1
|
Bourgeois Yoshioka CK, Takenaka-Ninagawa N, Goto M, Miki M, Watanabe D, Yamamoto M, Aoyama T, Sakurai H. Cell transplantation-mediated dystrophin supplementation efficacy in Duchenne muscular dystrophy mouse motor function improvement demonstrated by enhanced skeletal muscle fatigue tolerance. Stem Cell Res Ther 2024; 15:313. [PMID: 39300595 PMCID: PMC11414159 DOI: 10.1186/s13287-024-03922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an incurable neuromuscular disease leading to progressive skeletal muscle weakness and fatigue. Cell transplantation in murine models has shown promise in supplementing the lack of the dystrophin protein in DMD muscles. However, the establishment of novel, long-term, relevant methods is needed to assess its efficiency on the DMD motor function. By applying newly developed methods, this study aimed to evaluate the functional and molecular effects of cell therapy-mediated dystrophin supplementation on DMD muscles. METHODS Dystrophin was supplemented in the gastrocnemius of a 5-week-old immunodeficient DMD mouse model (Dmd-null/NSG) by intramuscular xenotransplantation of healthy human immortalized myoblasts (Hu5/KD3). A long-term time-course comparative study was conducted between wild-type, untreated DMD, and dystrophin supplemented-DMD mouse muscle functions and histology. A novel GO-ATeam2 transgenic DMD mouse model was also generated to assess in vivo real-time ATP levels in gastrocnemius muscles during repeated contractions. RESULTS We found that 10.6% dystrophin supplementation in DMD muscles was sufficient to prevent low values of gastrocnemius maximal isometric contraction torque (MCT) at rest, while muscle fatigue tolerance, assessed by MCT decline after treadmill running, was fully ameliorated in 21-week-old transplanted mice. None of the dystrophin-supplemented fibers were positive for muscle damage markers after treadmill running, with 85.4% demonstrating the utilization of oxidative metabolism. Furthermore, ATP levels in response to repeated muscle contractions tended to improve, and mitochondrial activity was significantly enhanced in dystrophin supplemented-fibers. CONCLUSIONS Cell therapy-mediated dystrophin supplementation efficiently improved DMD muscle functions, as evaluated using newly developed evaluation methods. The enhanced muscle fatigue tolerance in 21-week-old mice was associated with the preferential regeneration of damage-resistant and oxidative fibers, highlighting increased mitochondrial activity, after cell transplantation. These findings significantly contribute to a more in-depth understanding of DMD pathogenesis.
Collapse
Affiliation(s)
- Clémence Kiho Bourgeois Yoshioka
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Advanced Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nana Takenaka-Ninagawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Rehabilitation Medicine, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Megumi Goto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mayuho Miki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Advanced Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Daiki Watanabe
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, 1-1 Asashirodai, Kumatori-cho, Sennan-gun, Osaka, 590-0496, Japan
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Tomoki Aoyama
- Department of Advanced Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
2
|
Orlandi C, Omori Y, Wang Y, Cao Y, Ueno A, Roux MJ, Condomitti G, de Wit J, Kanagawa M, Furukawa T, Martemyanov KA. Transsynaptic Binding of Orphan Receptor GPR179 to Dystroglycan-Pikachurin Complex Is Essential for the Synaptic Organization of Photoreceptors. Cell Rep 2020; 25:130-145.e5. [PMID: 30282023 PMCID: PMC6203450 DOI: 10.1016/j.celrep.2018.08.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 01/05/2023] Open
Abstract
Establishing synaptic contacts between neurons is paramount for nervous system function. This process involves transsynaptic interactions between a host of cell adhesion molecules that act in cooperation with the proteins of the extracellular matrix to specify uniquephysiological propertiesofindividual synaptic connections. However, understanding of the molecular mechanisms that generate functional diversity in an input-specific fashion is limited. In this study, we identify that major components of the extracellular matrix proteins present in the synaptic cleft—members oftheheparansulfateproteoglycan (HSPG) family—associate with the GPR158/179 group of orphan receptors. Using the mammalian retina as a model system, we demonstrate that the HSPG member Pikachurin, released by photoreceptors, recruits a key post-synaptic signaling complex of downstream ON-bipolar neurons in coordination with the presynaptic dystroglycan glycoprotein complex. We further demonstrate that this transsynaptic assembly plays an essential role in synaptic transmission of photoreceptor signals. Orlandi et al. identify transsynaptic assembly at photoreceptor synapses involving pre-synaptic dystrophindystroglycan complex and the postsynaptic orphan receptor GPR179 bridged by HSPG protein Pikachurin in the cleft and demonstrate its role in shaping transmission of photoreceptor signals.
