1
|
Onyeisi JOS, Pernambuco Filho PCDA, Mesquita APDS, Azevedo LCD, Nader HB, Lopes CC. Effects of syndecan-4 gene silencing by micro RNA interference in anoikis resistant endothelial cells: Syndecan-4 silencing and anoikis resistance. Int J Biochem Cell Biol 2020; 128:105848. [PMID: 32927086 DOI: 10.1016/j.biocel.2020.105848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
The cell's resistance to cell death by adhesion loss to extracellular matrix (anoikis), contributes to tumor progression and metastasis. Various adhesion molecules are involved in the anoikis resistance, including the syndecan-4 (SDC4), a heparan sulfate proteoglycan (HSPG) present on the cell surface. Changes in the expression of SDC4 have been observed in tumor and transformed cells, indicating its involvement in cancer. In previous works, we demonstrated that acquisition of anoikis resistance resistance by blocking adhesion to the substrate up-regulates syndecan-4 expression in endothelial cells. This study investigates the role of SDC4 in the transformed phenotype of anoikis resistant endothelial cells. Anoikis-resistant endothelial cells (Adh1-EC) were transfected with micro RNA interference (miR RNAi) targeted against syndecan-4. The effect of SDC4 silencing was analyzed by real-time PCR, western blotting and immunofluorescence. Transfection with miRNA-SDC4 resulted in a sequence-specific decrease in syndecan-4 mRNA and protein levels. Furthermore, we observed a reduction in the number of heparan and chondroitin sulfate chains in the cell extract and culture medium. The SDC4 silencing led to downregulation of proliferative and invasive capacity and angiogenic abilities of anoikis-resistant endothelial cells. Compared with the parental cells (Adh1-EC), SDC4 silenced cells (SDC4 miR-Syn-4-1-Adh1-EC e miR-Syn-4-2-Adh1-EC) exhibited an increase in adhesion to collagen and laminin and also in the apoptosis rate. Moreover, transfection with miRNA-SDC4 caused a decrease in the number of cells in the S phase of the cell cycle. This is accompanied by an increase in the heparan sulfate synthesis after 12 h of simulation with fetal calf serum (FCS). SDC4 silencing cells are more dependent of growth factors present in the FCS to synthesize heparan sulfate than parental cells. Similar data were obtained for the wild-type cell line (EC). Our results indicated that downregulation of SDC4 expression reverses the transformed phenotype of anoikis resistant endothelial cells. These and other findings suggest that syndecan-4 is suitable for pharmacological intervention, making it an attractive target for cancer therapy.
Collapse
Affiliation(s)
- Jessica Oyie Sousa Onyeisi
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Ana Paula de Sousa Mesquita
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Luis Cesar de Azevedo
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Helena Bonciani Nader
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Carla Cristina Lopes
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
2
|
Constitutional absence of epithelial integrin α3 impacts the composition of the cellular microenvironment of ILNEB keratinocytes. Matrix Biol 2018; 74:62-76. [PMID: 30466509 DOI: 10.1016/j.matbio.2018.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 11/19/2022]
Abstract
Integrin α3β1, a major epidermal adhesion receptor is critical for organization of the basement membrane during development and wound healing. Integrin α3 deficiency leads to interstitial lung disease, nephrotic syndrome and epidermolysis bullosa (ILNEB), an autosomal recessive multiorgan disease characterized by basement membrane abnormalities in skin, lung and kidney. The pathogenetic chains from ITGA3 mutation to tissue abnormalities are still unclear. Although integrin α3 was reported to regulate multiple extracellular proteins, the composition of the extracellular compartment of integrin α3-negative keratinocytes has not been resolved so far. In a comprehensive approach, quantitative proteomics of deposited extracellular matrix, conditioned cultured media as well as of the intracellular compartment of keratinocytes isolated from an ILNEB patient and from normal skin were performed. By mass spectrometry-based proteomics, 167 proteins corresponding to the GO terms "extracellular" and "cell adhesion", or included in the "human matrisome" were identified in the deposited extracellular matrix, and 217 in the conditioned media of normal human keratinocytes. In the absence of integrin α3, 33% and 26% respectively were dysregulated. Dysregulated proteins were functionally related to integrin α3 or were known interaction partners. The results show that in the absence of integrin α3 ILNEB keratinocytes produce a fibronectin-rich microenvironment and make use of fibronectin-binding integrin subunits αv and α5. The most important results were validated in monolayer and organotypic coculture models. Finally, the in vivo relevance of the most dysregulated components was demonstrated by immunostainings of skin, kidney and lung samples of three ILNEB patients.
