1
|
Pizza FX, Buckley KH. Regenerating Myofibers after an Acute Muscle Injury: What Do We Really Know about Them? Int J Mol Sci 2023; 24:12545. [PMID: 37628725 PMCID: PMC10454182 DOI: 10.3390/ijms241612545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Injury to skeletal muscle through trauma, physical activity, or disease initiates a process called muscle regeneration. When injured myofibers undergo necrosis, muscle regeneration gives rise to myofibers that have myonuclei in a central position, which contrasts the normal, peripheral position of myonuclei. Myofibers with central myonuclei are called regenerating myofibers and are the hallmark feature of muscle regeneration. An important and underappreciated aspect of muscle regeneration is the maturation of regenerating myofibers into a normal sized myofiber with peripheral myonuclei. Strikingly, very little is known about processes that govern regenerating myofiber maturation after muscle injury. As knowledge of myofiber formation and maturation during embryonic, fetal, and postnatal development has served as a foundation for understanding muscle regeneration, this narrative review discusses similarities and differences in myofiber maturation during muscle development and regeneration. Specifically, we compare and contrast myonuclear positioning, myonuclear accretion, myofiber hypertrophy, and myofiber morphology during muscle development and regeneration. We also discuss regenerating myofibers in the context of different types of myofiber necrosis (complete and segmental) after muscle trauma and injurious contractions. The overall goal of the review is to provide a framework for identifying cellular and molecular processes of myofiber maturation that are unique to muscle regeneration.
Collapse
Affiliation(s)
- Francis X. Pizza
- Department of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Kole H. Buckley
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| |
Collapse
|
2
|
Dalle S, Poffé C, Hiroux C, Suhr F, Deldicque L, Koppo K. Ibuprofen does not impair skeletal muscle regeneration upon cardiotoxin-induced injury. Physiol Res 2020; 69:847-859. [PMID: 32901495 DOI: 10.33549/physiolres.934482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Muscle regeneration is regulated through interaction between muscle and immune cells. Studies showed that treatment with supra-physiological doses of Non-Steroidal Anti-Inflammatory Drug (NSAID) abolished inflammatory signaling and impaired muscle recovery. The present study examines the effects of pharmacologically-relevant NSAID treatment on muscle regeneration. C57BL/6 mice were injected in the tibialis anterior (TA) with either PBS or cardiotoxin (CTX). CTX-injected mice received ibuprofen (CTX-IBU) or were untreated (CTX-PLAC). After 2 days, Il-1beta and Il-6 expression was upregulated in the TA of CTX-IBU and CTX-PL vs. PBS. However, Cox-2 expression and macrophage infiltration were higher in CTX-PL vs. PBS, but not in CTX-IBU. At the same time, anabolic markers were higher in CTX-IBU vs. PBS, but not in CTX-PL. Nevertheless, ibuprofen did not affect muscle mass or muscle fiber regeneration. In conclusion, mild ibuprofen doses did not worsen muscle regeneration. There were even signs of a transient improvement in anabolic signaling and attenuation of inflammatory signaling.
Collapse
Affiliation(s)
- S Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, Faculty of Movement and Rehabilitation Sciences, Catholic University of Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
3
|
Dalle S, Hiroux C, Poffé C, Ramaekers M, Deldicque L, Koppo K. Cardiotoxin-induced skeletal muscle injury elicits profound changes in anabolic and stress signaling, and muscle fiber type composition. J Muscle Res Cell Motil 2020; 41:375-387. [PMID: 32621158 DOI: 10.1007/s10974-020-09584-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
To improve muscle healing upon injury, it is of importance to understand the interplay of key signaling pathways during muscle regeneration. To study this, mice were injected with cardiotoxin (CTX) or PBS in the Tibialis Anterior muscle and were sacrificed 2, 5 and 12 days upon injection. The time points represent different phases of the regeneration process, i.e. destruction, repair and remodeling, respectively. Two days upon CTX-injection, p-mTORC1 signaling and stress markers such as BiP and p-ERK1/2 were upregulated. Phospho-ERK1/2 and p-mTORC1 peaked at d5, while BiP expression decreased towards PBS levels. Phospho-FOXO decreased 2 and 5 days following CTX-injection, indicative of an increase in catabolic signaling. Furthermore, CTX-injection induced a shift in the fiber type composition, characterized by an initial loss in type IIa fibers at d2 and at d5. At d5, new type IIb fibers appeared, whereas type IIa fibers were recovered at d12. To conclude, CTX-injection severely affected key modulators of muscle metabolism and histology. These data provide useful information for the development of strategies that aim to improve muscle molecular signaling and thereby recovery.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Charlotte Hiroux
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Monique Ramaekers
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Place Pierre de Coubertin 1, 1348, Louvain-la-Neuve, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium.