Collapse
Affiliation(s)
- Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yuchen Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Akiko Ueno
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Michel J Roux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Centre National de la Recherche Scientifique, UMR7104, INSERM, U1258, Illkirch, France
| | - Giuseppe Condomitti
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Motoi Kanagawa
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
3
|
Benabdesselam R, Rendon A, Dorbani-Mamine L, Hardin-Pouzet H. Effect of Dp71 deficiency on the oxytocin hypothalamic axis in osmoregulation function in mice. Acta Histochem 2019; 121:268-276. [PMID: 30642627 DOI: 10.1016/j.acthis.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/30/2018] [Accepted: 01/03/2019] [Indexed: 11/25/2022]
Abstract
Dp71 is the major form of dystrophins (Dp) in the supraoptic nucleus (SON) and in the neural lobe of hypophysis (NL/HP). Dp71-null mice exhibit a hypo-osmolar status attributed to an altered osmosensitivity of the SON and to a perturbed vasopressinergic axis. Because oxytocin (OT) is implicated in osmoregulation via natriuresis, this study explored the oxytocinergic axis in Dp71-null mice after salt-loading (SL). Under normosmolar conditions, OT-mRNA expression was higher in the Dp71-null SON compared to wild-type (wt) and the OT peptide level has not changed. Dp-immunostaining was localized in astrocytes end-feet surrounding vessels in wt SON. This distribution changed in Dp71-null SON, Dp being detected in OT-soma of MCNs. nNOS and NADPH-diaphorase levels increased in the OT area of the Dp71-null SON compared to wt. In the NL/HP, OT level reduced in Dp71-null mice and Dp localization changed from pituicytes end-feet in wt SON to OT terminals in Dp71-null SON. Salt-Loading resulted in an increase of OT-mRNA and peptide levels in wt SON but had no effect in Dp71-null SON. In the NL/HP, OT content was reduced after SL. For Dp71-null mice, OT level, already low in control, was not modified by SL. Dp level was not affected by SL in the SON nor in the NL/HP. Our data confirmed the importance of Dp71 for the SON functionality in osmoregulation. The localization of Dp71 at the glial-vascular interface could be associated with SON osmosensitivity, leading to an adequate OT synthesis in the SON and release from the NL/HP upon plasmatic hyperosmolality.
Collapse
|
4
|
Kálmán M, Lőrincz DL, Sebők OM, Ari C, Oszwald E, Somiya H, Jancsik V. Cerebrovascular β-dystroglycan immunoreactivity in vertebrates: not detected in anurans and in the teleosts Ostariophysi and Euteleostei. Integr Zool 2019; 15:16-31. [PMID: 30811839 DOI: 10.1111/1749-4877.12384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The aim of the present paper was to check for the presence of cerebrovascular dystroglycan in vertebrates, because dystroglycan, which is localized in the vascular astroglial end-feet, has a pivotal function in glio-vascular connections. In mammalian brains, the immunoreactivity of β-dystroglycan subunit delineates the vessels. The results of the present study demonstrate similar patterns in other vertebrates, except for anurans and the teleost groups Ostariophysi and Euteleostei. In this study, we investigated 1 or 2 representative species of the main groups of Chondrichthyes, teleost and non-teleost ray-finned fishes, urodeles, anurans, and reptiles. We also investigated 5 mammalian and 3 bird species. Animals were obtained from breeders or fishermen. The presence of β-dystroglycan was investigated immunohistochemically in free-floating sections. Pre-embedding electron microscopical immunohistochemistry on Heterodontus japonicus shark brains demonstrated that in Elasmobranchii, β-dystroglycan is also localized in the perivascular glial end-feet despite the different construction of their blood-brain barrier. The results indicated that the cerebrovascular β-dystroglycan immunoreactivity disappeared separately in anurans, and in teleosts, in the latter group before its division to Ostariophysi and Euteleostei. Immunohistochemistry in muscles and western blots from brain homogenates, however, detected the presence of β-dystroglycan, even in anurans and all teleosts. A possible explanation is that in the glial end-feet, β-dystroglycan is masked in these animals, or disappeared during adaptation to the freshwater habitat.