Collapse
|
3
|
Velleman SG, Song Y. Development and Growth of the Avian Pectoralis Major (Breast) Muscle: Function of Syndecan-4 and Glypican-1 in Adult Myoblast Proliferation and Differentiation. Front Physiol 2017; 8:577. [PMID: 28848451 PMCID: PMC5550705 DOI: 10.3389/fphys.2017.00577] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Muscle fiber number is determined around the time hatch with continued posthatch muscle growth being mediated by the adult myoblast, satellite cell, population of cells. Satellite cells are dynamic in their expression of proteins including the cell membrane associated proteoglycans, syndecan-4 and glypican-1. These proteoglycans play roles in organizing the extracellular environment in the satellite cell niche, cytoskeletal structure, cell-to-cell adhesion, satellite cell migration, and signal transduction. This review article focuses on syndecan-4 and glypican-1 as both are capable of regulating satellite cell responsiveness to fibroblast growth factor 2. Fibroblast growth factor 2 is a potent stimulator of muscle cell proliferation and a strong inhibitor of differentiation. Proteoglycans are composed of a central core protein defined functional domains, and covalently attached glycosaminoglycans and N-glycosylation chains. The functional association of these components with satellite cell function is discussed as well as an emerging role for microRNA regulation of syndecan-4 and glypican-1.
Collapse
Affiliation(s)
- Sandra G Velleman
- Department of Animal Sciences, The Ohio State UniversityWooster, OH, United States
| | - Yan Song
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical SchoolBoston, MA, United States
| |
Collapse
|
4
|
Eftestøl E, Egner IM, Lunde IG, Ellefsen S, Andersen T, Sjåland C, Gundersen K, Bruusgaard JC. Increased hypertrophic response with increased mechanical load in skeletal muscles receiving identical activity patterns. Am J Physiol Cell Physiol 2016; 311:C616-C629. [PMID: 27488660 DOI: 10.1152/ajpcell.00016.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/26/2016] [Indexed: 11/22/2022]
Abstract
It is often assumed that mechanical factors are important for effects of exercise on muscle, but during voluntary training and most experimental conditions the effects could solely be attributed to differences in electrical activity, and direct evidence for a mechanosensory pathway has been scarce. We here show that, in rat muscles stimulated in vivo under deep anesthesia with identical electrical activity patterns, isometric contractions induced twofold more hypertrophy than contractions with 50-60% of the isometric force. The number of myonuclei and the RNA levels of myogenin and myogenic regulatory factor 4 were increased with high load, suggesting that activation of satellite cells is mechano dependent. On the other hand, training induced a major shift in fiber type distribution from type 2b to 2x that was load independent, indicating that the electrical signaling rather than mechanosignaling controls fiber type. RAC-α serine/threonine-protein kinase (Akt) and ribosomal protein S6 kinase β-1 (S6K1) were not significantly differentially activated by load, suggesting that the differences in mechanical factors were not important for activating the Akt/mammalian target of rapamycin/S6K1 pathway. The transmembrane molecule syndecan-4 implied in overload hypertrophy in cardiac muscle was not load dependent, suggesting that mechanosignaling in skeletal muscle is different.