| |
Collapse
|
4
|
EDMD-Causing Emerin Mutant Myogenic Progenitors Exhibit Impaired Differentiation Using Similar Mechanisms. Cells 2020; 9:cells9061463. [PMID: 32549231 PMCID: PMC7349064 DOI: 10.3390/cells9061463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022] Open
Abstract
Mutations in the gene encoding emerin (EMD) cause Emery–Dreifuss muscular dystrophy (EDMD1), an inherited disorder characterized by progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. The skeletal muscle defects seen in EDMD are caused by failure of muscle stem cells to differentiate and regenerate the damaged muscle. However, the underlying mechanisms remain poorly understood. Most EDMD1 patients harbor nonsense mutations and have no detectable emerin protein. There are three EDMD-causing emerin mutants (S54F, Q133H, and Δ95–99) that localize correctly to the nuclear envelope and are expressed at wildtype levels. We hypothesized these emerin mutants would share in the disruption of key molecular pathways involved in myogenic differentiation. We generated myogenic progenitors expressing wildtype emerin and each EDMD1-causing emerin mutation (S54F, Q133H, Δ95–99) in an emerin-null (EMD−/y) background. S54F, Q133H, and Δ95–99 failed to rescue EMD−/y myogenic differentiation, while wildtype emerin efficiently rescued differentiation. RNA sequencing was done to identify pathways and networks important for emerin regulation of myogenic differentiation. This analysis significantly reduced the number of pathways implicated in EDMD1 muscle pathogenesis.
Collapse
|
5
|
Shibaguchi T, Hoshi M, Yoshihara T, Naito H, Goto K, Yoshioka T, Sugiura T. Impact of different temperature stimuli on the expression of myosin heavy chain isoforms during recovery from bupivacaine-induced muscle injury in rats. J Appl Physiol (1985) 2019; 127:178-189. [PMID: 31120809 DOI: 10.1152/japplphysiol.00930.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Limited information exists regarding the impact of different temperature stimuli on myosin heavy chain (MyHC) expression in skeletal muscle during recovery from injury. Therefore, this experiment investigated the impact of both cold and heat exposure on the MyHC isoform profile in the rat soleus during recovery from injury. Male Wistar rats were randomly divided into control, bupivacaine-injected (BPVC), BPVC with icing, and BPVC with heat stress groups. Muscle injury was induced by intramuscular injection of bupivacaine into soleus muscles of male Wistar rats. Icing treatment (0°C for 20 min) was performed immediately after the injury. Intermittent heat stress (42°C for 30 min on alternating days) was carried out during 2-14 days after bupivacaine injection. In response to injury, a transient increase in developmental, IId/x, and IIb MyHC isoforms, as well as various types of hybrid fibers, followed by the recovery of the MyHC profile toward the control level, was noted in the regeneration of the soleus. The restoration of the MyHC profile in the regenerating muscle at whole-muscle and individual myofiber levels was partially delayed by icing but facilitated by heat stress. In addition, the application of repeated heat stress promoted the recovery of soleus muscle mass toward the control level following injury. We conclude that compared with acute and immediate cold (icing) treatment, chronic and repeated heat stress may be a more appropriate treatment for the enhancement of both normalization of the MyHC profile and restoration of muscle mass following injury. NEW & NOTEWORTHY Cold exposure (icing), but not heat exposure, has been well accepted as a first-aid treatment for accidental and/or sports-related injuries. However, recent evidence suggests the negative impact of icing treatment on skeletal muscle regeneration following injury. Here, we demonstrated that acute/immediate icing treatment delayed the restoration of the myosin heavy chain (MyHC) profile, but intermittent hyperthermia, repeated for several days, facilitated the recovery of both muscle mass and the MyHC profile in the regeneration of skeletal muscle following injury.
