1
|
Leitner N, Ertl R, Gabner S, Fuchs-Baumgartinger A, Walter I, Hlavaty J. Isolation and Characterization of Novel Canine Osteosarcoma Cell Lines from Chemotherapy-Naïve Patients. Cells 2023; 12:cells12071026. [PMID: 37048099 PMCID: PMC10093184 DOI: 10.3390/cells12071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The present study aimed to establish novel canine osteosarcoma cell lines (COS3600, COS3600B, COS4074) and characterize the recently described COS4288 cells. The established D-17 cell line served as a reference. Analyzed cell lines differed notably in their biological characteristics. Calculated doubling times were between 22 h for COS3600B and 426 h for COS4074 cells. COS3600B and COS4288 cells produced visible colonies after anchorage-independent growth in soft agar. COS4288 cells were identified as cells with the highest migratory capacity. All cells displayed the ability to invade through an artificial basement membrane matrix. Immunohistochemical analyses revealed the mesenchymal origin of all COS cell lines as well as positive staining for the osteosarcoma-relevant proteins alkaline phosphatase and karyopherin α2. Expression of p53 was confirmed in all tested cell lines. Gene expression analyses of selected genes linked to cellular immune checkpoints (CD270, CD274, CD276), kinase activity (MET, ERBB2), and metastatic potential (MMP-2, MMP-9) as well as selected long non-coding RNA (MALAT1) and microRNAs (miR-9, miR-34a, miR-93) are provided. All tested cell lines were able to grow as multicellular spheroids. In all spheroids except COS4288, calcium deposition was detected by von Kossa staining. We believe that these new cell lines serve as useful biological models for future studies.
Collapse
Affiliation(s)
- Natascha Leitner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Simone Gabner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | | | - Ingrid Walter
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Juraj Hlavaty
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
- Correspondence: ; Tel.: +431-250-77-3402; Fax: +431-250-77-3490
| |
Collapse
|
2
|
Lu KH, Yang JS, Hsieh YH, Chu HJ, Chou CH, Lu EWH, Lin CW, Yang SF. Lipocalin-2 Inhibits Osteosarcoma Cell Metastasis by Suppressing MET Expression via the MEK-ERK Pathway. Cancers (Basel) 2021; 13:cancers13133181. [PMID: 34202288 PMCID: PMC8268143 DOI: 10.3390/cancers13133181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Higher neutrophil-derived cytokine lipocalin-2 (LCN2) expression possesses a versatile role in a myriad of cancers, but little is known about the role of LCN2 on osteosarcoma metastasis. In this study, we demonstrated that higher LCN2 inhibited cellular motility, migration, and invasion of osteosarcoma cells. Moreover, the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was decreased by LCN2 knockdown. Conclusively, LCN2 inhibits osteosarcoma cell metastasis by suppressing MET via the mitogen-activated protein kinases/ERK kinase (MEK)–ERK pathway. Abstract Higher neutrophil-derived cytokine lipocalin-2 (LCN2) expression possesses a versatile role in a myriad of cancers, but little is known about the role of LCN2 on osteosarcoma metastasis. In this study, we demonstrated that higher LCN2 inhibited cellular motility, migration, and invasion of osteosarcoma cells. Moreover, using RNA sequencing technology, we found that LCN2 repressed MET gene expression in U2OS cells. Manipulation of LCN2 levels influenced the migratory potential of osteosarcoma cells as cellular migration was enhanced by transfecting with vectors containing a constitutively active LCN2 cDNA and recombinant human LCN2. Moreover, the phosphorylation of mitogen-activated protein kinases/extracellular signal-regulated kinase (ERK) kinase (MEK) 1/2 and ERK 1/2 was decreased by LCN2 knockdown. Furthermore, the use of ERK inhibitor (U0126) and activator (tBHQ) confirmed that the pharmaceutic inhibition of MEK–ERK augmented the LCN2-mediated MET suppression and migration of U2OS and HOS cells. Conclusively, LCN2 inhibits osteosarcoma cell metastasis by suppressing MET via the MEK–ERK pathway.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-S.Y.); (Y.-H.H.); (H.-J.C.); (C.-H.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-S.Y.); (Y.-H.H.); (H.-J.C.); (C.-H.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Hsiao-Ju Chu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-S.Y.); (Y.-H.H.); (H.-J.C.); (C.-H.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Hsuan Chou
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-S.Y.); (Y.-H.H.); (H.-J.C.); (C.-H.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | | | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (C.-W.L.); (S.-F.Y.); Tel.: +886-4-24739595-34253 (S.-F.Y)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-S.Y.); (Y.-H.H.); (H.-J.C.); (C.-H.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (C.-W.L.); (S.-F.Y.); Tel.: +886-4-24739595-34253 (S.-F.Y)
| |
Collapse
|
3
|
Wilk SS, Zabielska-Koczywąs KA. Molecular Mechanisms of Canine Osteosarcoma Metastasis. Int J Mol Sci 2021; 22:3639. [PMID: 33807419 PMCID: PMC8036641 DOI: 10.3390/ijms22073639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OSA) represents the most common bone tumor in dogs. The malignancy is highly aggressive, and most of the dogs die due to metastasis, especially to the lungs. The metastatic process is complex and consists of several main steps. Assessment of the molecular mechanisms of metastasis requires in vitro and especially in vivo studies for a full evaluation of the process. The molecular and biological resemblance of canine OSA to its human counterpart enables the utilization of dogs as a spontaneous model of this disease in humans. The aim of the present review article is to summarize the knowledge of genes and proteins, including p63, signal transducer and activator of transcription 3 (STAT3), Snail2, ezrin, phosphorylated ezrin-radixin-moesin (p-ERM), hepatocyte growth factor-scatter factor (HGF-SF), epidermal growth factor receptor (EGFR), miR-9, and miR-34a, that are proven, by in vitro and/or in vivo studies, to be potentially involved in the metastatic cascade of canine OSA. The determination of molecular targets of metastatic disease may enhance the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | - Katarzyna A. Zabielska-Koczywąs
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
4
|
Ayers J, Milner RJ, Cortés-Hinojosa G, Riva A, Bechtel S, Sahay B, Cascio M, Lejeune A, Shiomitsu K, Souza C, Hernandez O, Salute M. Novel application of single-cell next-generation sequencing for determination of intratumoral heterogeneity of canine osteosarcoma cell lines. J Vet Diagn Invest 2021; 33:261-278. [PMID: 33446089 PMCID: PMC7944434 DOI: 10.1177/1040638720985242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OSA) is a highly aggressive and metastatic neoplasm of both the canine and human patient and is the leading form of osseous neoplasia in both species worldwide. To gain deeper insight into the heterogeneous and genetically chaotic nature of OSA, we applied single-cell transcriptome (scRNA-seq) analysis to 4 canine OSA cell lines. This novel application of scRNA-seq technology to the canine genome required uploading the CanFam3.1 reference genome into an analysis pipeline (10X Genomics Cell Ranger); this methodology has not been reported previously in the canine species, to our knowledge. The scRNA-seq outputs were validated by comparing them to cDNA expression from reverse-transcription PCR (RT-PCR) and Sanger sequencing bulk analysis of 4 canine OSA cell lines (COS31, DOUG, POS, and HMPOS) for 11 genes implicated in the pathogenesis of canine OSA. The scRNA-seq outputs revealed the significant heterogeneity of gene transcription expression patterns within the cell lines investigated (COS31 and DOUG). The scRNA-seq data showed 10 distinct clusters of similarly shared transcriptomic expression patterns in COS31; 12 clusters were identified in DOUG. In addition, cRNA-seq analysis provided data for integration into the Qiagen Ingenuity Pathway Analysis software for canonical pathway analysis. Of the 81 distinct pathways identified within the clusters, 33 had been implicated in the pathogenesis of OSA, of which 18 had not been reported previously in canine OSA.