Collapse
Affiliation(s)
- Mihály Kálmán
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - David L Lőrincz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.,University of Leicester, Dept. of Neuroscience, Psychology and Behaviour, Leicester, United Kingdom
| | - Olivér M Sebők
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csilla Ari
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.,Hyperbaric Neuroscience Research Lab., Dept of Psychology, University of South Florida, Tampa, Florida, USA
| | - Erzsébet Oszwald
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Hiroaki Somiya
- Department of Environmental Biology, Chubu University, Chubu, Japan
| | | |
Collapse
|
5
|
Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Chemical crosslinking analysis of β-dystroglycan in dystrophin-deficient skeletal muscle. HRB Open Res 2018; 1:17. [PMID: 35528858 PMCID: PMC9039762 DOI: 10.12688/hrbopenres.12846.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Background: In Duchenne muscular dystrophy, primary abnormalities in the membrane cytoskeletal protein dystrophin trigger the loss of sarcolemmal linkage between the extracellular matrix component laminin-211 and the intracellular cortical actin membrane cytoskeleton. The disintegration of the dystrophin-associated glycoprotein complex renders the plasma membrane of contractile fibres more susceptible to micro-rupturing, which is associated with abnormal calcium handling and impaired cellular signalling in dystrophinopathy. Methods: The oligomerisation pattern of β-dystroglycan, an integral membrane protein belonging to the core dystrophin complex, was studied using immunoprecipitation and chemical crosslinking analysis. A homo-bifunctional and non-cleavable agent with water-soluble and amine-reactive properties was employed to study protein oligomerisation in normal versus dystrophin-deficient skeletal muscles. Crosslinker-induced protein oligomerisation was determined by a combination of gel-shift analysis and immunoblotting. Results: Although proteomics was successfully applied for the identification of dystroglycan as a key component of the dystrophin-associated glycoprotein complex in the muscle membrane fraction, mass spectrometric analysis did not efficiently recognize this relatively low-abundance protein after immunoprecipitation or chemical crosslinking. As an alternative approach, comparative immunoblotting was used to evaluate the effects of chemical crosslinking. Antibody decoration of the crosslinked microsomal protein fraction from wild type versus the
mdx-4cv mouse model of dystrophinopathy revealed oligomers that contain β-dystroglycan. The protein exhibited a comparable reduction in gel electrophoretic mobility in both normal and dystrophic samples. The membrane repair proteins dysferlin and myoferlin, which are essential components of fibre regeneration, as well as the caveolae-associated protein cavin-1, were also shown to exist in high-molecular mass complexes. Conclusions: The muscular dystrophy-related reduction in the concentration of β-dystroglycan, which forms in conjunction with its extracellular binding partner α-dystroglycan a critical plasmalemmal receptor for laminin-211, does not appear to alter its oligomeric status. Thus, independent of direct interactions with dystrophin, this sarcolemmal glycoprotein appears to exist in a supramolecular assembly in muscle.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, Bonn, D‑53115, Germany
| | | | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, Bonn, D‑53115, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Chemical crosslinking analysis of β-dystroglycan in dystrophin-deficient skeletal muscle. HRB Open Res 2018; 1:17. [PMID: 35528858 PMCID: PMC9039762 DOI: 10.12688/hrbopenres.12846.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 07/30/2023] Open
Abstract
Background: In Duchenne muscular dystrophy, primary abnormalities in the membrane cytoskeletal protein dystrophin trigger the loss of sarcolemmal linkage between the extracellular matrix component laminin-211 and the intracellular cortical actin membrane cytoskeleton. The disintegration of the dystrophin-associated glycoprotein complex renders the plasma membrane of contractile fibres more susceptible to micro-rupturing, which is associated with abnormal calcium handling and impaired cellular signalling in dystrophinopathy. Methods: The oligomerisation pattern of β-dystroglycan, an integral membrane protein belonging to the core dystrophin complex, was studied using immunoprecipitation and chemical crosslinking analysis. A homo-bifunctional and non-cleavable agent with water-soluble and amine-reactive properties was employed to study protein oligomerisation in normal versus dystrophin-deficient skeletal muscles. Crosslinker-induced protein oligomerisation was determined by a combination of gel-shift analysis and immunoblotting. Results: Although proteomics was successfully applied for the identification of dystroglycan as a key component of the dystrophin-associated glycoprotein complex in the muscle membrane fraction, mass spectrometric analysis did not efficiently recognize this relatively low-abundance protein after immunoprecipitation or chemical crosslinking. As an alternative approach, comparative immunoblotting was used to evaluate the effects of chemical crosslinking. Antibody decoration of the crosslinked microsomal protein fraction from wild type versus the mdx-4cv mouse model of dystrophinopathy revealed oligomers that contain β-dystroglycan. The protein exhibited a comparable reduction in gel electrophoretic mobility in both normal and dystrophic samples. The membrane repair proteins dysferlin and myoferlin, which are essential components of fibre regeneration, as well as the caveolae-associated protein cavin-1, were also shown to exist in high-molecular mass complexes. Conclusions: The muscular dystrophy-related reduction in the concentration of β-dystroglycan, which forms in conjunction with its extracellular binding partner α-dystroglycan a critical plasmalemmal receptor for laminin-211, does not appear to alter its oligomeric status. Thus, independent of direct interactions with dystrophin, this sarcolemmal glycoprotein appears to exist in a supramolecular assembly in muscle.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, Bonn, D‑53115, Germany
| | | | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, Bonn, D‑53115, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
7
|
Sifi M, Benabdesselam R, Souttou S, Annese T, Rendon A, Nico B, Dorbani-Mamine L. Dystrophin 71 and α1syntrophin in morpho-functional plasticity of rat supraoptic nuclei: Effect of saline surcharge and reversibly normal hydration. Acta Histochem 2018; 120:187-195. [PMID: 29395317 DOI: 10.1016/j.acthis.2018.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/25/2017] [Accepted: 01/09/2018] [Indexed: 02/02/2023]
Abstract
Dystrophin (Dp) is a multidomain protein that links the actin cytoskeleton to the extracellular matrix through the dystrophin associated proteins complex (DAPC). Dp of 71 kDa (Dp71), corresponding to the COOH-terminal domain of dystrophin, and α1-syntrophin (α1Syn) as the principal component of the DAPC, are strongly expressed in the brain. To clarify their involvement in the central control of osmotic homeostasis, we investigated the effect of 14 days of salt loading (with drinking water containing 2% NaCl) and then reversibly to 30 days of normal hydration (with drinking water without salt), first on the expression by western-blotting and the distribution by immunochemistry of Dp71 and α1Syn in the SON of the rat and, second, on the level of some physiological parameters, as the plasma osmolality, natremia and hematocrit. Dp71 is the most abundant form of dystrophin revealed in the supraoptic nucleu (SON) of control rat. Dp71 was localized in magnocellular neurons (MCNs) and astrocytes, when α1Syn was observed essentially in astrocytes end feet. After 14 days of salt-loading, Dp71 and α1Syn signals decreased and a dual signal for these two proteins was revealed in the astrocytes processes SON surrounding blood capillaries. In addition, salt loading leads to an increase in plasma osmolality, natremia and hematocrit. Reversibly, after 30 days of normal hydration, the intensity of the signal for the two proteins, Dp71 and α1Syn, increased and approached that of control. Furtheremore, the levels of the physiological parameters decreased and approximated those of control. This suggests that Dp71 and α1Syn may be involved in the functional activity of the SON. Their localization in astrocyte end feet emphasizes their importance in neuronal-vascular-astrocyte interactions for the central detection of osmolality. In the SON, Dp71 and α1Syn may be involved in osmosensitivity.