Collapse
Affiliation(s)
- Tsubasa Shibaguchi
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa City, Ishikawa , Japan
| | - Mizuki Hoshi
- Department of Exercise and Health Sciences, Faculty of Education, Yamaguchi University, Yamaguchi City, Yamaguchi , Japan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Inzai City, Chiba , Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Inzai City, Chiba , Japan
| | - Katsumasa Goto
- Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi City, Aichi , Japan
| | | | - Takao Sugiura
- Department of Exercise and Health Sciences, Faculty of Education, Yamaguchi University, Yamaguchi City, Yamaguchi , Japan
| |
Collapse
|
6
|
Leng X, Ji X, Hou Y, Settlage R, Jiang H. Roles of the proteasome and inhibitor of DNA binding 1 protein in myoblast differentiation. FASEB J 2019; 33:7403-7416. [PMID: 30865843 DOI: 10.1096/fj.201800574rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study was conducted to further understand the mechanism that controls myoblast differentiation, a key step in skeletal muscle formation. RNA sequencing of primary bovine myoblasts revealed many genes encoding the ubiquitin-proteasome system were up-regulated during myoblast differentiation. This up-regulation was accompanied by increased proteasomal activity. Treating myoblasts with the proteasome-specific inhibitor lactacystin impeded myoblast differentiation. Adenovirus-mediated overexpression of inhibitor of DNA binding 1 (ID1) protein inhibited myoblast differentiation too. Further experiments were conducted to determine whether the proteasome promotes myoblast differentiation by degrading ID1 protein. Both ID1 protein and mRNA expression decreased during myoblast differentiation. However, treating myoblasts with lactacystin reversed the decrease in ID1 protein but not in ID1 mRNA expression. Surprisingly, this reversal was not observed when myoblasts were also treated with the mRNA translation inhibitor cycloheximide. Direct incubation of ID1 protein with proteasomes from myoblasts did not show differentiation stage-associated degradation of ID1 protein. Furthermore, ubiquitinated ID1 protein was not detected in lactacystin-treated myoblasts. Overall, the results of this study suggest that, during myoblast differentiation, the proteasomal activity is up-regulated to further myoblast differentiation and that the increased proteasomal activity improves myoblast differentiation partly by inhibiting the synthesis, not the degradation, of ID1 protein.-Leng, X., Ji, X., Hou, Y., Settlage, R., Jiang, H. Roles of the proteasome and inhibitor of DNA binding 1 protein in myoblast differentiation.
Collapse
Affiliation(s)
- Xinyan Leng
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Xu Ji
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, USA.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; and
| | - Yuguo Hou
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Robert Settlage
- Advanced Research Computing Unit, Division of Information Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
7
|
Dinulovic I, Furrer R, Handschin C. Plasticity of the Muscle Stem Cell Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1041:141-169. [PMID: 29204832 DOI: 10.1007/978-3-319-69194-7_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes.
Collapse
|
8
|
Wilson RJ, Drake JC, Cui D, Lewellen BM, Fisher CC, Zhang M, Kashatus DF, Palmer LA, Murphy MP, Yan Z. Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle. Free Radic Biol Med 2018; 117:180-190. [PMID: 29432799 PMCID: PMC5896769 DOI: 10.1016/j.freeradbiomed.2018.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 01/08/2023]
Abstract
Deterioration of neuromuscular junction (NMJ) integrity and function is causal to muscle atrophy and frailty, ultimately hindering quality of life and increasing the risk of death. In particular, NMJ is vulnerable to ischemia reperfusion (IR) injury when blood flow is restricted followed by restoration. However, little is known about the underlying mechanism(s) and hence the lack of effective interventions. New evidence suggests that mitochondrial oxidative stress plays a causal role in IR injury, which can be precluded by enhancing mitochondrial protein S-nitrosation (SNO). To elucidate the role of IR and mitochondrial protein SNO in skeletal muscle, we utilized a clinically relevant model and showed that IR resulted in significant muscle and motor nerve injuries with evidence of elevated muscle creatine kinase in the serum, denervation at NMJ, myofiber degeneration and regeneration, as well as muscle atrophy. Interestingly, we observed that neuromuscular transmission improved prior to muscle recovery, suggesting the importance of the motor nerve in muscle functional recovery. Injection of a mitochondria-targeted S-nitrosation enhancing agent, MitoSNO, into ischemic muscle prior to reperfusion reduced mitochondrial oxidative stress in the motor nerve and NMJ, attenuated denervation at NMJ, and resulted in accelerated functional recovery of the muscle. These findings demonstrate that enhancing mitochondrial protein SNO protects against IR-induced denervation at NMJ in skeletal muscle and accelerates functional regeneration. This could be an efficacious intervention for protecting neuromuscular injury under the condition of IR and other related pathological conditions.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Departments of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joshua C Drake