Collapse
Affiliation(s)
- Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ingrid M Egner
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ida G Lunde
- Department of Genetics, Harvard Medical School, Boston, Massachusetts; Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Stian Ellefsen
- Section for Sport Sciences, Lillehammer University College, Lillehammer, Norway; and
| | - Tom Andersen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - Jo C Bruusgaard
- Department of Biosciences, University of Oslo, Oslo, Norway; Department of Health Sciences, Kristiania University College, Oslo, Norway
| |
Collapse
|
5
|
Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:61-95. [DOI: 10.1007/978-3-319-27511-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
McCarthy KJ, Wassenhove-McCarthy DJ. The glomerular basement membrane as a model system to study the bioactivity of heparan sulfate glycosaminoglycans. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:3-21. [PMID: 22258721 PMCID: PMC3351113 DOI: 10.1017/s1431927611012682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The glomerular basement membrane and its associated cells are critical elements in the renal ultrafiltration process. Traditionally the anionic charge associated with several carbohydrate moieties in the glomerular basement membrane are thought to form a charge selective barrier that restricts the transmembrane flux of anionic proteins across the glomerular basement membrane into the urinary space. The charge selective function, along with the size selective component of the basement membrane, serves to limit the efflux of plasma proteins from the capillary lumen. Heparan sulfate glycosaminoglycans are anionically charged carbohydrate structures attached to proteoglycan core proteins and have a role in establishing the charge selective function of the glomerular basement membrane. Although there are a large number of studies in the literature that support this concept, the results of several recent studies using molecular genetic approaches to minimize the anionic charge of the glomerular basement membrane would suggest that the role of heparan sulfate glycosaminoglycans in the glomerular capillary wall are still not yet entirely resolved, suggesting that this research area still requires new and novel exploration.
Collapse
Affiliation(s)
- Kevin J McCarthy
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| | | |
Collapse
|
7
|
Syndecan-4 proteoliposomes enhance fibroblast growth factor-2 (FGF-2)-induced proliferation, migration, and neovascularization of ischemic muscle. Proc Natl Acad Sci U S A 2012; 109:1679-84. [PMID: 22307630 DOI: 10.1073/pnas.1117885109] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ischemia of the myocardium and lower limbs is a common consequence of arterial disease and a major source of morbidity and mortality in modernized countries. Inducing neovascularization for the treatment of ischemia is an appealing therapeutic strategy for patients for whom traditional treatment modalities cannot be performed or are ineffective. In the past, the stimulation of blood vessel growth was pursued using direct delivery of growth factors, angiogenic gene therapy, or cellular therapy. Although therapeutic angiogenesis holds great promise for treating patients with ischemia, current methods have not found success in clinical trials. Fibroblast growth factor-2 (FGF-2) was one of the first growth factors to be tested for use in therapeutic angiogenesis. Here, we present a method for improving the biological activity of FGF-2 by codelivering the growth factor with a liposomally embedded coreceptor, syndecan-4. This technique was shown to increase FGF-2 cellular signaling, uptake, and nuclear localization in comparison with FGF-2 alone. Delivery of syndecan-4 proteoliposomes also increased endothelial proliferation, migration, and angiogenic tube formation in response to FGF-2. Using an animal model of limb ischemia, syndecan-4 proteoliposomes markedly improved the neovascularization following femoral artery ligation and recovery of perfusion of the ischemic limb. Taken together, these results support liposomal delivery of syndecan-4 as an effective means to improving the potential of using growth factors to achieve therapeutic neovascularization of ischemic tissue.