Collapse
Affiliation(s)
- Madina Sifi
- Equipe de Neurochimie, LBPO, Faculté des Sciences Biologiques, USTHB, Alger, Algeria
| | - Roza Benabdesselam
- Equipe de Neurochimie, LBPO, Faculté des Sciences Biologiques, USTHB, Alger, Algeria; Département de Biologie, Faculté des Sciences Biologiques et Agronomiques, UMMTO, Tizi Ouzou, Algeria.
| | - Sabrina Souttou
- Equipe de Neurochimie, LBPO, Faculté des Sciences Biologiques, USTHB, Alger, Algeria
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organes, University of Bari "Aldo Moro", Bari, Italy
| | - Alvaro Rendon
- Laboratoire de Physiopathologie Cellulaire et Moleculaire de la Retine, INSERM UMRS-592, Institut de la Vision, Paris, France
| | - Beatrice Nico
- Department of Basic Medical Sciences, Neurosciences and Sensory Organes, University of Bari "Aldo Moro", Bari, Italy
| | - Latifa Dorbani-Mamine
- Equipe de Neurochimie, LBPO, Faculté des Sciences Biologiques, USTHB, Alger, Algeria
| |
Collapse
|
8
|
Rodríguez-Muñoz R, Cárdenas-Aguayo MDC, Alemán V, Osorio B, Chávez-González O, Rendon A, Martínez-Rojas D, Meraz-Ríos MA. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons. PLoS One 2015; 10:e0137328. [PMID: 26378780 PMCID: PMC4574971 DOI: 10.1371/journal.pone.0137328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/22/2015] [Indexed: 01/19/2023] Open
Abstract
The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f), during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV). By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60%) and multipolar Glutamatergic (≤40%) neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC): dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively), in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles) of neuronal nucleoskeleton preparations. The present study evinces that each Dp71's complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.
Collapse
Affiliation(s)
- Rafael Rodríguez-Muñoz
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
| | - María del Carmen Cárdenas-Aguayo
- Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
| | - Víctor Alemán
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
| | - Beatriz Osorio
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
| | - Oscar Chávez-González
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
| | - Alvaro Rendon
- Institut de la Vision, UMR Inserm, Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, Université Pierre et Marie Curie, Paris, France
| | - Dalila Martínez-Rojas
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
- * E-mail: (MAMMR); (DMR)
| | - Marco Antonio Meraz-Ríos
- Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
- * E-mail: (MAMMR); (DMR)
| |
Collapse
|
9
|
von Boxberg Y, Soares S, Féréol S, Fodil R, Bartolami S, Taxi J, Tricaud N, Nothias F. Giant scaffolding protein AHNAK1 interacts with β-dystroglycan and controls motility and mechanical properties of Schwann cells. Glia 2014; 62:1392-406. [PMID: 24796807 DOI: 10.1002/glia.22685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 01/02/2023]
Abstract
The profound morphofunctional changes that Schwann cells (SCs) undergo during their migration and elongation on axons, as well as during axon sorting, ensheathment, and myelination, require their close interaction with the surrounding laminin-rich basal lamina. In contrast to myelinating central nervous system glia, SCs strongly and constitutively express the giant scaffolding protein AHNAK1, localized essentially underneath the outer, abaxonal plasma membrane. Using electron microscopy, we show here that in the sciatic nerve of ahnak1(-) (/) (-) mice the ultrastructure of myelinated, and unmyelinated (Remak) fibers is affected. The major SC laminin receptor β-dystroglycan co-immunoprecipitates with AHNAK1 shows reduced expression in ahnak1(-) (/) (-) SCs, and is no longer detectable in Cajal bands on myelinated fibers in ahnak1(-) (/) (-) sciatic nerve. Reduced migration velocity in a scratch wound assay of purified ahnak1(-) (/) (-) primary SCs cultured on a laminin substrate indicated a function of AHNAK1 in SC motility. This was corroborated by atomic force microscopy measurements, which revealed a greater mechanical rigidity of shaft and leading tip of ahnak1(-) (/) (-) SC processes. Internodal lengths of large fibers are decreased in ahnak1(-) (/) (-) sciatic nerve, and longitudinal extension of myelin segments is even more strongly reduced after acute knockdown of AHNAK1 in SCs of developing sciatic nerve. Together, our results suggest that by interfering in the cross-talk between the transmembrane form of the laminin receptor dystroglycan and F-actin, AHNAK1 influences the cytoskeleton organization of SCs, and thus plays a role in the regulation of their morphology and motility and lastly, the myelination process.