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Di Cui
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Bevan M Lewellen
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Carleigh C Fisher
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mei Zhang
- Departments of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - David F Kashatus
- Departments of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Lisa A Palmer
- Departments of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Zhen Yan
- Departments of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
9
|
Koulmann N, Richard‐Bulteau H, Crassous B, Serrurier B, Pasdeloup M, Bigard X, Banzet S. Physical exercise during muscle regeneration improves recovery of the slow/oxidative phenotype. Muscle Nerve 2016; 55:91-100. [DOI: 10.1002/mus.25151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Nathalie Koulmann
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
- Ecole du Val‐de‐GrâceParis France
| | - Hélène Richard‐Bulteau
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Brigitte Crassous
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Bernard Serrurier
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Marielle Pasdeloup
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Xavier Bigard
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
- Ecole du Val‐de‐GrâceParis France
| | - Sébastien Banzet
- Ecole du Val‐de‐GrâceParis France
- Institut de Recherche Biomédicale des Armées, Département Soutien Médico‐Chirurgical des Forces1 rue du lieutenant Raoul Batany92140Clamart France
- INSERM U1197Clamart France
| |
Collapse
|
10
|
Constitutive activities of estrogen-related receptors: Transcriptional regulation of metabolism by the ERR pathways in health and disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1912-27. [PMID: 26115970 DOI: 10.1016/j.bbadis.2015.06.016] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
The estrogen-related receptors (ERRs) comprise a small group of orphan nuclear receptor transcription factors. The ERRα and ERRγ isoforms play a central role in the regulation of metabolic genes and cellular energy metabolism. Although less is known about ERRβ, recent studies have revealed the importance of this isoform in the maintenance of embryonic stem cell pluripotency. Thus, ERRs are essential to many biological processes. The development of several ERR knockout and overexpression models and the application of advanced functional genomics have allowed rapid advancement of our understanding of the physiology regulated by ERR pathways. Moreover, it has enabled us to begin to delineate the distinct programs regulated by ERRα and ERRγ that have overlapping effects on metabolism and growth. The current review primarily focuses on the physiologic roles of ERR isoforms related to their metabolic regulation; therefore, the ERRα and ERRγ are discussed in the greatest detail. We emphasize findings from gain- and loss-of-function models developed to characterize ERR control of skeletal muscle, heart and musculoskeletal physiology. These models have revealed that coordinating metabolic capacity with energy demand is essential for seemingly disparate processes such as muscle differentiation and hypertrophy, innate immune function, thermogenesis, and bone remodeling. Furthermore, the models have revealed that ERRα- and ERRγ-deficiency in mice accelerates progression of pathologic processes and implicates ERRs as etiologic factors in disease. We highlight the human diseases in which ERRs and their downstream metabolic pathways are perturbed, including heart failure and diabetes. While no natural ligand has been identified for any of the ERR isoforms, the potential for using synthetic small molecules to modulate their activity has been demonstrated. Based on our current understanding of their transcriptional mechanisms and physiologic relevance, the ERRs have emerged as potential therapeutic targets for treatment of osteoporosis, muscle atrophy, insulin resistance and heart failure in humans.
Collapse
|
11
|
Abstract
Increasing evidence points to extracellular matrix (ECM) components playing integral roles in regulating the muscle satellite cell (SC) niche. Even small alterations to the niche ECM can have profound effects on SC localization, activation, self-renewal, proliferation and differentiation. This review will focus on the ECM components that comprise the niche, how they are modulated in health and disease and how these changes are thought to affect SC function. Particular emphasis will be placed on the pathological niche and interventions that aim to restore healthy structure and function, as a better understanding of the interplay between the SC and its environment will drive more targeted and effective therapies.