Collapse
Affiliation(s)
- Jordan Ayers
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Rowan J Milner
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | | | - Alberto Riva
- ICBR Bioinformatics Core, University of Florida, Gainesville, FL
| | - Sandra Bechtel
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Bikash Sahay
- Infectious Diseases and Immunology, College of Veterinary Medicine
| | - Matthew Cascio
- Pediatric Hematology-Oncology, Department of Pediatrics, College of Medicine
| | - Amandine Lejeune
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Keijiro Shiomitsu
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Carlos Souza
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Oscar Hernandez
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Marc Salute
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| |
Collapse
|
5
|
Zhang Y, Guo H, Ma L, Chen X, Chen G. Long Noncoding RNA LINC00839 Promotes the Malignant Progression of Osteosarcoma by Competitively Binding to MicroRNA-454-3p and Consequently Increasing c-Met Expression. Cancer Manag Res 2020; 12:8975-8987. [PMID: 33061593 PMCID: PMC7522415 DOI: 10.2147/cmar.s269774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/15/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose This study was conducted to determine the expression and prognostic relevance of long intergenic non-protein coding RNA 839 (LINC00839) in osteosarcoma (OS) and to explore the detailed roles of LINC00839 in regulating OS cell activities and the mechanisms responsible for its cancer-promoting activity in OS. Methods The expression of LINC00839 in OS tissues and cell lines was determined by quantitative reverse transcription–polymerase chain reaction. After LINC00839 knockdown, cell counting kit-8 assay, flow cytometric analysis, transwell migration and invasion assay, and in vivo tumor xenograft assay were used to detect its effects on cellular processes in OS. Bioinformatics analyses were conducted to predict the putative miRNAs that target LINC00839. RNA immunoprecipitation assay, luciferase reporter assay, Western blotting analysis, and rescue assays were conducted to establish a relationship among LINC00839, microRNA-454-3p (miR-454-3p), and cellular mesenchymal to epithelial transition factor (c-Met) in OS. Results LINC00839 was upregulated in OS tissues and cell lines. OS patients characterized with high LINC00839 expression exhibited shorter overall survival than patients with low LINC00839 expression. LINC00839 knockdown caused a significant reduction in OS cell proliferation, migration, and invasion in vitro. Furthermore, LINC00839 depletion inhibited OS tumor growth in vivo and induced apoptosis. Mechanistically, LINC00839 functions as a competitive endogenous RNA in OS by sponging miR-454-3p. c-Met was confirmed as a direct target gene for miR-454-3p in OS cells and was positively regulated by LINC00839 by competitively binding to miR-454-3p. Conclusion LINC00839 promoted the oncogenicity of OS by targeting the miR-454-3p/c-Met axis. The LINC00839/miR-454-3p/c-Met network may represent a potential target for OS therapy.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Orthopedics, Shenzhen University General Hospital, Shenzhen 518055, People's Republic of China
| | - Hai Guo
- Department of Anesthesiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, People's Republic of China
| | - Li Ma
- Department of Emergency, General Hospital of Xinjiang Military Command of Chinese People's Liberation Army, Urumqi, Xinjiang, 830000, People's Republic of China
| | - Xiaoyong Chen
- Department of Orthopedics, Shenzhen University General Hospital, Shenzhen 518055, People's Republic of China
| | - Guangdong Chen
- Department of Orthopedics, Cangzhou Center Hospital, Cangzhou, Hebei 061014, People's Republic of China
| |
Collapse
|
6
|
Zhang H, Liao Z, Liu F, Su C, Zhu H, Li Y, Tao R, Liang H, Zhang B, Zhang X. Long noncoding RNA HULC promotes hepatocellular carcinoma progression. Aging (Albany NY) 2019; 11:9111-9127. [PMID: 31645479 PMCID: PMC6834430 DOI: 10.18632/aging.102378] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
Long noncoding RNAs (lncRNAs) are overexpressed in many types of cancers, suggesting they may promote tumorigenesis. The lncRNA “highly upregulated in liver cancer” (HULC) promotes hepatocellular carcinoma (HCC) by mechanisms that are not fully understood. In the present study, we showed that HULC is overexpressed in HCC tissues, which correlates with an unfavorable prognosis in HCC patients. We also found that HULC promotes the proliferation, migration, and invasion of HCC cells in vitro, and xenograft tumor growth in vivo. Our mechanistic studies showed that HULC works as a competing endogenous RNA for miR-2052, and that the MET receptor tyrosine kinase is a downstream target of miR-2052 in HCC. Furthermore, HULC inhibits miR-2052, thereby stimulating MET expression in HCC. Finally, MET overexpression reverses the effects of HULC depletion. In sum, our findings reveal a novel regulatory signaling cascade, the HULC/miR-2052/MET axis, which could potentially be exploited for therapeutic benefits in the treatment of HCC.
Collapse
Affiliation(s)
- Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Yani Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Ran Tao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Xuewu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| |
Collapse
|
7
|
Londhe P, Gutwillig M, London C. Targeted Therapies in Veterinary Oncology. Vet Clin North Am Small Anim Pract 2019; 49:917-931. [PMID: 31186124 DOI: 10.1016/j.cvsm.2019.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Advances in molecular biology have permitted a much more detailed understanding of cellular dysfunction at the molecular and genetic levels in cancer cells. This has resulted in the identification of novel targets for therapeutic intervention, including proteins that regulate signal transduction, gene expression, and protein turnover. In many instances, small molecules are used to disrupt the function of these targets, often through competitive inhibition of ATP binding or the prevention of necessary protein-protein interactions. More than 40 small molecule inhibitors are now approved to treat a variety of human cancers, substantially impacting patient outcomes.
Collapse
Affiliation(s)
- Priya Londhe
- Tufts University School of Medicine, Boston, MA 02111, USA
| | - Megan Gutwillig
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Cheryl London
- Cummings School of Veterinary Medicine and School of Medicine, Tufts University, Jaharis Building, Room 814, 150 Harrison Avenue, Boston, MA 0211, USA.
| |
Collapse
|
8
|
Xie W, Xiao J, Wang T, Zhang D, Li Z. MicroRNA-876-5p inhibits cell proliferation, migration and invasion by targeting c-Met in osteosarcoma. J Cell Mol Med 2019; 23:3293-3301. [PMID: 30773847 PMCID: PMC6484334 DOI: 10.1111/jcmm.14217] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 01/09/2023] Open
Abstract
Recently, aberrant expression of miR‐876‐5p has been reported to participate in the progression of several human cancers. However, the expression and function of miR‐876‐5p in osteosarcoma (OS) are still unknown. Here, we found that the expression of miR‐876‐5p was significantly down‐regulated in OS tissues compared to para‐cancerous tissues. Clinical association analysis indicated that underexpression of miR‐876‐5p was positively correlated with advanced clinical stage and poor differentiation. More importantly, OS patients with low miR‐876‐5p level had a significant shorter overall survival compared to miR‐876‐5p high‐expressing patients. In addition, gain‐ and loss‐of‐function experiments demonstrated that miR‐876‐5p restoration suppressed whereas miR‐876‐5p knockdown promoted cell proliferation, migration and invasion in both U2OS and MG63 cells. In vivo studies revealed that miR‐876‐5p overexpression inhibited tumour growth of OS in mice. Mechanistically, miR‐876‐5p reduced c‐Met abundance in OS cells and inversely correlated c‐Met expression in OS tissues. Herein, c‐Met was recognized as a direct target of miR‐876‐5p using luciferase reporter assay. Notably, c‐Met restoration rescued miR‐876‐5p attenuated the proliferation, migration and invasion of OS cells. In conclusion, these findings indicate that miR‐876‐5p may be used as a potential therapeutic target and promising biomarker for the diagnosis and prognosis of OS.
Collapse
Affiliation(s)
- Weixin Xie
- Department of Orthopaedic Surgery, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jie Xiao
- Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tao Wang
- School of Biomedical Sciences, Center for Orthopaedic Translational Research, University of Western Australia, Nedlands, Australia
| | - Dongmei Zhang
- Clinical Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhanchun Li
- Department of Orthopaedic Surgery, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
9
|
Abstract
Pet dogs are becoming increasingly recognized as a population with the potential to inform medical research through their treatment for a variety of maladies by veterinary health professionals. This is the basis of the One Health initiative, supporting the idea of collaboration between human and animal health researchers and clinicians to study spontaneous disease processes and treatment in animals to inform human health. Cancer is a major health burden in pet dogs, accounting for approximately 30% of deaths across breeds. As such, pet dogs with cancer are becoming increasingly recognized as a resource for studying the pharmacology and therapeutic potential of anticancer drugs and therapies under development. This was recently highlighted by a National Academy of Medicine Workshop on Comparative Oncology that took place in mid-2015 (http://www.nap.edu/21830). One component of cancer burden in dogs is their significantly higher incidence of sarcomas as compared to humans. This increased incidence led to canine osteosarcoma being an important component in the development of surgical approaches for osteosarcoma in children. Included in this review of sarcomas in dogs is a description of the incidence, pathology, molecular characteristics and previous translational therapeutic studies associated with these tumors. An understanding of the patho-physiological and molecular characteristics of these naturally occurring canine sarcomas holds great promise for effective incorporation into drug development schemas, for evaluation of target modulation or other pharmacodynamic measures associated with therapeutic response. These data could serve to supplement other preclinical data and bolster clinical investigations in tumor types for which there is a paucity of human patients for clinical trials.
Collapse
Affiliation(s)
- Daniel L Gustafson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Dawn L Duval
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel P Regan
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Douglas H Thamm
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Cabozantinib Affects Osteosarcoma Growth Through A Direct Effect On Tumor Cells and Modifications In Bone Microenvironment. Sci Rep 2018. [PMID: 29520051 PMCID: PMC5843583 DOI: 10.1038/s41598-018-22469-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of the bone. Due to its high heterogeneity and to survival signals from bone microenvironment, OS can resist to standard treatments, therefore novel therapies are needed. c-MET oncogene, a tyrosine-kinase receptor, plays a crucial role in OS initiation and progression. The present study aimed to evaluate the effect of c-MET inhibitor cabozantinib (CBZ) on OS both directly and through its action on bone microenvironment. We tested different doses of CBZ in in vitro models of OS alone or in co-culture with bone cells in order to reproduce OS-tumor microenvironment interactions. CBZ is able to decrease proliferation and migration of OS cells, inhibiting ERK and AKT signaling pathways. Furthermore, CBZ leads to the inhibition of the proliferation of OS cells expressing receptor activator of nuclear factor κB (RANK), due to its effect on bone microenvironment, where it causes an overproduction of osteoprotegerin and a decrease of production of RANK ligand by osteoblasts. Overall, our data demonstrate that CBZ might represent a new potential treatment against OS, affecting both OS cells and their microenvironment. In this scenario, RANK expression in OS cells could represent a predictive factor of better response to CBZ treatment.