Collapse
|
8
|
Jarousse N, Trujillo DL, Wilcox-Adelman S, Coscoy L. Virally-induced upregulation of heparan sulfate on B cells via the action of type I IFN. THE JOURNAL OF IMMUNOLOGY 2011; 187:5540-7. [PMID: 22048770 DOI: 10.4049/jimmunol.1003495] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell surface heparan sulfate (HS) is an important coreceptor for many cytokines, chemokines, and growth factors. In this study, we report that splenic murine B cells express very little HS and that upon infection with either gammaherpesvirus (murine gammaherpesvirus 68) or betaherpesvirus (murine cytomegalovirus), HS is rapidly upregulated at the surface of B cells. HS upregulation was not observed in mice deficient for the type I IFN (IFN-I) receptor. Additionally, treatment of wild-type mice with the IFN-I inducer polyinosine polycytidylic acid triggered HS expression at the B cell surface. Similarly, incubation of purified splenic B cells with IFN-I, TLR ligands, or BCR stimulators ex vivo resulted in a drastic increase in HS surface expression. We found that IFN-I induced an increase in the surface expression of HS-modified syndecan 4 as well as that of an unidentified heparan sulfate proteoglycan. Finally, IFN-I treatment increased B cell responsiveness to APRIL, a cytokine involved in B cell survival and T cell-independent B cell responses. Enzymatic removal of HS from IFN-I-treated B cells inhibited APRIL. Altogether, our results indicate that upon herpesvirus infection in mice, HS is rapidly upregulated at the surface of B cells due to the action of IFN-I, potentially increasing B cell responsiveness to cytokines. Induction of HS expression at the B cell surface by stimulators of the innate immune response likely plays a key role in the development of a robust immune response.
Collapse
Affiliation(s)
- Nadine Jarousse
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
9
|
Zong F, Fthenou E, Mundt F, Szatmári T, Kovalszky I, Szilák L, Brodin D, Tzanakakis G, Hjerpe A, Dobra K. Specific syndecan-1 domains regulate mesenchymal tumor cell adhesion, motility and migration. PLoS One 2011; 6:e14816. [PMID: 21731601 PMCID: PMC3121713 DOI: 10.1371/journal.pone.0014816] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 03/31/2011] [Indexed: 12/25/2022] Open
Abstract
Background Syndecans are proteoglycans whose core proteins have a short cytoplasmic domain, a transmembrane domain and a large N-terminal extracellular domain possessing glycosaminoglycan chains. Syndecans are involved in many important cellular processes. Our recent publications have demonstrated that syndecan-1 translocates into the nucleus and hampers tumor cell proliferation. In the present study, we aimed to investigate the role of syndecan-1 in tumor cell adhesion and migration, with special focus on the importance of its distinct protein domains, to better understand the structure-function relationship of syndecan-1 in tumor progression. Methodology/Principal Findings We utilized two mesenchymal tumor cell lines which were transfected to stably overexpress full-length syndecan-1 or truncated variants: the 78 which lacks the extracellular domain except the DRKE sequence proposed to be essential for oligomerization, the 77 which lacks the whole extracellular domain, and the RMKKK which serves as a nuclear localization signal. The deletion of the RMKKK motif from full-length syndecan-1 abolished the nuclear translocation of this proteoglycan. Various bioassays for cell adhesion, chemotaxis, random movement and wound healing were studied. Furthermore, we performed gene microarray to analyze the global gene expression pattern influenced by syndecan-1. Both full-length and truncated syndecan-1 constructs decrease tumor cell migration and motility, and affect cell adhesion. Distinct protein domains have differential effects, the extracellular domain is more important for promoting cell adhesion, while the transmembrane and cytoplasmic domains are sufficient for inhibition of cell migration. Cell behavior seems to depend also on the nuclear translocation of syndecan-1. Many genes are differentially regulated by syndecan-1 and a number of genes are actually involved in cell adhesion and migration. Conclusions/Significance Our results demonstrate that syndecan-1 regulates mesenchymal tumor cell adhesion and migration, and different domains have differential effects. Our study provides new insights into better understanding of the role of syndecans in tumor progression.