Collapse
Affiliation(s)
- Ysander von Boxberg
- Sorbonne Universités, UPMC CR18 (NPS), Paris, France; Neuroscience Paris Seine (NPS), CNRS UMR 8246, Paris, France; Neuroscience Paris Seine (NPS), INSERM U1130, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Turki A, Hayot M, Carnac G, Pillard F, Passerieux E, Bommart S, Raynaud de Mauverger E, Hugon G, Pincemail J, Pietri S, Lambert K, Belayew A, Vassetzky Y, Juntas Morales R, Mercier J, Laoudj-Chenivesse D. Functional muscle impairment in facioscapulohumeral muscular dystrophy is correlated with oxidative stress and mitochondrial dysfunction. Free Radic Biol Med 2012; 53:1068-79. [PMID: 22796148 DOI: 10.1016/j.freeradbiomed.2012.06.041] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/05/2012] [Accepted: 06/28/2012] [Indexed: 11/25/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), the most frequent muscular dystrophy, is an autosomal dominant disease. In most individuals with FSHD, symptoms are restricted to muscles of the face, arms, legs, and trunk. FSHD is genetically linked to contractions of the D4Z4 repeat array causing activation of several genes. One of these maps in the repeat itself and expresses the DUX4 (the double homeobox 4) transcription factor causing a gene deregulation cascade. In addition, analyses of the RNA or protein expression profiles in muscle have indicated deregulations in the oxidative stress response. Since oxidative stress affects peripheral muscle function, we investigated mitochondrial function and oxidative stress in skeletal muscle biopsies and blood samples from patients with FSHD and age-matched healthy controls, and evaluated their association with physical performances. We show that specifically, oxidative stress (lipid peroxidation and protein carbonylation), oxidative damage (lipofuscin accumulation), and antioxidant enzymes (catalase, copper-zinc-dependent superoxide dismutase, and glutathione reductase) were higher in FSHD than in control muscles. FSHD muscles also presented abnormal mitochondrial function (decreased cytochrome c oxidase activity and reduced ATP synthesis). In addition, the ratio between reduced (GSH) and oxidized glutathione (GSSG) was strongly decreased in all FSHD blood samples as a consequence of GSSG accumulation. Patients with FSHD also had reduced systemic antioxidative response molecules, such as low levels of zinc (a SOD cofactor), selenium (a GPx cofactor involved in the elimination of lipid peroxides), and vitamin C. Half of them had a low ratio of gamma/alpha tocopherol and higher ferritin concentrations. Both systemic oxidative stress and mitochondrial dysfunction were correlated with functional muscle impairment. Mitochondrial ATP production was significantly correlated with both quadriceps endurance (T(LimQ)) and maximal voluntary contraction (MVC(Q)) values (rho=0.79, P=0.003; rho=0.62, P=0.05, respectively). The plasma concentration of oxidized glutathione was negatively correlated with the T(LimQ), MVC(Q) values, and the 2-min walk distance (MWT) values (rho=-0.60, P=0.03; rho=-0.56, P=0.04; rho=-0.93, P<0.0001, respectively). Our data characterized oxidative stress in patients with FSHD and demonstrated a correlation with their peripheral skeletal muscle dysfunction. They suggest that antioxidants that might modulate or delay oxidative insult may be useful in maintaining FSHD muscle functions.