Collapse
|
11
|
Jian C, Tu MJ, Ho PY, Duan Z, Zhang Q, Qiu JX, DeVere White RW, Wun T, Lara PN, Lam KS, Yu AX, Yu AM. Co-targeting of DNA, RNA, and protein molecules provides optimal outcomes for treating osteosarcoma and pulmonary metastasis in spontaneous and experimental metastasis mouse models. Oncotarget 2018; 8:30742-30755. [PMID: 28415566 PMCID: PMC5458164 DOI: 10.18632/oncotarget.16372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/03/2017] [Indexed: 11/30/2022] Open
Abstract
Metastasis is a major cause of mortality for cancer patients and remains as the greatest challenge in cancer therapy. Driven by multiple factors, metastasis may not be controlled by the inhibition of single target. This study was aimed at assessing the hypothesis that drugs could be rationally combined to co-target critical DNA, RNA and protein molecules to achieve saturation attack against metastasis. Independent actions of the model drugs DNA-intercalating doxorubicin, RNA-interfering miR-34a and protein-inhibiting sorafenib on DNA replication, RNA translation and protein kinase signaling in highly metastatic, human osteosarcoma 143B cells were demonstrated by the increase of? H2A.X foci formation, reduction of c-MET expression and inhibition of Erk1/2 phosphorylation, respectively, and optimal effects were found for triple-drug combination. Consequently, triple-drug treatment showed a strong synergism in suppressing 143B cell proliferation and the greatest effects in reducing cell invasion. Compared to single- and dual-drug treatment, triple-drug therapy suppressed pulmonary metastases and orthotopic osteosarcoma progression to significantly greater degrees in orthotopic osteosarcoma xenograft/spontaneous metastases mouse models, while none showed significant toxicity. In addition, triple-drug therapy improved the overall survival to the greatest extent in experimental metastases mouse models. These findings demonstrate co-targeting of DNA, RNA and protein molecules as a novel therapeutic strategy for the treatment of metastasis.
Collapse
Affiliation(s)
- Chao Jian
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Pui Yan Ho
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Zhijian Duan
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Qianyu Zhang
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Jing-Xin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Theodore Wun
- Division of Hematology Oncology, UC Davis School of Medicine, Sacramento, CA, USA
| | - Primo N Lara
- Division of Hematology Oncology, UC Davis School of Medicine, Sacramento, CA, USA.,Department of Internal Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Kit S Lam
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Ai-Xi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
12
|
Jia RJ, Lan CG, Wang XC, Gao CT. Integrated analysis of gene expression and copy number variations in MET proto‑oncogene‑transformed human primary osteoblasts. Mol Med Rep 2017; 17:2543-2548. [PMID: 29207108 DOI: 10.3892/mmr.2017.8135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/30/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to screen the potential osteosarcoma (OS)‑associated genes and to obtain additional insight into the pathogenesis of OS. Transcriptional profile (ID: GSE28256) and copy number variations (CNV) profile were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) between MET proto‑oncogene‑transformed human primary osteoblast (MET‑HOB) samples and the control samples were identified using the Linear Models for Microarray Data package. Subsequently, CNV areas and CNVs were identified using cut‑off criterion of >30%‑overlap within the cases using detect_cnv.pl in PennCNV. Genes shared in DEGs and CNVs were obtained and discussed. Additionally, the Database for Annotation, Visualization and Integrated Discovery was used to identify significant Gene Ontology (GO) functions and pathways in DEGs with P<0.05. A total of 1,601 DEGs were screened out in MET‑HOBs and compared with control samples, including 784 upregulated genes, such as E2F transcription factor 1 (E2F1) and 2 (E2F2) and 817 downregulated genes, such as retinoblastoma 1 (RB1) and cyclin D1 (CCND1). DEGs were enriched in 344 GO terms, such as extracellular region part and extracellular matrix and 14 pathways, including pathways in cancer and extracellular matrix‑receptor interaction. Additionally, 239 duplications and 439 deletions in 678 genes from 1,313 chromosome regions were detected. A total of 12 genes were identified to be CNV‑driven genes, including cadherin 18, laminin subunit α 1, spectrin β, erythrocytic, ciliary rootlet coiled‑coil, rootletin pseudogene 2, β‑1,4-N-acetyl-galactosaminyltransferase 1, G protein regulated inducer of neurite outgrowth 1, EH domain binding protein 1‑like 1, growth factor independent 1, cathepsin Z, WNK lysine deficient protein kinase 1, glutathione S‑transferase mu 2 and microsomal glutathione S‑transferase 1. Therefore, cell cycle‑associated genes including E2F1, E2F2, RB1 and CCND1, and cell adhesion‑associated genes, such as CDH18 and LAMA1 may be used as diagnosis and/or therapeutic markers for patients with OS.
Collapse
Affiliation(s)
- Ru-Jiang Jia
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Chun-Gen Lan
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Xiu-Chao Wang
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Chun-Tao Gao
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
13
|
Niu G, Li B, Sun J, Sun L. miR-454 is down-regulated in osteosarcomas and suppresses cell proliferation and invasion by directly targeting c-Met. Cell Prolif 2015; 48:348-55. [PMID: 25880599 DOI: 10.1111/cpr.12187] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/28/2015] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Osteosarcoma is the most common primary bone malignancy of children and young adults. Increasing evidence has shown that microRNAs (miRNAs) are associated with cancer development, but, little is known concerning the role of miR-454 in osteosarcoma. MATERIALS AND METHODS qRT-PCR was performed to detect expression of miR-454 in osteosarcoma cell lines and tissues. To understand its role in osteosarcoma, we reintroduced expression of miR-454 in the MG-63 cell line by transfection with miR-454 mimics or inhibitors. CCK-8 assay and an invasion assay were used to detect the functional role of miR-454. Luciferase assay and western blot analysis were performed to detect the target gene of miR-454. RESULTS miR-454 was found to be down-regulated in osteosarcoma tissues and cell lines. Its over-expression inhibited tumour growth and invasion and its down-regulation promoted cell proliferation and invasion. Subsequent investigation revealed that c-Met was a direct and functional target of miR-454 in osteosarcoma. Overexpression of miR-454 impaired c-Met-induced cell proliferation and invasion. Finally, miR-454 was found to be inversely correlated to c-Met expression in human osteosarcoma tissues. CONCLUSIONS Reduced-expression of miR-454 in osteosarcoma cells promoted tumour growth by targeting c-Met, thus miR-454 may be a potential therapy target for this tumour.
Collapse
Affiliation(s)
- Guangfeng Niu
- Department of Orthopaedics, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | | | | | | |
Collapse
|
14
|
The effect of Zhangfei/CREBZF on cell growth, differentiation, apoptosis, migration, and the unfolded protein response in several canine osteosarcoma cell lines. BMC Vet Res 2015; 11:22. [PMID: 25890299 PMCID: PMC4326286 DOI: 10.1186/s12917-015-0331-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/20/2015] [Indexed: 01/15/2023] Open
Abstract
Background We had previously shown that the bLZip domain-containing transcription factor, Zhangfei/CREBZF inhibits the growth and the unfolded protein response (UPR) in cells of the D–17 canine osteosarcoma (OS) line and that the effects of Zhangfei are mediated by it stabilizing the tumour suppressor protein p53. To determine if our observations with D-17 cells applied more universally to canine OS, we examined three other independently isolated canine OS cell lines—Abrams, McKinley and Gracie. Results Like D–17, the three cell lines expressed p53 proteins that were capable of activating promoters with p53 response elements on their own, and synergistically with Zhangfei. Furthermore, as with D–17 cells, Zhangfei suppressed the growth and UPR-related transcripts in the OS cell lines. Zhangfei also induced the activation of osteocalcin expression, a marker of osteoblast differentiation and triggered programmed cell death. Conclusions Osteosarcomas are common malignancies in large breeds of dogs. Although there has been dramatic progress in their treatment, these therapies often fail, leading to recurrence of the tumour and metastatic spread. Our results indicate that induction of the expression of Zhangfei in OS, where p53 is functional, may be an effective modality for the treatment of OS.
Collapse
|
15
|
Fenger JM, London CA, Kisseberth WC. Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. ILAR J 2015; 55:69-85. [PMID: 24936031 DOI: 10.1093/ilar/ilu009] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteosarcoma (OSA) is the most common form of malignant bone cancer in children and dogs, although the disease occurs in dogs approximately 10 times more frequently than in people. Multidrug chemotherapy and aggressive surgical techniques have improved survival; however, new therapies for OSA are critical, as little improvement in survival times has been achieved in either dogs or people over the past 15 years, even with significant efforts directed at the incorporation of novel therapeutic approaches. Both clinical and molecular evidence suggests that human and canine OSA share many key features, including tumor location, presence of microscopic metastatic disease at diagnosis, development of chemotherapy-resistant metastases, and altered expression/activation of several proteins (e.g. Met, ezrin, phosphatase and tensin homolog, signal transducer and activator of transcription 3), and p53 mutations, among others. Additionally, canine and pediatric OSA exhibit overlapping transcriptional profiles and shared DNA copy number aberrations, supporting the notion that these diseases are similar at the molecular level. This review will discuss the similarities between pediatric and canine OSA with regard to histology, biologic behavior, and molecular genetic alterations that indicate canine OSA is a relevant, spontaneous, large animal model of the pediatric disease and outline how the study of naturally occurring OSA in dogs will offer additional insights into the biology and future treatment of this disease in both children and dogs.