Collapse
Affiliation(s)
- Fang Zong
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Parsi MK, Adams JR, Whitelock J, Gibson MA. LTBP-2 has multiple heparin/heparan sulfate binding sites. Matrix Biol 2010; 29:393-401. [DOI: 10.1016/j.matbio.2010.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/26/2010] [Accepted: 03/26/2010] [Indexed: 11/28/2022]
|
11
|
Lambaerts K, Wilcox-Adelman SA, Zimmermann P. The signaling mechanisms of syndecan heparan sulfate proteoglycans. Curr Opin Cell Biol 2009. [DOI: 10.1016/j.ceb.2009.05.002 doi:dx.doi.org] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
12
|
The signaling mechanisms of syndecan heparan sulfate proteoglycans. Curr Opin Cell Biol 2009; 21:662-9. [PMID: 19535238 DOI: 10.1016/j.ceb.2009.05.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 05/13/2009] [Indexed: 01/01/2023]
Abstract
Syndecans are membrane proteins controlling cell proliferation, differentiation, adhesion, and migration. Their extracellular domains bear versatile heparan sulfate chains that provide structural determinants for syndecans to function as coreceptors or activators for molecules like growth factors and constituents of the matrix. Syndecans also signal via their protein cores and their conserved transmembrane and cytoplasmic domains. The direct interactions and signaling cascades they support are becoming better characterized. These interactions are regulated by phosphorylation, induced clustering and shedding of the syndecan extracellular domain. Moreover evidence is emerging that syndecans concentrate in unconventional lipid domains and might govern novel vesicular trafficking pathways. Here we focus on recent findings that refine our understanding of the complex structure-function relationships of these cellular effectors.
Collapse
|
13
|
Dubash AD, Menold MM, Samson T, Boulter E, García-Mata R, Doughman R, Burridge K. Chapter 1 Focal Adhesions: New Angles on an Old Structure. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:1-65. [DOI: 10.1016/s1937-6448(09)77001-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
14
|
Rodríguez-Manzaneque JC, Carpizo D, Plaza-Calonge MDC, Torres-Collado AX, Thai SNM, Simons M, Horowitz A, Iruela-Arispe ML. Cleavage of syndecan-4 by ADAMTS1 provokes defects in adhesion. Int J Biochem Cell Biol 2008; 41:800-10. [PMID: 18775505 DOI: 10.1016/j.biocel.2008.08.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/31/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
Syndecan-4 is a membrane-bound heparan sulfate proteoglycan that participates in cell-cell and cell-matrix interactions and modulates adhesion and migration of many cell types. Through its extracellular domain, syndecan-4 cooperates with adhesion molecules and binds matrix components relevant for cell migration. Importantly, syndecan-4 is a substrate of extracellular proteases, however the biological significance of this cleavage has not been elucidated. Here, we show that the secreted metalloprotease ADAMTS1, involved in angiogenesis and inflammatory processes, cleaves the ectodomain of syndecan-4. We further showed that this cleavage results in altered distribution of cytoskeleton components, functional loss of adhesion, and gain of migratory capacities. Using syndecan-4 null cells, we observed that ADAMTS1 proteolytic action mimics the outcome of genetic deletion of this proteoglycan with regards to focal adhesion. Our findings suggest that the shedding of syndecan-4 by ADAMTS1 disrupts cell adhesion and promotes cell migration.
Collapse
Affiliation(s)
- Juan Carlos Rodríguez-Manzaneque
- Medical Oncology Research Program, Vall d'Hebron University Hospital Research Institute/Universidad Autónoma de Barcelona, Barcelona 08035, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Langsdorf A, Do AT, Kusche-Gullberg M, Emerson Jr. CP, Ai X. Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration. Dev Biol 2007; 311:464-77. [DOI: 10.1016/j.ydbio.2007.08.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/31/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
|
16
|
Muñoz R, Moreno M, Oliva C, Orbenes C, Larraín J. Syndecan-4 regulates non-canonical Wnt signalling and is essential for convergent and extension movements in Xenopus embryos. Nat Cell Biol 2006; 8:492-500. [PMID: 16604063 DOI: 10.1038/ncb1399] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/15/2006] [Indexed: 11/08/2022]
Abstract
Early shaping of Xenopus laevis embryos occurs through convergent and extension movements, a process that is driven by intercalation of polarized dorsal mesodermal cells and regulated by non-canonical Wnt signalling. Here, we have identified Xenopus syndecan-4 (xSyn4), a cell-surface transmembrane heparan sulphate proteoglycan. At the gastrula stage, xSyn4 is expressed in the involuting dorsal mesoderm and the anterior neuroectoderm. Later, it is found in the pronephros, branchial arches, brain and tailbud. Both gain- and loss-of-function of xSyn4 impaired convergent extension movements in Xenopus embryos and in activin-treated ectodermal explants. xSyn4 interacts functionally and biochemically with the Wnt receptor Frizzled7 (xFz7) and its signal transducer Dishevelled (xDsh). Furthermore, xSyn4 is necessary and sufficient for translocation of xDsh to the plasma membrane - a landmark in the activation of non-canonical Wnt signalling. Our results suggest that the ability of xSyn4 to translocate xDsh is regulated by fibronectin, a component of the extracellular matrix required for proper convergent extension movements. We propose a model where xSyn4 and fibronectin cooperate with xFz7 and Wnt in the specific activation of the non-canonical Wnt pathway.