Collapse
Affiliation(s)
- Ahmed Turki
- Université Montpellier 1 et Université Montpellier 2, INSERM, U1046, Montpellier, F-34000, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Benabdesselam R, Dorbani-Mamine L, Benmessaoud-Mesbah O, Rendon A, Mhaouty-Kodja S, Hardin-Pouzet H. Dp71 gene disruption alters the composition of the dystrophin-associated protein complex and neuronal nitric oxide synthase expression in the hypothalamic supraoptic and paraventricular nuclei. J Endocrinol 2012; 213:239-49. [PMID: 22493004 DOI: 10.1530/joe-12-0066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DP71 is the major cerebral dystrophin isoform and exerts its multiple functions via the dystrophin-associated protein complex (DAPC), also comprised of β-dystroglycan (β-DG) and α1-syntrophin (α1-Syn). Since DP71 disruption leads to impairment in the central control of the osmoregulatory axis, we investigated: 1) the DAPC composition in the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) of Dp71-null mice; and 2) the expression and activity of neuronal nitric oxide synthase (nNOS), because it is a potential partner of the DAPC and a functional index of osmoregulatory axis activity. In wild-type mice, dystrophins and their autosomal homologs the utrophins, β-DG, and α1-Syn were localized in astrocyte end feet. In Dp71-null mice, the levels of β-DG and α1-Syn were lower and utrophin expression did not change. The location of the DAPC in astrocytic end feet suggests that it could be involved in hypothalamic osmosensitivity, which adapts the osmotic response. The altered composition of the DAPC in Dp71-null mice could thus explain why these mice manifest an hypo-osmolar status. In the SON and PVN neurons of Dp71-null mice, nNOS expression and activity were increased. Although we previously established that DP140 is expressed de novo in these neurons, the DAPC remained incomplete due to the low levels of β-DG and α1-Syn produced in these cells. Our data reveal the importance of DP71 for the constitution of a functional DAPC in the hypothalamus. Such DAPC disorganization may lead to modification of the microenvironment of the SON and PVN neurons and thus may result in a perturbed osmoregulation.
Collapse
Affiliation(s)
- Roza Benabdesselam
- Unité de Recherches, Faculté des Sciences Biologiques/UMMTO, BP 17, Tizi-Ouzou, Algeria
| | | | | | | | | | | |
Collapse
|
12
|
Perronnet C, Chagneau C, Le Blanc P, Samson-Desvignes N, Mornet D, Laroche S, De La Porte S, Vaillend C. Upregulation of brain utrophin does not rescue behavioral alterations in dystrophin-deficient mice. Hum Mol Genet 2012; 21:2263-76. [PMID: 22343141 DOI: 10.1093/hmg/dds047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dystrophin, the protein responsible for X-linked Duchenne muscular dystrophy (DMD), is normally expressed in both muscle and brain, which explains that its loss also leads to cognitive deficits. The utrophin protein, an autosomal homolog, is a natural candidate for dystrophin replacement in patients. Pharmacological upregulation of endogenous utrophin improves muscle physiology in dystrophin-deficient mdx mice, and represents a potential therapeutic tool that has the advantage of allowing delivery to various organs following peripheral injections. Whether this could alleviate cognitive deficits, however, has not been explored. Here, we first investigated basal expression of all utrophins and dystrophins in the brain of mdx mice and found no evidence for spontaneous compensation by utrophins. Then, we show that systemic chronic, spaced injections of arginine butyrate (AB) alleviate muscle alterations and upregulate utrophin expression in the adult brain of mdx mice. AB selectively upregulated brain utrophin Up395, while reducing expression of Up113 and Up71. This, however, was not associated with a significant improvement of behavioral functions typically affected in mdx mice, which include exploration, emotional reactivity, spatial and fear memories. We suggest that AB did not overcome behavioral and cognitive dysfunctions because the regional and cellular expression of utrophins did not coincide with dystrophin expression in untreated mice, nor did it in AB-treated mice. While treatments based on the modulation of utrophin may alleviate DMD phenotypes in certain organs and tissues that coexpress dystrophins and utrophins in the same cells, improvement of cognitive functions would likely require acting on specific dystrophin-dependent mechanisms.
Collapse
Affiliation(s)
- Caroline Perronnet
- Univ Paris-Sud, Centre de Neurosciences Paris-Sud, UMR8195, Orsay F-91405, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Dystrophin Dp71: The Smallest but Multifunctional Product of the Duchenne Muscular Dystrophy Gene. Mol Neurobiol 2011; 45:43-60. [DOI: 10.1007/s12035-011-8218-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/02/2011] [Indexed: 01/06/2023]
|
14
|
Wang Q, Cao DH, Jin CL, Lin CK, Ma HW, Wu YY. A Method of Utrophin Up-Regulation through RNAi-Mediated Knockdown of the Transcription Factor EN1. J Int Med Res 2011; 39:161-71. [PMID: 21672318 DOI: 10.1177/147323001103900117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to induce up-regulation of the dystrophin-related gene UTRN that encodes the protein utrophin, to determine whether this could compensate for the lack of dystrophin function in Duchenne muscular dystrophy. The human UTRN promoter, which contains two putative binding sites for homeobox protein engrailed-1 (EN1), was analysed. It was found that EN1 binding site 2 in the UTRN gene promoter directly interacted with transcription factor EN1 in vitro. Chromatin immunoprecipitation assays of the EN1– UTRN promoter complex from rhabdomyosarcoma and HeLa cell lines confirmed that endogenous EN1 interacted with this region in vivo. The findings suggest that EN1 directly interacts with the UTRN promoter. Small interfering RNA was used to inhibit EN1 gene expression. Higher utrophin mRNA levels were observed in EN1-inhibited cells compared with controls. The increase in utrophin mRNA in rhabdomyosarcoma cells and HeLa cells may have resulted from inhibition of EN1 expression.