Collapse
|
16
|
Abstract
For the past 30 years, improvements in the survival of patients with osteosarcoma have been mostly incremental. Despite evidence of genomic instability and a high frequency of chromothripsis and kataegis, osteosarcomas carry few recurrent targetable mutations, and trials of targeted agents have been generally disappointing. Bone has a highly specialized immune environment and many immune signalling pathways are important in bone homeostasis. The success of the innate immune stimulant mifamurtide in the adjuvant treatment of non-metastatic osteosarcoma suggests that newer immune-based treatments, such as immune checkpoint inhibitors, may substantially improve disease outcome.
Collapse
Affiliation(s)
- Maya Kansara
- 1] Research Division, Peter MacCallum Cancer Centre, Melbourne, 3002, Victoria, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, 3010, Victoria, Australia
| | - Michele W Teng
- 1] Immunology in Cancer and Infection Laboratory and Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Queensland, Australia. [2] School of Medicine, University of Queensland, Herston, 4006, Queensland, Australia
| | - Mark J Smyth
- 1] Immunology in Cancer and Infection Laboratory and Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Queensland, Australia. [2] School of Medicine, University of Queensland, Herston, 4006, Queensland, Australia
| | - David M Thomas
- 1] Research Division, Peter MacCallum Cancer Centre, Melbourne, 3002, Victoria, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, 3010, Victoria, Australia. [3] The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, 2010, New South Wales, Australia
| |
Collapse
|
17
|
Maniscalco L, Iussich S, Morello E, Martano M, Gattino F, Miretti S, Biolatti B, Accornero P, Martignani E, Sánchez-Céspedes R, Buracco P, De Maria R. Increased expression of insulin-like growth factor-1 receptor is correlated with worse survival in canine appendicular osteosarcoma. Vet J 2014; 205:272-80. [PMID: 25257352 DOI: 10.1016/j.tvjl.2014.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) is a cell membrane receptor widely expressed in tissues and involved in different cancers in humans. IGF-1R expression in human osteosarcoma has been associated with the development of tumour metastasis and with prognosis, and represents an attractive therapeutic target. The goal of this study was to investigate the expression of IGF-1R in canine osteosarcoma tissues and cell lines and assess its role and prognostic value. Samples from 34 dogs were examined by immunohistochemistry for IGF-1R expression. IGF-1R/AKT/MAPK signalling was evaluated by western blot and quantitative polymerase chain reaction in the cell lines. In addition, the in vitro inhibition of IGF-1R with pycropodophillin (PPP) was used to evaluate molecular and biological effects. Immunohistochemical data showed that IGF-1R was expressed in 71% of the analysed osteosarcoma samples and that dogs with higher levels of IGF-IR expression (47% of cases) had decreased survival (P < 0.05) when compared to dogs with lower IGF-IR expression. Molecular studies demonstrated that in canine osteosarcoma IGF-IR is activated by IGF-1 mostly in a paracrine or endocrine (rather than autocrine) manner, leading to activation of AKT/MAPK signalling. PPP caused p-IGF-1R dephosphorylation with partial blocking of p-MAPK and p-AKT, as well as apoptosis. It was concluded that IGF-1R is expressed and plays a role in canine osteosarcoma and that its expression is correlated with a poor prognosis. As in humans, IGF-1R may represent a good therapeutic target and a prognostic factor for canine osteosarcoma.
Collapse
Affiliation(s)
- Lorella Maniscalco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy.
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Marina Martano
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Francesca Gattino
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Silvia Miretti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Bartolomeo Biolatti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Paolo Accornero
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Eugenio Martignani
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Raquel Sánchez-Céspedes
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| |
Collapse
|
18
|
Abstract
With recent advances in molecular biology, abnormalities in cancer cells that contribute to dysregulation of cell survival and proliferation are being characterized with greater precision. Through this process, key abnormalities in cancer cells involving proteins that regulate signal transduction, migration, mitosis and other critical processes have been identified. Such abnormalities often involve a class of proteins called kinases that act to phosphorylate other proteins in the cell, resulting in activation of these proteins in the absence of appropriate stimulation/regulation. Given their role in tumour biology, substantial effort has been directed at blocking the function of these proteins. Several approaches have been used, including monoclonal antibodies and small molecule inhibitors. While antibodies are primarily directed at cell surface proteins, small molecule inhibitors, also known as kinase inhibitors, target proteins throughout the cell. A variety of kinase inhibitors have been approved for the treatment of human cancers. In some instances, these inhibitors have exhibited significant clinical efficacy, and it is likely that their biological activity will be further enhanced as combination regimens with standard treatment modalities are explored. The use of kinase inhibitors in dogs and cats is relatively recent, although two inhibitors, toceranib (Palladia; Pfizer Animal Health, Madison, NJ, USA) and masitinib (Kinavet; Catalent Pharma Solutions, Somerset, NJ, USA) have been approved by the Federal Drug Administration (USA) for use in dogs. This article reviews the biology of protein kinase dysfunction in human and animal cancers, and the application of specific kinase inhibitors to veterinary cancer patients.
Collapse
Affiliation(s)
- Cheryl A London
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43214, USA.
| |
Collapse
|
19
|
Breed-predispositions to cancer in pedigree dogs. ISRN VETERINARY SCIENCE 2013; 2013:941275. [PMID: 23738139 PMCID: PMC3658424 DOI: 10.1155/2013/941275] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/22/2012] [Indexed: 12/20/2022]
Abstract
Cancer is a common problem in dogs and although all breeds of dog and crossbred dogs may be affected, it is notable that some breeds of pedigree dogs appear to be at increased risk of certain types of cancer suggesting underlying genetic predisposition to cancer susceptibility. Although the aetiology of most cancers is likely to be multifactorial, the limited genetic diversity seen in purebred dogs facilitates genetic linkage or association studies on relatively small populations as compared to humans, and by using newly developed resources, genome-wide association studies in dog breeds are proving to be a powerful tool for unravelling complex disorders. This paper will review the literature on canine breed susceptibility to histiocytic sarcoma, osteosarcoma, haemangiosarcoma, mast cell tumours, lymphoma, melanoma, and mammary tumours including the recent advances in knowledge through molecular genetic, cytogenetic, and genome wide association studies.
Collapse
|
20
|
Maniscalco L, Iussich S, Morello E, Martano M, Biolatti B, Riondato F, Della Salda L, Romanucci M, Malatesta D, Bongiovanni L, Tirrito F, Gattino F, Buracco P, De Maria R. PDGFs and PDGFRs in canine osteosarcoma: new targets for innovative therapeutic strategies in comparative oncology. Vet J 2012; 195:41-7. [PMID: 22704137 DOI: 10.1016/j.tvjl.2012.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 01/07/2023]
Abstract
Platelet derived growth factor receptor (PDGFR)α and PDGFRβ are tyrosine kinase receptors that are overexpressed in 70-80% of human osteosarcomas (OSAs) and may be suitable therapeutic targets for specific kinase inhibitors (TKIs). Canine OSA shows histopathological and clinical features similar to human OSA, and is considered an excellent model in comparative oncology. This study investigated PDGF-A, PDGF-B, PDGFRα and PDGFRβ expression in 33 canine OSA samples by immunohistochemistry and in seven primary canine OSA cell lines by Western blot and quantitative PCR analysis. Immunohistochemical data showed that PDGF-A and PDGF-B are expressed in 42% and 60% of the OSAs analysed, respectively, while PDGFRα and PDGFRβ were expressed in 78% and 81% of cases, respectively. Quantitative PCR data showed that all canine OSA cell lines overexpressed PDGFRα, while 6/7 overexpressed PDGFRβ and PDGF-A relative to a normal osteoblastic cell line. Moreover, in vitro treatment with a specific PDGFR inhibitor, AG1296, caused a dose- and time-dependent decrease in AKT phosphorylation. Collectively, these data show that PDGFRs/PDGFs are co-expressed in canine osteosarcomas, which suggests that an autocrine and/or paracrine loop is involved and that they play an important role in the aetiology of OSA. PDGFRs may be suitable targets for the treatment of canine OSA with a specific TKI.