Collapse
Affiliation(s)
- Rosana Muñoz
- Department of Cell and Molecular Biology, Center for Cell Regulation and Pathology, Millennium Nucleus in Developmental Biology, Faculty of Biological Sciences, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | |
Collapse
|
17
|
Popova TG, Millis B, Bradburne C, Nazarenko S, Bailey C, Chandhoke V, Popov SG. Acceleration of epithelial cell syndecan-1 shedding by anthrax hemolytic virulence factors. BMC Microbiol 2006; 6:8. [PMID: 16464252 PMCID: PMC1386683 DOI: 10.1186/1471-2180-6-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 02/07/2006] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND It has been recently reported that major pathogens Staphylococcus aureus and Pseudomonas aeruginosa accelerate a normal process of cell surface syndecan-1 (Synd1) ectodomain shedding as a mechanism of host damage due to the production of shedding-inducing virulence factors. We tested if acceleration of Synd1 shedding takes place in vitro upon treatment of epithelial cells with B. anthracis hemolysins, as well as in vivo during anthrax infection in mice. RESULTS The isolated anthrax hemolytic proteins AnlB (sphingomyelinase) and AnlO (cholesterol-binding pore-forming factor), as well as ClnA (B. cereus homolog of B. anthracis phosphatidyl choline-preferring phospholipase C) cause accelerated shedding of Synd1 and E-cadherin from epithelial cells and compromise epithelial barrier integrity within a few hours. In comparison with hemolysins in a similar range of concentrations, anthrax lethal toxin (LT) also accelerates shedding albeit at slower rate. Individual components of LT, lethal factor and protective antigen are inactive with regard to shedding. Inhibition experiments favor a hypothesis that activities of tested bacterial shedding inducers converge on the stimulation of cytoplasmic tyrosine kinases of the Syk family, ultimately leading to activation of cellular sheddase. Both LT and AnlO modulate ERK1/2 and p38 MAPK signaling pathways, while JNK pathway seems to be irrelevant to accelerated shedding. Accelerated shedding of Synd1 also takes place in DBA/2 mice challenged with Bacillus anthracis (Sterne) spores. Elevated levels of shed ectodomain are readily detectable in circulation after 24 h. CONCLUSION The concerted acceleration of shedding by several virulence factors could represent a new pathogenic mechanism contributing to disruption of epithelial or endothelial integrity, hemorrhage, edema and abnormal cell signaling during anthrax infection.