Collapse
Affiliation(s)
- Q Wang
- Senior Profession College, China Medical University, Shenyang, China
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - D-H Cao
- Department of Laboratory Medicine, No. 202 Hospital of the People's Liberation Army, Shenyang, China
| | - C-L Jin
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - C-K Lin
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - H-W Ma
- Department of Paediatrics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Y-Y Wu
- Department of Paediatrics, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Cerecedo D, Cisneros B, Gómez P, Galván IJ. Distribution of dystrophin- and utrophin-associated protein complexes during activation of human neutrophils. Exp Hematol 2010; 38:618-628.e3. [PMID: 20434517 DOI: 10.1016/j.exphem.2010.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 03/12/2010] [Accepted: 04/22/2010] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Dystrophins, utrophins, and their associated proteins are involved in structural and signaling roles in nonmuscle tissues; however, description of these proteins in neutrophils remained unexplored. Therefore we characterize the pattern expression, and the cellular distribution of dystrophin and utrophin gene products and dystrophin-associated proteins (i.e., beta-dystroglycan, alpha-syntrophin, and alpha-dystrobrevins) in relation to actin filaments in resting and activated with formyl-methionyl-leucyl-phenylalanine human neutrophils. MATERIALS AND METHODS Resting and fMLP-activated human neutrophils were analyzed by immunoblot and by confocal microscopy analysis. Immunoprecipitation assays were performed to corroborate the presence of protein complexes. RESULTS Immunoprecipitation assays and confocal analysis demonstrated the presence of two dystrophin-associated protein complexes in resting and activated neutrophils: the former formed by Dp71d/Dp71Delta(110)(m) and dystrophin-associated proteins (beta-dystroglycan, alpha-syntrophin, alpha-dystrobrevin-1, and -2), while the latter contains Up400, instead of Dp71d/Dp71Delta(110)(m), as a central component of the dystrophin-associated protein complexes (DAPC). Confocal analysis also showed the subcellular redistribution of Dp71d/Dp71Delta(110)(m) approximately DAPC and Up400 approximately DAPC in F-actin-based structures displayed during activation process with fMLP. CONCLUSIONS Our study showed the existence of two protein complexes formed by Dp71d/Dp71Delta(110)(m) or Up400 associated with DAPs in resting and fMLP-treated human polymorphonuclears. The interaction of these complexes with the actin cytoskeleton is indicative of their dynamic participation in the chemotaxis process.
Collapse
|
16
|
Benabdesselam R, Sene A, Raison D, Benmessaoud-Mesbah O, Ayad G, Mornet D, Yaffe D, Rendon A, Hardin-Pouzet HÃ, Dorbani-Mamine L. A deficit of brain dystrophin 71 impairs hypothalamic osmostat. J Neurosci Res 2010; 88:324-34. [DOI: 10.1002/jnr.22198] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Dystrophin Dp71 is critical for stability of the DAPs in the nucleus of PC12 cells. Neurochem Res 2009; 35:366-73. [PMID: 19784870 DOI: 10.1007/s11064-009-0064-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2009] [Indexed: 10/20/2022]
Abstract
We have adopted the PC12 cell line as in vitro cell model for studying Dp71 function in neuronal cells. These cells express a cytoplasmic (Dp71f) and a nuclear (Dp71d) isoform of Dp71 as well as various dystrophin-associated proteins (DAPs). In this study, we revealed by confocal microscopy analysis and Western blotting evaluation of cell fractions the presence of different DAPs (beta-dystroglycan, beta-dystrobrevin, epsilon-sarcoglycan and gamma1-syntrophin) in the nucleus of PC12 cells. Furthermore, we established by immunoprecipitation assays that Dp71d and the DAPs form a dystrophin-associated protein complex (DAPC) in the nucleus. Interestingly, depletion of Dp71 by antisense treatment (antisense-Dp71 cells) provoked a drastic reduction of nuclear DAPs, which indicates that Dp71d is critical for DAPs stability within the nucleus. Although Up71, the utrophin gene product homologous to Dp71, exhibited increased expression in the antisense-Dp71 cells, its scarce nuclear levels makes unlikely that could compensate for Dp71 nuclear deficiency.
