production by diabetogenic T cells, proinflammatory cytokines are induced by reactive oxygen species (ROS) via redox-dependent signaling pathways. Highly reactive molecules, proinflammatory cytokines are produced upon lymphocyte infiltration into pancreatic islets and induce disease pathogenicity by directly killing β cells, which characteristically possess low levels of antioxidant defense enzymes. In addition to β-cell destruction, proinflammatory cytokines are necessary for efficient adaptive immune maturation, and in the context of T1D they exacerbate autoimmunity by intensifying adaptive immune responses. The first half of this review discusses the mechanisms by which autoreactive T cells induce T1D pathogenesis and the importance of ROS for efficient adaptive immune activation, which, in the context of T1D, exacerbates autoimmunity. The second half provides a comprehensive and detailed analysis of (1) the mechanisms by which cytokines such as IL-1 and IFN-γ influence islet insulin secretion and apoptosis and (2) the key free radicals and transcription factors that control these processes.
Collapse
Affiliation(s)
- Lindsey E Padgett
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
8
|
Mor A, Kloog Y, Keren G, George J. Ras inhibition increases the frequency and function of regulatory T cells and attenuates type-1 diabetes in non-obese diabetic mice. Eur J Pharmacol 2009; 616:301-5. [DOI: 10.1016/j.ejphar.2009.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 05/12/2009] [Accepted: 06/03/2009] [Indexed: 12/20/2022]
|
9
|
Van YH, Lee WH, Ortiz S, Lee MH, Qin HJ, Liu CP. All-trans retinoic acid inhibits type 1 diabetes by T regulatory (Treg)-dependent suppression of interferon-gamma-producing T-cells without affecting Th17 cells. Diabetes 2009; 58:146-55. [PMID: 18984738 PMCID: PMC2606864 DOI: 10.2337/db08-1154] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE All-trans retinoic acid (ATRA), a potent derivative of vitamin A, can regulate immune responses. However, its role in inducing immune tolerance associated with the prevention of islet inflammation and inhibition of type 1 diabetes remains unclear. RESEARCH DESIGN AND METHODS We investigated the mechanisms underlying the potential immunoregulatory effect of ATRA on type 1 diabetes using an adoptive transfer animal model of the disease. RESULTS Our data demonstrated that ATRA treatment inhibited diabetes in NOD mice with established insulitis. In addition, it suppressed interferon (IFN)-gamma-producing CD4(+) and CD8(+) T effector (Teff) cells and expanded T regulatory (Treg) cells in recipient mice transferred with diabetic NOD splenocytes, without affecting either interleukin (IL)-17--or IL-4-producing cells. Consistent with these results, ATRA reduced T-bet and STAT4 expression in T-cells and decreased islet-infiltrating CD8(+) T-cells, suppressing their activation and IFN-gamma/granzyme B expression. Depletion of CD4(+)CD25(+) Treg cells impaired the inhibitory effect of ATRA on islet-infiltrating T-cells and blocked its protective effect on diabetes. Therefore, ATRA treatment induced Treg cell-dependent immune tolerance by suppressing both CD4(+) and CD8(+) Teff cells while promoting Treg cell expansion. CONCLUSIONS These results demonstrate that ATRA treatment promoted in vivo expansion of Treg cells and induced Treg cell-dependent immune tolerance by suppressing IFN-gamma-producing T-cells, without affecting Th17 cells. Our study also provides novel insights into how ATRA induces immune tolerance in vivo via its effects on Teff and Treg cells.
Collapse
Affiliation(s)
- Yang-Hau Van
- Division of Immunology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | | | | | | | | | | |
Collapse
|
10
|
Walter U, Santamaria P. CD8+ T cells in autoimmunity. Curr Opin Immunol 2005; 17:624-31. [PMID: 16226438 DOI: 10.1016/j.coi.2005.09.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
Mounting evidence shows that CD8(+) T cells contribute to the initiation, progression and regulation of several pathogenic autoimmune responses in which these cells were not previously thought to play a major role. CD8(+) T cells can kill target cells directly, by recognizing peptide-MHC complexes on target cells, or indirectly, by secreting cytokines capable of signaling through death receptors expressed on the target cell surface. Autoreactive CD8(+) T cells can also contribute to autoimmunity by releasing cytokines capable of increasing the susceptibility of target cells to cytotoxicity, or by secreting chemokines that attract other immune cells to the site of autoimmunity. Autoreactive CD8(+) T cells can also downregulate autoimmune responses. Recent important advances include a mechanistic understanding of events leading to the activation and recruitment of autoreactive CD8(+) T cells in certain autoimmune responses and a greater appreciation of the diverse roles that these T cells play in autoimmunity.
Collapse
Affiliation(s)
- Ulrich Walter
- Julia McFarlane Diabetes Research Centre and Department of Microbiology and Infectious Diseases, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|