Collapse
Affiliation(s)
- Taissia G Popova
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| | - Bryan Millis
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| | - Chris Bradburne
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| | - Svetlana Nazarenko
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| | - Charles Bailey
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| | - Vikas Chandhoke
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| | - Serguei G Popov
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
18
|
Melendez-Vasquez C, Carey DJ, Zanazzi G, Reizes O, Maurel P, Salzer JL. Differential expression of proteoglycans at central and peripheral nodes of Ranvier. Glia 2006; 52:301-8. [PMID: 16035076 DOI: 10.1002/glia.20245] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The nodes of Ranvier are regularly spaced gaps between myelin sheaths that are markedly enriched in voltage-gated sodium channels and associated proteins. Myelinating glia play a key role in promoting node formation, although the requisite glial signals remain poorly understood. In this study, we have examined the expression of glial proteoglycans in the peripheral and central nodes. We report that the heparan sulfate proteoglycan, syndecan-3, becomes highly enriched with PNS node formation; its ligand, collagen V, is also concentrated at the PNS nodes and at lower levels along the abaxonal membrane. The V1 isoform of versican, a chondroitin sulfate proteoglycan, is also present in the nodal gap. By contrast, CNS nodes are enriched in versican isoform V2, but not syndecan-3. We have examined the molecular composition of the PNS nodes in syndecan-3 knockout mice. Nodal components are normally expressed in mice deficient in syndecan-3, suggesting that it has a nonessential role in the organization of nodes in the adult. These results indicate that the molecular composition and extracellular environment of the PNS and CNS nodes of Ranvier are significantly distinct.
Collapse
Affiliation(s)
- Carmen Melendez-Vasquez
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
19
|
Cattaruzza S, Perris R. Proteoglycan control of cell movement during wound healing and cancer spreading. Matrix Biol 2005; 24:400-17. [PMID: 16055321 DOI: 10.1016/j.matbio.2005.06.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/20/2005] [Indexed: 12/21/2022]
Abstract
By virtue of their multifunctional nature, proteoglycans (PGs) are thought to govern the process of cell movement in numerous physiological and pathological contexts, spanning from early embryonic development to tumour invasion and metastasis. The precise mode by which they influence this process is still fragmentary, but evidence is accruing that they may affect it in a multifaceted manner. PGs bound to the plasma membrane mediate the polyvalent interaction of the cell with matrix constituents and with molecules of the neighbouring cells' surfaces; they modulate the activity of receptors implicated in the recognition of these components; and they participate in the perception and convergence of growth- and motility-promoting cues contributed by soluble factors. Through some of these interactions several PGs transduce to pro-motile cells crucial intracellular signals that are likely to be essential for their mobility. A regulated shedding of certain membrane-intercalated PGs seems to provide an additional level of control of cell movement. Coincidentally, matrix-associated PGs may govern cell migration by structuring permissive and non-permissive migratory paths and, when directly secreted by the moving cells, may alternatively create favourable or hostile microenvironments. To exert this latter, indirect effect on cell movement, matrix PGs strongly rely upon their primary molecular partners, such as hyaluronan, link proteins, tenascins, collagens and low-affinity cell surface receptors, whereas a further finer control is provided by a highly regulated proteolytic processing of the PGs accounted by both the migrating cells themselves and cells of their surrounding tissues. Overall, PGs seem to play an important role in determining the migratory phenotype of a cell by initiating, directing and terminating cell movement in a spatio-temporally controlled fashion. This implies that the "anti-adhesive and/or "anti-migratory" properties that have previously been assigned to certain PGs may be re-interpreted as being a means by which these macromolecules elaborate haptotaxis-like mechanisms imposing directionality upon the moving cells. Since these conditions would allow cells to be led to given tissue locations and become immobilized at these sites, a primary function may be ascribed to PGs in the dictation of a "stop or go" choice of the migrating cells.