Collapse
Affiliation(s)
- Lorella Maniscalco
- Dipartimento di Patologia Animale sezione Anatomia Patologica, facoltà di Medicina Veterinaria, Università degli Studi di Torino, Via L. Da Vinci, 44 Grugliasco (TO), Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dani N, Olivero M, Mareschi K, van Duist MM, Miretti S, Cuvertino S, Patané S, Calogero R, Ferracini R, Scotlandi K, Fagioli F, Di Renzo MF. The MET oncogene transforms human primary bone-derived cells into osteosarcomas by targeting committed osteo-progenitors. J Bone Miner Res 2012; 27:1322-34. [PMID: 22367914 DOI: 10.1002/jbmr.1578] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The MET oncogene is aberrantly overexpressed in human osteosarcomas. We have previously converted primary cultures of human bone-derived cells into osteosarcoma cells by overexpressing MET. To determine whether MET transforms mesenchymal stem cells or committed progenitor cells, here we characterize distinct MET overexpressing osteosarcoma (MET-OS) clones using genome-wide expression profiling, cytometric analysis, and functional assays. All the MET-OS clones consistently display mesenchymal and stemness markers, but not most of the mesenchymal–stem cell-specific markers. Conversely, the MET-OS clones express genes characteristic of early osteoblastic differentiation phases, but not those of late phases. Profiling of mesenchymal stem cells induced to differentiate along osteoblast, adipocyte, and chondrocyte lineages confirms that MET-OS cells are similar to cells at an initial phase of osteoblastic differentiation. Accordingly, MET-OS cells cannot differentiate into adipocytes or chondrocytes, but can partially differentiate into osteogenic-matrix-producing cells. Moreover, in vitro MET-OS cells form self-renewing spheres enriched in cells that can initiate tumors in vivo. MET kinase inhibition abrogates the self-renewal capacity of MET-OS cells and allows them to progress toward osteoblastic differentiation. These data show that MET initiates the transformation of a cell population that has features of osteo-progenitors and suggest that MET regulates self-renewal and lineage differentiation of osteosarcoma cells.
Collapse
Affiliation(s)
- Nadia Dani
- Laboratory of Cancer Genetics, Department of Oncological Sciences University of Torino School of Medicine, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Appendicular osteosarcoma (OSA) is a primary bone sarcoma affecting humans during their second decade of life. Despite aggressive surgical and chemotherapeutic interventions, 30% of patients will experience progressive metastatic disease within 5 years of diagnosis. Understanding the biology of pediatric OSA and potential targets for therapeutic development remains an area of focus for both basic scientists and clinical oncologists. The identification and study of relevant comparative tumor models in mice and canines may allow for a better understanding of OSA biology, and permit the rapid investigation of novel therapeutic strategies for managing this metastatic bone sarcoma. This unit provides a protocol for using an orthotopic, syngeneic murine model of appendicular OSA as an investigative tool for the study of OSA biology. Additionally, the comparative relevance of spontaneously occurring appendicular OSA in canines for the study of pediatric bone sarcomas is discussed.
Collapse
Affiliation(s)
- Timothy M Fan
- University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
23
|
Hassan SE, Bekarev M, Kim MY, Lin J, Piperdi S, Gorlick R, Geller DS. Cell surface receptor expression patterns in osteosarcoma. Cancer 2011; 118:740-9. [PMID: 21751203 DOI: 10.1002/cncr.26339] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND Although the presence of numerous cell signaling receptors in osteosarcoma is known, their simultaneous characterization has not been performed to date. The current study sought to characterize and quantify the expression of cell surface receptors across a variety of osteosarcoma cell lines. METHODS Standard (n = 4) and patient-derived (n = 10) osteosarcoma cell lines were cultured and labeled with antibodies to epidermal growth factor receptor, human epidermal growth factor receptor (HER)-2, HER-3, HER-4, insulin-like growth factor 1 receptor (IGF-1R), IGF-2R, insulin receptor (IR), vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, VEGFR-3, c-Met, fibroblast growth factor receptor (FGFR)-2, FGFR-3, and platelet-derived growth factor receptor (PDGFR)-β. Cell surface examination was performed using flow cytometry, and the geometric fluorescent mean for each receptor was calculated and compared against a positive control. RESULTS Significant overexpression of IGF-2R was shown in all cell lines, with an average geometric mean above the upper expression quartile. A variable expression pattern was seen for c-Met, PDGFR-β, IR, IGFR-1, HER-2, and VEGFR-3 with expression values for the remaining receptors mainly in the lower quartile. An apparent association between the expression of IGF-1R and HER-2 and between the expression of PDGFR-β and IR was demonstrated. CONCLUSION IGF-2R was consistently overexpressed on the cell surface across all tested osteosarcoma cell lines. Substantial, although variable, expression of c-Met, HER-2, IGF-1R, VEGFR-3, IR, and PDGFR-β was demonstrated as well, suggesting that these receptors may contribute to osteosarcoma aggressiveness and biological heterogeneity and may serve as potential targets within a subset of tumors. Associated receptor expression may provide new insight into common regulatory factors or pathways. Targeting either common factors or targeting multiple specific receptors may have therapeutic relevance.
Collapse
Affiliation(s)
- Sheref E Hassan
- Department of Orthopaedic Surgery, Montefiore Medical Center and The Children's Hospital at Montefiore, Bronx, New York 10467, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Appendicular osteosarcoma (OS) is a primary mesenchymal tumor arising from malignantly transformed osteoblasts. In people, OS is the most common nonhematopoietic, primary skeletal neoplasm diagnosed in adolescents and is the second leading cause of cancer-related fatalities within this age group. Despite aggressive therapeutic management, including limb-sparing surgeries and dose-intense systemic chemotherapies, 30-40% of patients will experience progressive metastatic disease within 5 years of diagnosis. In order to reduce the fatality rate associated with recurrent or metastatic OS, a more thorough understanding of OS pathogenesis and biology is required. Towards this pursuit, comparative animal models of OS have been developed and are actively being studied to expand our fundamental understanding of OS. It is anticipated that specific animal models of OS, which most accurately recapitulate the natural disease process in people, will be most useful for advancing our understanding of OS biology, and will facilitate the discovery of disease pathogenesis and the identification of novel therapeutic strategies for managing this lethal metastatic bone sarcoma.
Collapse
Affiliation(s)
- Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, 1008 West Hazelwood Drive, Urbana, IL 61802, USA.
| |
Collapse
|
25
|
Fossey SL, Bear MD, Kisseberth WC, Pennell M, London CA. Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines. BMC Cancer 2011; 11:125. [PMID: 21481226 PMCID: PMC3079692 DOI: 10.1186/1471-2407-11-125] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 04/11/2011] [Indexed: 11/13/2022] Open
Abstract
Background We have previously demonstrated that both canine and human OSA cell lines, as well as 8 fresh canine OSA tumor samples, exhibit constitutive phosphorylation of STAT3, and that this correlates with enhanced expression of matrix metalloproteinase-2 (MMP2). While multiple signal transduction pathways can result in phosphorylation of STAT3, stimulation of the cytokine receptor gp130 through either IL-6 or Oncostatin M (OSM) is the most common mechanism through which STAT3 is activated. The purpose of this study was to evaluate the role of IL-6 and OSM stimulation on both canine and human OSA cell lines to begin to determine the role of these cytokines in the biology of OSA. Methods RT-PCR and Western blotting were used to interrogate the consequences of OSM and IL-6 stimulation of OSA cell lines. OSA cells were stimulated with OSM and/or hepatocyte growth factor (HGF) and the effects on MMP2 activity (gel zymography), proliferation (CyQUANT), invasion (Matrigel transwell assay), and VEGF production (Western blotting, ELISA) were assessed. The small molecule STAT3 inhibitor LLL3 was used to investigate the impact of STAT3 inhibition following OSM stimulation of OSA cells. Results Our data demonstrate that the OSM receptor (OSMR), but not IL-6 or its receptor, is expressed by all human and canine OSA cell lines and canine OSA tumor samples; additionally, OSM expression was noted in all tumor samples. Treatment of OSA cell lines with OSM induced phosphorylation of STAT3, Src, and JAK2. OSM stimulation also resulted in a dose dependent increase in MMP2 activity and VEGF expression that was markedly reduced following treatment with the small molecule STAT3 inhibitor LLL3. Lastly, OSM stimulation of OSA cell lines enhanced invasion through Matrigel, particularly in the presence of rhHGF. In contrast, both OSM and HGF stimulation of OSA cell lines did not alter their proliferative capacity. Conclusions These data indicate OSM stimulation of human and canine OSA cells induces STAT3 activation, thereby enhancing the expression/activation of MMP2 and VEGF, ultimately promoting invasive behavior and tumor angiogenesis. As such, OSM and its receptor may represent a novel target for therapeutic intervention in OSA.
Collapse
Affiliation(s)
- Stacey L Fossey
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
26
|
Fossey SL, Bear MD, Lin J, Li C, Schwartz EB, Li PK, Fuchs JR, Fenger J, Kisseberth WC, London CA. The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines. BMC Cancer 2011; 11:112. [PMID: 21443800 PMCID: PMC3074561 DOI: 10.1186/1471-2407-11-112] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/28/2011] [Indexed: 02/08/2023] Open
Abstract
Background Curcumin is a naturally occurring phenolic compound shown to have a wide variety of antitumor activities; however, it does not attain sufficient blood levels to do so when ingested. Using structure-based design, a novel compound, FLLL32, was generated from curcumin. FLLL32 possesses superior biochemical properties and more specifically targets STAT3, a transcription factor important in tumor cell survival, proliferation, metastasis, and chemotherapy resistance. In our previous work, we found that several canine and human osteosarcoma (OSA) cell lines, but not normal osteoblasts, exhibit constitutive phosphorylation of STAT3. Compared to curcumin, we hypothesized that FLLL32 would be more efficient at inhibiting STAT3 function in OSA cells and that this would result in enhanced downregulation of STAT3 transcriptional targets and subsequent death of OSA cells. Methods Human and canine OSA cells were treated with vehicle, curcumin, or FLLL32 and the effects on proliferation (CyQUANT®), apoptosis (SensoLyte® Homogeneous AMC Caspase- 3/7 Assay kit, western blotting), STAT3 DNA binding (EMSA), and vascular endothelial growth factor (VEGF), survivin, and matrix metalloproteinase-2 (MMP2) expression (RT-PCR, western blotting) were measured. STAT3 expression was measured by RT-PCR, qRT- PCR, and western blotting. Results Our data showed that FLLL32 decreased STAT3 DNA binding by EMSA. FLLL32 promoted loss of cell proliferation at lower concentrations than curcumin leading to caspase-3- dependent apoptosis, as evidenced by PARP cleavage and increased caspase 3/7 activity; this could be inhibited by treatment with the pan-caspase inhibitor Z-VAD-FMK. Treatment of OSA cells with FLLL32 decreased expression of survivin, VEGF, and MMP2 at both mRNA and protein levels with concurrent decreases in phosphorylated and total STAT3; this loss of total STAT3 occurred, in part, via the ubiquitin-proteasome pathway. Conclusions These data demonstrate that the novel curcumin analog FLLL32 has biologic activity against OSA cell lines through inhibition of STAT3 function and expression. Future work with FLLL32 will define the therapeutic potential of this compound in vivo.