Collapse
|
18
|
Hnia K, Hugon G, Masmoudi A, Mercier J, Rivier F, Mornet D. Effect of beta-dystroglycan processing on utrophin/Dp116 anchorage in normal and mdx mouse Schwann cell membrane. Neuroscience 2006; 141:607-620. [PMID: 16735092 PMCID: PMC1974842 DOI: 10.1016/j.neuroscience.2006.04.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/18/2006] [Accepted: 04/18/2006] [Indexed: 11/23/2022]
Abstract
In the peripheral nervous system, utrophin and the short dystrophin isoform (Dp116) are co-localized at the outermost layer of the myelin sheath of nerve fibers; together with the dystroglycan complex. Dp116 is associated with multiple glycoproteins, i.e. sarcoglycans, and alpha- and beta-dystroglycan, which anchor the cytoplasmic protein subcomplex to the extracellular basal lamina. In peripheral nerve, matrix metalloproteinase activity disrupts the dystroglycan complex by cleaving the extracellular domain of beta-dystroglycan. Metalloproteinase creates a 30 kDa fragment of beta-dystroglycan, leading to a disruption of the link between the extracellular matrix and the cell membrane. Here we asked if the processing of the beta-dystroglycan could influence the anchorage of Dp116 and/or utrophin in normal and mdx Schwann cell membrane. We showed that metalloproteinase-9 was more activated in mdx nerve than in wild-type ones. This activation leads to an accumulation of the 30 kDa beta-dystroglycan isoform and has an impact on the anchorage of Dp116 and utrophin isoforms in mdx Schwann cells membrane. Our results showed that Dp116 had greater affinity to the full length form of beta-dystroglycan than the 30 kDa form. Moreover, we showed for the first time that the short isoform of utrophin (Up71) was over-expressed in mdx Schwann cells compared with wild-type. In addition, this utrophin isoform (Up71) seems to have greater affinity to the 30 kDa beta-dystroglycan which could explain the increased stabilization of this 30 kDa form at the membrane compartment. Our results highlight the potential participation of the short utrophin isoform and the cleaved form of beta-dystroglycan in mdx Schwann cell membrane architecture. We proposed that these two proteins could be implicated in Schwann cell proliferation in response to a microenvironment stress such as mediated by accumulating macrophages in mdx mouse muscle inflammation sites.
Collapse
Affiliation(s)
- K Hnia
- Université Montpellier 1, UFR de Médecine, Laboratoire de Physiologie des Interactions, EA 701, Institut de Biologie, 4 Boulevard Henri IV, 34000 Montpellier, France; Institut Supérieur de Biotechnologie and UR. 08/39 Faculté de Médecine, Monastir, Tunisia
| | - G Hugon
- Université Montpellier 1, UFR de Médecine, Laboratoire de Physiologie des Interactions, EA 701, Institut de Biologie, 4 Boulevard Henri IV, 34000 Montpellier, France
| | - A Masmoudi
- Institut Supérieur de Biotechnologie and UR. 08/39 Faculté de Médecine, Monastir, Tunisia
| | - J Mercier
- Université Montpellier 1, UFR de Médecine, Laboratoire de Physiologie des Interactions, EA 701, Institut de Biologie, 4 Boulevard Henri IV, 34000 Montpellier, France
| | - F Rivier
- Université Montpellier 1, UFR de Médecine, Laboratoire de Physiologie des Interactions, EA 701, Institut de Biologie, 4 Boulevard Henri IV, 34000 Montpellier, France
| | - D Mornet
- Université Montpellier 1, UFR de Médecine, Laboratoire de Physiologie des Interactions, EA 701, Institut de Biologie, 4 Boulevard Henri IV, 34000 Montpellier, France.
| |
Collapse
|
19
|
Draviam RA, Wang B, Li J, Xiao X, Watkins SC. Mini-dystrophin efficiently incorporates into the dystrophin protein complex in living cells. J Muscle Res Cell Motil 2006; 27:53-67. [PMID: 16496225 DOI: 10.1007/s10974-006-9055-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 01/03/2006] [Indexed: 11/27/2022]
Abstract
Dystrophin is a critical muscle cell structural protein which when deficient results in Duchenne muscular dystrophy. Recently miniature versions of the dystrophin gene have been constructed that ameliorate the pathology in mouse models. To characterize mini-dystrophin's incorporation into the dystrophin protein complex in living cells, two fusion proteins were constructed where mini-dystrophin is fused to the N- or C-terminus of an enhanced green fluorescent protein reporter gene. Both fusion proteins correctly localize at the plasma membrane in vitro and in vivo. Live cell microscopy establishes that mini-dystrophin translocates directly to the PM of differentiating muscle cells, within 4 h of expression. Latrunculin A treatment, actin and beta-dystroglycan binding domain deletion constructs, and co-immunoprecipitation assays demonstrate that mini-dystrophin is firmly anchored to the sarcolemma primarily through its connections to beta-dystroglycan, mimicking effects seen with wild type dystrophin. Furthermore, point mutations made within the putative beta-dystroglycan anchoring ZZ domain of mini-dystrophin result in an ablation of beta-dystroglycan binding and a nuclear translocation of the protein. These results demonstrate that mini-dystrophin is efficiently bound and incorporated into the dystrophin protein complex, via beta-dystroglycan in living cells, similarly to the full length dystrophin protein.
Collapse
MESH Headings
- Actins/metabolism
- Active Transport, Cell Nucleus/physiology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line
- Cell Membrane/metabolism
- Dystroglycans/metabolism
- Dystrophin/genetics
- Dystrophin/metabolism
- Green Fluorescent Proteins/metabolism
- Humans
- Macromolecular Substances/metabolism
- Molecular Weight
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Protein Binding/physiology
- Protein Structure, Tertiary/physiology
- Protein Transport/physiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sarcolemma/metabolism
- Thiazolidines/pharmacology
Collapse
Affiliation(s)
- Romesh A Draviam
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. romesh@ pitt.edu
| | | | | | | | | |
Collapse
|