Collapse
Affiliation(s)
- Sabrina Cattaruzza
- Department of Evolutionary and Functional Biology University of Parma, Viale delle Scienze 11/A PARMA 43100, Italy
| | | |
Collapse
|
20
|
Rauch BH, Millette E, Kenagy RD, Daum G, Fischer JW, Clowes AW. Syndecan-4 is required for thrombin-induced migration and proliferation in human vascular smooth muscle cells. J Biol Chem 2005; 280:17507-11. [PMID: 15731100 DOI: 10.1074/jbc.m410848200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thrombin is a mitogen and chemoattractant for vascular smooth muscle cells (SMCs) and may contribute to vascular lesion formation. We have previously shown that human SMCs, when stimulated with thrombin, release basic fibroblast growth factor (bFGF), causing phosphorylation of FGF receptor-1 (FGFR-1). Treatment with bFGF-neutralizing antibodies (anti-bFGF) or heparin inhibits thrombin-induced DNA synthesis. We concluded that thrombin may stimulate entry into the cell cycle via bFGF release and FGFR-1 activation. In the present study, we demonstrate a requirement for not only FGFR-1 but also syndecan-4, a transmembrane heparan-sulfate proteoglycan. Inhibition of syndecan-4 expression using small interfering RNA (siRNA) resulted in reduced DNA synthesis by human SMCs after stimulation with thrombin (10 nmol/liter). Anti-bFGF antibody, which inhibits DNA synthesis in control cells, had no inhibitory effect when syndecan-4 expression was reduced by siRNA. Thrombin- or bFGF-induced SMC migration, determined in Boyden chamber assays, was reduced in cells treated with syndecan-4 or FGFR-1 siRNA or by anti-bFGF. Thrombin induced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in a biphasic pattern. Although thrombin-mediated ERK phosphorylation at 5 min was not affected by syndecan-4 or FGFR-1 siRNA, ERK phosphorylation at later time points was reduced. We conclude that thrombin-released bFGF binds to syndecan-4 and FGFR-1, which is required for thrombin-induced mitogenesis and migration.
Collapse
MESH Headings
- Aorta/cytology
- Blotting, Western
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- DNA/metabolism
- Dose-Response Relationship, Drug
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Fibroblast Growth Factor 2/metabolism
- Gene Silencing
- Heparin/metabolism
- Humans
- Immunoprecipitation
- Membrane Glycoproteins/physiology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Phosphorylation
- Proteoglycans/physiology
- RNA, Small Interfering/metabolism
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Syndecan-4
- Thrombin/metabolism
- Time Factors
Collapse
Affiliation(s)
- Bernhard H Rauch
- University of Washington School of Medicine, Department of Surgery, Seattle, Washington 98195-6410, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Saoncella S, Calautti E, Neveu W, Goetinck PF. Syndecan-4 regulates ATF-2 transcriptional activity in a Rac1-dependent manner. J Biol Chem 2004; 279:47172-6. [PMID: 15371457 DOI: 10.1074/jbc.c400299200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syndecan-4 is a transmembrane heparan sulfate proteoglycan that co-operates with integrins during cell-matrix interactions for the assembly of focal adhesions and actin stress fibers and in the phosphorylation of focal adhesion kinase (FAK) on Tyr397. These cellular events are regulated by the small GTPase Rho, and in the absence of syndecan-4 ligation, cellular levels of GTP-bound Rho are decreased implicating syndecan-4 in the regulation of the small GTPases. In the present study we report that, compared with wild type cells, fibronectin-adherent syndecan-4-null fibroblasts showed enhanced lamellipodia and increased Rac1 activity that could be down-regulated by re-expression of syndecan-4 in the mutant cells. Consistent with the role for Rac1 in activating p38 and JNK signaling, syndecan-4-null cells display higher levels of active p38 MAPK and JNK that were abolished by the expression of a dominant-negative RacN17 mutant. Since p38 and JNK regulate gene expression by phosphorylating and activating transcription factors, we compared both the phosphorylation state and the transcriptional activity of the ATF-2 transcription factor, as a direct p38 and JNK target in syndecan-4-null and wild type cells. In the absence of syndecan-4, both ATF-2 phosphorylation and transcriptional activity were significantly more elevated compared with wild type cells, and both activities were decreased either by the re-expression of syndecan-4 or by the expression of RacN17. Our results reveal a novel function for syndecan-4 in modulating nuclear transcriptional activity and indicate an underlying mechanism that acts at the level of Rac1-p38/JNK signaling.
Collapse
Affiliation(s)
- Stefania Saoncella
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|