Collapse
Affiliation(s)
- Stacey L Fossey
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Suppression of osteosarcoma cell invasion by chemotherapy is mediated by urokinase plasminogen activator activity via up-regulation of EGR1. PLoS One 2011; 6:e16234. [PMID: 21283769 PMCID: PMC3024416 DOI: 10.1371/journal.pone.0016234] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 12/17/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The cellular and molecular mechanisms of tumour response following chemotherapy are largely unknown. We found that low dose anti-tumour agents up-regulate early growth response 1 (EGR1) expression. EGR1 is a member of the immediate-early gene group of transcription factors which modulate transcription of multiple genes involved in cell proliferation, differentiation, and development. It has been reported that EGR1 act as either tumour promoting factor or suppressor. We therefore examined the expression and function of EGR1 in osteosarcoma. METHODS We investigated the expression of EGR1 in human osteosarcoma cell lines and biopsy specimens. We next examined the expression of EGR1 following anti-tumour agents treatment. To examine the function of EGR1 in osteosarcoma, we assessed the tumour growth and invasion in vitro and in vivo. RESULTS Real-time PCR revealed that EGR1 was down-regulated both in osteosarcoma cell lines and osteosarcoma patients' biopsy specimens. In addition, EGR1 was up-regulated both in osteosarcoma patient' specimens and osteosarcoma cell lines following anti-tumour agent treatment. Although forced expression of EGR1 did not prevent osteosarcoma growth, forced expression of EGR1 prevented osteosarcoma cell invasion in vitro. In addition, forced expression of EGR1 promoted down-regulation of urokinase plasminogen activator, urokinase receptor, and urokinase plasminogen activity. Xenograft mice models showed that forced expression of EGR1 prevents osteosarcoma cell migration into blood vessels. CONCLUSIONS These findings suggest that although chemotherapy could not prevent osteosarcoma growth in chemotherapy-resistant patients, it did prevent osteosarcoma cell invasion by down-regulation of urokinase plasminogen activity via up-regulation of EGR1 during chemotherapy periods.
Collapse
|
28
|
RT-PCR-based tyrosine kinase display profiling of canine melanoma: IGF-1 receptor as a potential therapeutic target. Melanoma Res 2010; 20:35-42. [PMID: 19949352 DOI: 10.1097/cmr.0b013e328331ca86] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Canine malignant melanoma (CMM) resembles human malignant melanoma in terms of metastatic behavior, refractoriness to standard therapy, and tumor antigen expression but it is largely unknown how CMM resembles human melanoma with regard to molecular pathogenesis and cellular signaling. No attempt has been made to systematically define the repertoire of tyrosine kinases (TKs) expressed in CMM. This study used a reverse transcription-PCR display technique to evaluate the expression of multiple TKs in the 17CM98 CMM cell line. RT-PCR was performed using degenerate primers coding for highly conserved regions flanking the kinase domains of many TKs and the repertoire of TKs expressed was determined using standard molecular cloning techniques. Sequencing 46 clones yielded canine homologs of insulin-like growth factor-1 receptor (IGF-1R) (50%), JAK1 (17%), PDGFR-a (11%), FGFR1 (9%), Axl (7%), Abl (4%), and PTK2 (2%). Interestingly, IGF-1R, JAK1, and Axl were detected in human melanoma using similar techniques, supporting the cross-species validity of this assay. Given the abundance of IGF-1R clones, we determined the biological effect of rhIGF-1 in 17CM98 cells. IGF-1 stimulated cell proliferation and vascular endothelial growth factor production in 17CM98, and addition of the IGF-1R inhibitor ADW742 abrogated IGF-1-induced phenotypic changes. Expression of IGF-1R mRNA was detected in five of five additional CMM cell cultures, and IGF-1R protein was detected in five of six primary tumors evaluated, suggesting that IGF-1R expression may be common in CMM and may provide a novel target for future therapy. In conclusion, this study suggests that similar TKs are expressed in human and canine melanoma, and shows potential antitumor effects of IGF-1R inhibition in CMM.
Collapse
|
29
|
Abstract
Canine osteosarcoma (OS) is an aggressive tumour that accounts for approximately 90% of primary bone tumours in the dog. Although the standard treatments (including limb amputation/sparing, chemotherapy and palliative radiotherapy) have significantly increased survival rates, almost 90% of animals will eventually develop predominantly pulmonary metastases. Despite advances in various therapies, prognosis remains poor, with median survival times ranging from 3 months to 1 year and <20% of dogs survive for >2 years following diagnosis. Various clinical and epidemiological markers have facilitated decision-making with respect to therapy but no single molecular biomarker has been shown to enhance prediction of disease progression. The publication of the canine genome in 2005 raised the possibility of increasing understanding of the genetic mechanisms underpinning canine OS. This review explores the use of biomarkers within the multi-disciplinary management of dogs with OS, and highlights the few known, potential prognostic/predictive molecular markers including their potential value as 'bridging biomarkers' for human OS. Although high-throughput profiling of canine OS remains in its infancy, research within the next decade using leading-edge screening technologies has the potential to identify biomarkers that may enhance diagnostic and prognostic accuracy and result in more effective, individually tailored, treatment and management protocols for affected dogs.
Collapse
Affiliation(s)
- Gayathri Thevi Selvarajah
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands
| | | |
Collapse
|
30
|
Abstract
It has been difficult to identify the molecular features central to the pathogenesis of osteosarcoma owing to a lack of understanding of the cell or origin, the absence of identifiable precursor lesions, and its marked genetic complexity at the time of presentation. Interestingly, several human genetic disorders and familial cancer syndromes, such as Li-Fraumeni syndrome, are linked to an increased risk of osteosarcoma. Association of these same genetic alterations and osteosarcoma risk have been confirmed in murine models. Osteosarcoma is associated with a variety of genetic abnormalities that are among the most commonly observed in human cancer; it remains unclear, however, what events initiate and are necessary to form osteosarcoma. The availability of new resources for studying osteosarcoma and newer research methodologies offer an opportunity and promise to answer these currently unanswered questions. Even in the absence of a more fundamental understanding of osteosarcoma, association studies and preclinical drug testing may yield clinically relevant information.
Collapse
Affiliation(s)
- Richard Gorlick
- Department of Pediatrics and Molecular Pharmacology, The Albert Einstein College of Medicine, Yeshiva University, Department of Pediatrics, Children's Hospital at Montefiore, Bronx, NY 10467, USA.
| | | |
Collapse
|
31
|
Abstract
Development of chemotherapeutic treatment modalities resulted in a dramatic increase in the survival of children with many types of cancer. Still, in case of some pediatric cancer entities including rhabdomyosarcoma, osteosarcoma and Ewing's sarcoma, survival of patients remains dismal and novel treatment approaches are urgently needed. Therefore, based on the concept of targeted therapy, numerous potential targets for the treatment of these cancers have been evaluated pre-clinically or in some cases even clinically during the last decade. This review gives an overview over many different potential therapeutic targets for treatment of these childhood sarcomas, including receptor tyrosine kinases, intracellular signaling molecules, cell cycle and apoptosis regulators, proteasome, hsp90, histone deacetylases, angiogenesis regulators and sarcoma specific fusion proteins. The large number of potential therapeutic targets suggests that improved comparability of pre-clinical models might be necessary to prioritize the most effective ones for future clinical trials.
Collapse
Affiliation(s)
- Marco Wachtel
- University Children's Hospital, Department of Oncology, Zürich, Switzerland
| | | |
Collapse
|
32
|
Liao AT, McCleese J, Kamerling S, Christensen J, London CA. A novel small molecule Met inhibitor, PF2362376, exhibits biological activity against osteosarcoma. Vet Comp Oncol 2009; 5:177-96. [PMID: 19754789 DOI: 10.1111/j.1476-5829.2007.00137.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The receptor tyrosine kinase Met is dysregulated in several human cancers including osteosarcoma (OSA) in which overexpression is a negative prognostic indicator and enforced Met expression in normal osteoblasts leads to genomic instability and malignant transformation. Met is also known to be inappropriately expressed in canine OSA tumour samples and cell lines. The purpose of this study was to evaluate the potential utility of an orally bioavailable small molecule Met inhibitor, PF2362376, against canine OSA cell lines as a prelude to future clinical work. PF2362376 inhibited phosphorylation of Met, Gab-1, Erk and Akt, but not of Src or STAT3. Furthermore, PF2362376 inhibited proliferation of canine OSA cell lines and induced cell death at biologically achievable concentrations. Last, activities associated with Met signalling including migration, invasion, branching morphogenesis and colony formation in soft agar were blocked by PF2362376. These studies support the notion that Met is a relevant target for therapeutic intervention in OSA.
Collapse
Affiliation(s)
- A T Liao
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
33
|
McCleese JK, Bear MD, Fossey SL, Mihalek RM, Foley KP, Ying W, Barsoum J, London CA. The novel HSP90 inhibitor STA-1474 exhibits biologic activity against osteosarcoma cell lines. Int J Cancer 2009; 125:2792-801. [DOI: 10.1002/ijc.24660] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Liao AT, McMahon M, London C. Characterization, expression and function of c-Met in canine spontaneous cancers. Vet Comp Oncol 2009; 3:61-72. [PMID: 19379214 DOI: 10.1111/j.1476-5810.2005.00067.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aberrant expression of the proto-oncogene c-Met has been noted in a variety of human cancers. To better define the potential role of Met dysregulation in canine cancer, the canine Met, hepatocyte growth factor (HGF) and HGF activator were cloned. Inappropriate expression of Met was present in canine tumour cell lines derived from a wide variety of cancers. Furthermore, both HGF and HGF activator were also expressed in several of these cell lines, providing evidence of a possible autocrine loop of Met activation. Stimulation of tumour cell lines with recombinant human HGF induced Met autophosphorylation, as well as activation of the downstream signalling elements Gab-1, Akt and Erk1/2. Scattering of tumour cells and migration across a defect occurred in response to HGF stimulation. The Met inhibitor PHA665752 blocked both HGF-induced phosphorylation of canine Met and HGF-mediated cell cycling, scattering and migration. These studies provide evidence that Met dysregulation may play a role in the biology of canine cancer and lay the groundwork for future studies employing Met inhibitors.
Collapse
Affiliation(s)
- A T Liao
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
35
|
De Maria R, Miretti S, Iussich S, Olivero M, Morello E, Bertotti A, Christensen JG, Biolatti B, Levine RA, Buracco P, Di Renzo MF. met oncogene activation qualifies spontaneous canine osteosarcoma as a suitable pre-clinical model of human osteosarcoma. J Pathol 2009; 218:399-408. [PMID: 19402129 DOI: 10.1002/path.2549] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Met receptor tyrosine kinase (RTK) is aberrantly expressed in human osteosarcoma and is an attractive molecular target for cancer therapy. We studied spontaneous canine osteosarcoma (OSA) as a potential pre-clinical model for evaluation of Met-targeted therapies. The canine MET oncogene exhibits 90% homology compared with human MET, indicating that cross-species functional studies are a viable strategy. Expression and activation of the canine Met receptor were studied utilizing immunohistochemical techniques in 39 samples of canine osteosarcoma, including 35 primary tumours and four metastases. Although the Met RTK is barely detectable in primary culture of canine osteoblasts, high expression of Met protein was observed in 80% of canine osteosarcoma samples acquired from various breeds. Met protein overexpression was also concordant with its activation as indicated by phosphorylation of critical tyrosine residues. In addition, Met was expressed and constitutively activated in canine osteosarcoma cell lines. OSA cells expressing high levels of Met demonstrated activation of downstream transducers, elevated spontaneous motility, and invasiveness which were impaired by both a small molecule inhibitor of Met catalytic activity (PHA-665752) and met-specific, stable RNA interference obtained by means of lentiviral vector. Similar to observations in human OSA, these data suggest that Met is commonly overexpressed and activated in canine OSA and that inhibition of Met impairs the invasive and motogenic properties of canine OSA cells. These data implicate Met as a potentially important factor for canine OSA progression and indicate that it represents a viable model to study Met-targeted therapies.
Collapse
Affiliation(s)
- Raffaella De Maria
- Department of Animal Pathology, University of Torino, Grugliasco, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The development of pulmonary metastasis is the major cause of death in osteosarcoma, and its molecular basis is poorly understood. In this study, we show that beta4 integrin is highly expressed in human osteosarcoma cell lines and tumor samples. Furthermore, highly metastatic MNNG-HOS cells have increased levels of beta4 integrin. Suppression of beta4 integrin expression by shRNA and disruption of beta4 integrin function by transfection of dominant-negative beta4 integrin was sufficient to revert this highly metastatic phenotype in the MNNG-HOS model without significantly affecting primary tumor growth. These findings suggest a role for beta4 integrin expression in the metastatic phenotype in human osteosarcoma cells. In addition, we identified a previously uncharacterized interaction between beta4 integrin and ezrin, a membrane-cytoskeletal linker protein that is implicated in the metastatic behavior of osteosarcoma. The beta4 integrin-ezrin interaction appears to be critical for maintenance of beta4 integrin expression. These data begin to integrate ezrin and beta4 integrin expression into a model of action for the mechanism of osteosarcoma metastases.
Collapse
|
37
|
Fieten H, Spee B, Ijzer J, Kik MJ, Penning LC, Kirpensteijn J. Expression of hepatocyte growth factor and the proto-oncogenic receptor c-Met in canine osteosarcoma. Vet Pathol 2009; 46:869-77. [PMID: 19429984 DOI: 10.1354/vp.08-vp-0155-f-fl] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hepatocyte growth factor (HGF) and the proto-oncogenic receptor c-Met are implicated in growth, invasion, and metastasis in human cancer. Little information is available on the expression and role of both gene products in canine osteosarcoma. We hypothesized that the expression of c-Met is associated with malignant histologic characteristics, a short survival time, and a reduced disease-free interval in canine osteosarcoma. Quantitative real-time polymerase chain reaction was used to analyze the messenger RNA (mRNA) expression of both HGF and c-Met in 59 canine osteosarcoma samples. The relationship between HGF and c-Met expression, patient outcome, and histologic characteristics of the tumor were studied. Western blot analysis was performed to investigate the presence of active HGF protein. The expression pattern of c-Met in 16 slides of canine osteosarcoma was identified by immunohistochemistry. Coexpression of HGF and c-Met mRNA in all canine osteosarcoma samples suggested autocrine or paracrine receptor activation. A significant, moderately positive correlation was found between c-Met and HGF mRNA expression. c-Met mRNA expression was not associated with survival time or disease-free interval. Expression of c-Met was significantly associated with metastasis via the lymphogenic route. Immunolabeling with c-Met revealed a cytoplasmic staining pattern in all osteosarcoma cell types. In this study, c-Met mRNA expression in canine osteosarcoma was found to be of no influence on survival time and disease-free interval. Further studies are necessary to confirm the involvement of the c-Met pathway in the lymphogenic route of metastasis.
Collapse
Affiliation(s)
- H Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3508 TD, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Fossey SL, Liao AT, McCleese JK, Bear MD, Lin J, Li PK, Kisseberth WC, London CA. Characterization of STAT3 activation and expression in canine and human osteosarcoma. BMC Cancer 2009; 9:81. [PMID: 19284568 PMCID: PMC2666757 DOI: 10.1186/1471-2407-9-81] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 03/10/2009] [Indexed: 02/05/2023] Open
Abstract
Background Dysregulation of signal transducer and activator of transcription 3 (STAT3) has been implicated as a key participant in tumor cell survival, proliferation, and metastasis and is often correlated with a more malignant tumor phenotype. STAT3 phosphorylation has been demonstrated in a subset of human osteosarcoma (OSA) tissues and cell lines. OSA in the canine population is known to exhibit a similar clinical behavior and molecular biology when compared to its human counterpart, and is often used as a model for preclinical testing of novel therapeutics. The purpose of this study was to investigate the potential role of STAT3 in canine and human OSA, and to evaluate the biologic activity of a novel small molecule STAT3 inhibitor. Methods To examine STAT3 and Src expression in OSA, we performed Western blotting and RT-PCR. OSA cells were treated with either STAT3 siRNA or small molecule Src (SU6656) or STAT3 (LLL3) inhibitors and cell proliferation (CyQUANT), caspase 3/7 activity (ELISA), apoptosis (Western blotting for PARP cleavage) and/or viability (Wst-1) were determined. Additionally, STAT3 DNA binding after treatment was determined using EMSA. Expression of STAT3 targets after treatment was demonstrated with Western blotting, RT-PCR, or gel zymography. Results Our data demonstrate that constitutive activation of STAT3 is present in a subset of canine OSA tumors and human and canine cell lines, but not normal canine osteoblasts. In both canine and human OSA cell lines, downregulation of STAT3 activity through inhibition of upstream Src family kinases using SU6656, inhibition of STAT3 DNA binding and transcriptional activities using LLL3, or modulation of STAT3 expression using siRNA, all resulted in decreased cell proliferation and viability, ultimately inducing caspase-3/7 mediated apoptosis in treated cells. Furthermore, inhibition of either Src or STAT3 activity downregulated the expression of survivin, VEGF, and MMP2, all known transcriptional targets of STAT3. Conclusion These data suggest that STAT3 activation contributes to the survival and proliferation of human and canine OSA cells, thereby providing a potentially promising target for therapeutic intervention. Future investigational trials of LLL3 in dogs with spontaneous OSA will help to more accurately define the role of STAT3 in the clinical setting.
Collapse
Affiliation(s)
- Stacey L Fossey
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bian ZY, Li G, Gan YK, Hao YQ, Xu WT, Tang TT. Increased number of mesenchymal stem cell-like cells in peripheral blood of patients with bone sarcomas. Arch Med Res 2009; 40:163-8. [PMID: 19427966 DOI: 10.1016/j.arcmed.2009.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 12/16/2008] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS The number of peripheral blood mesenchymal stem cells (PBMSCs) may increase under pathological conditions. We sought to compare the number of MSC-like cells in the peripheral blood of patients with bone sarcomas with healthy controls and to analyze related cytokines in the peripheral blood plasma. METHODS Peripheral blood mononuclear cells (PBMNs) of patients with bone sarcomas and control subjects were isolated for culture and analyzed by flow cytometry for MSC phenotype. Cytokines in the plasma obtained after cell separation were analyzed using enzyme-linked immunosorbent assay (ELISA). Annexin-V and beta-galactosidase staining were used to investigate whether the cells died from apoptosis or senescence. RESULTS Flow cytometric analysis demonstrated an >9-fold increase in the number of cells with MSC-like phenotypes (CD34(-), CD45(-), CD105(+)) in patients with bone sarcomas compared with control subjects (p<0.05). ELISA results showed that concentrations of hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) in patients with bone sarcomas were statistically higher than those in the control subjects (p<0.05), whereas there was no significant difference in plasma concentrations of leptin and stromal cell-derived factor 1 between the two groups. A significant, positive correlation between the percentages of PBMSC-like cells and concentrations of HGF in all samples (R=0.618; p=0.011). Annexin-V staining of MSC-like cells was positive, whereas beta-galactosidase staining was negative. CONCLUSIONS Peripheral blood of patients with bone sarcomas has more cells with MSC phenotypes than blood of healthy persons. The increased number is accompanied by increased HGF and VEGF in the plasma.
Collapse
Affiliation(s)
- Zhen-Yu Bian
- Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
40
|
Withrow SJ, Khanna C. Bridging the gap between experimental animals and humans in osteosarcoma. Cancer Treat Res 2009; 152:439-446. [PMID: 20213406 DOI: 10.1007/978-1-4419-0284-9_24] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Stephen J Withrow
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft Collins, CO 80523, USA.
| | | |
Collapse
|
41
|
Abstract
For patients with osteosarcoma, the development of metastases, often to the lungs, is the most common cause of death. Long-term outcomes for patients who present with localized or disseminated disease have largely remained unchanged over the past 20 years. Further improvements in outcome are not likely to come from intensification of cytotoxic chemotherapy; as such, new targets for treatment are needed. A view toward such targets in osteosarcoma may be constructed based on three common clinical features of the disease. These include the origin of osteosarcoma in the bone or primitive mesenchymal cells, the predictable process of metastatic progression characterized by this disease, and the development of metastatic lesions almost exclusively in the lung. It is likely and potentially favorable for some targets to be relevant for more than one process. This review summarizes novel targets under evaluation for the treatment of osteosarcoma based on these three features of the disease.
Collapse
Affiliation(s)
- Chand Khanna
- National Institutes of Health, National Cancer Institute, Pediatric Oncology Branch, Tumor Metastasis Biology Section, 37 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Messerschmitt PJ, Rettew AN, Brookover RE, Garcia RM, Getty PJ, Greenfield EM. Specific tyrosine kinase inhibitors regulate human osteosarcoma cells in vitro. Clin Orthop Relat Res 2008; 466:2168-75. [PMID: 18607665 PMCID: PMC2493014 DOI: 10.1007/s11999-008-0338-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 05/21/2008] [Indexed: 01/31/2023]
Abstract
Inhibitors of specific tyrosine kinases are attractive lead compounds for development of targeted chemotherapies for many tumors, including osteosarcoma. We asked whether inhibition of specific tyrosine kinases would decrease the motility, colony formation, and/or invasiveness by human osteosarcoma cell lines (TE85, MNNG, 143B, SAOS-2, LM-7). An EGF-R inhibitor reduced motility of all five cell lines by 50% to 80%. In contrast, an IGF-1R inhibitor preferentially reduced motility by 42% in LM-7 cells and a met inhibitor preferentially reduced motility by 80% in MNNG cells. The inhibitors of EGF-R, IGF-1R, and met reduced colony formation by more than 80% in all tested cell lines (TE85, MNNG, 143B). The EGF-R inhibitor reduced invasiveness by 62% in 143B cells. The JAK inhibitor increased motility of SAOS-2 and LM7 cells without affecting colony formation or invasiveness. Inhibitors of HER-2, NGF-R, and PDGF-Rs did not affect motility, invasiveness, or colony formation. These results support the hypothesis that specific tyrosine kinases regulate tumorigenesis and/or metastasis in osteosarcoma.
Collapse
Affiliation(s)
- Patrick J Messerschmitt
- Department of Orthopaedic Surgery, University Hospitals Case Medical Center, Case Western Reserve University, 11100 Euclid Avenue, 6th Floor Hanna House, Cleveland, OH 44118, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Patanè S, Avnet S, Coltella N, Costa B, Sponza S, Olivero M, Vigna E, Naldini L, Baldini N, Ferracini R, Corso S, Giordano S, Comoglio PM, Di Renzo MF. MET Overexpression Turns Human Primary Osteoblasts into Osteosarcomas. Cancer Res 2006; 66:4750-7. [PMID: 16651428 DOI: 10.1158/0008-5472.can-05-4422] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The MET oncogene was causally involved in the pathogenesis of a rare tumor, i.e., the papillary renal cell carcinoma, in which activating mutations, either germline or somatic, were identified. MET activating mutations are rarely found in other human tumors, whereas at higher frequencies, MET is amplified and/or overexpressed in sporadic tumors of specific histotypes, including osteosarcoma. In this work, we provide experimental evidence that overexpression of the MET oncogene causes and sustains the full-blown transformation of osteoblasts. Overexpression of MET, obtained by lentiviral vector-mediated gene transfer, resulted in the conversion of primary human osteoblasts into osteosarcoma cells, displaying the transformed phenotype in vitro and the distinguishing features of human osteosarcomas in vivo. These included atypical nuclei, aberrant mitoses, production of alkaline phosphatase, secretion of osteoid extracellular matrix, and striking neovascularization. Although with a lower tumorigenicity, this phenotype was superimposable to that observed after transfer of the MET gene activated by mutation. Both transformation and tumorigenesis were fully abrogated when MET expression was quenched by short-hairpin RNA or when signaling was impaired by a dominant-negative MET receptor. These data show that MET overexpression is oncogenic and that it is essential for the maintenance of the cancer phenotype.
Collapse
Affiliation(s)
- Salvatore Patanè
- Laboratory of Cancer Genetics, University of Turin School of Medicine, Candiolo (Turin), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Thamm DH, Dickerson EB, Akhtar N, Lewis R, Auerbach R, Helfand SC, MacEwen EG. Biological and molecular characterization of a canine hemangiosarcoma-derived cell line. Res Vet Sci 2005; 81:76-86. [PMID: 16256156 DOI: 10.1016/j.rvsc.2005.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 08/24/2005] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
Canine hemangiosarcoma (HSA) is a devastating disease. Investigation of novel therapies has been limited by the limited availability of canine HSA-derived cell lines. We report the development of a canine HSA-derived cell line, DEN-HSA, which recapitulates features of angiogenic endothelium. DEN-HSA cells were derived from a spontaneous HSA arising in the kidney of a dog. DEN-HSA displayed surface molecules distinctive of endothelial histogenesis, including factor VIII-related antigen, ICAM-1 and alpha(v)beta3 integrin. In vitro, DEN-HSA formed microvascular tube-like structures on Matrigel, and proliferated in response to a variety of angiogenic growth factors. The cells expressed mRNA and protein specific for bFGF and its receptors, and VEGF and its receptors, among others. DEN-HSA conditioned medium evoked a marked angiogenic response in a murine corneal pocket assay, indicating potent proangiogenic activity of substances secreted by this cell line. This research confirms the DEN-HSA cell line as endothelial in origin, suggests the presence of angiogenic growth factor autocrine loops, and offers the potential to utilize DEN-HSA cells for the study of novel therapies that modulate endothelial proliferation.
Collapse
Affiliation(s)
- Douglas H Thamm
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 53706, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Abstract
The insidious process of tumor metastasis is the most devastating and least well-understood aspect of cancer. Metastasis is very complex and employs many cellular processes, suggesting that individual metastatic determinants may not be easily identified. Mounting evidence, culminating in the work described in two recent articles, strongly suggests that the membrane:cytoskeleton organizer Ezrin can promote tumor metastasis. Ultimately, a better understanding of exactly how Ezrin confers metastatic advantage will provide important insight into this key problem in cancer biology.
Collapse
Affiliation(s)
- Marcello Curto
- MGH Cancer Center and Harvard Medical School Department of Pathology, Charlestown, MA 02129, USA
| | | |
Collapse
|