Collapse
Affiliation(s)
- Kelsey Thomas
- Department of Biomedical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Gretchen A. Meyer
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093,Program in Physical Therapy & Department of Neurology, Washington University School of Medicine, St. Louis, MO 63108
| |
Collapse
|
12
|
Dimauro I, Grasso L, Fittipaldi S, Fantini C, Mercatelli N, Racca S, Geuna S, Di Gianfrancesco A, Caporossi D, Pigozzi F, Borrione P. Platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model. PLoS One 2014; 9:e102993. [PMID: 25054279 PMCID: PMC4108405 DOI: 10.1371/journal.pone.0102993] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/24/2014] [Indexed: 12/27/2022] Open
Abstract
Platelet-rich plasma (PRP) has received increasing interest in applied medicine, being widely used in clinical practice with the aim of stimulating tissue healing. Despite the reported clinical success, there is still a lack of knowledge when considering the biological mechanisms at the base of the activity of PRP during the process of muscle healing. The aim of the present study was to verify whether the local delivery of PRP modulates specific molecular events involved in the early stages of the muscle regeneration process. The right flexor sublimis muscle of anesthetized Wistar rats was mechanically injured and either treated with PRP or received no treatment. At day 2 and 5 after surgery, the animals were sacrificed and the muscle samples evaluated at molecular levels. PRP treatment increased significantly the mRNA level of the pro-inflammatory cytokines IL-1β, and TGF-β1. This phenomenon induced an increased expression at mRNA and/or protein levels of several myogenic regulatory factors such as MyoD1, Myf5 and Pax7, as well as the muscular isoform of insulin-like growth factor1 (IGF-1Eb). No effect was detected with respect to VEGF-A expression. In addition, PRP application modulated the expression of miR-133a together with its known target serum response factor (SRF); increased the phosphorylation of αB-cristallin, with a significant improvement in several apoptotic parameters (NF-κB-p65 and caspase 3), indexes of augmented cell survival. The results of the present study indicates that the effect of PRP in skeletal muscle injury repair is due both to the modulation of the molecular mediators of the inflammatory and myogenic pathways, and to the control of secondary pathways such as those regulated by myomiRNAs and heat shock proteins, which contribute to proper and effective tissue regeneration.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Loredana Grasso
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Simona Fittipaldi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Cristina Fantini
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Neri Mercatelli
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Silvia Racca
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Di Gianfrancesco
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- * E-mail:
| | - Fabio Pigozzi
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Paolo Borrione
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
13
|
Chaillou T, Koulmann N, Meunier A, Chapot R, Serrurier B, Beaudry M, Bigard X. Effect of hypoxia exposure on the recovery of skeletal muscle phenotype during regeneration. Mol Cell Biochem 2014; 390:31-40. [PMID: 24385110 DOI: 10.1007/s11010-013-1952-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
Abstract
Hypoxia impairs the muscle fibre-type shift from fast-to-slow during post-natal development; however, this adaptation could be a consequence of the reduced voluntary physical activity associated with hypoxia exposure rather than the result of hypoxia per se. Moreover, muscle oxidative capacity could be reduced in hypoxia, particularly when hypoxia is combined with additional stress. Here, we used a model of muscle regeneration to mimic the fast-to-slow fibre-type conversion observed during post-natal development. We hypothesised that hypoxia would impair the recovery of the myosin heavy chain (MHC) profile and oxidative capacity during muscle regeneration. To test this hypothesis, the soleus muscle of female rats was injured by notexin and allowed to recover for 3, 7, 14 and 28 days under normoxia or hypobaric hypoxia (5,500 m altitude) conditions. Ambient hypoxia did not impair the recovery of the slow MHC profile during muscle regeneration. However, hypoxia moderately decreased the oxidative capacity (assessed from the activity of citrate synthase) of intact muscle and delayed its recovery in regenerated muscle. Hypoxia transiently increased in both regenerated and intact muscles the content of phosphorylated AMPK and Pgc-1α mRNA, two regulators involved in mitochondrial biogenesis, while it transiently increased in intact muscle the mRNA level of the mitophagic factor BNIP3. In conclusion, hypoxia does not act to impair the fast-to-slow MHC isoform transition during regeneration. Hypoxia alters the oxidative capacity of intact muscle and delays its recovery in regenerated muscle; however, this adaptation to hypoxia was independent of the studied regulators of mitochondrial turn-over.
Collapse
Affiliation(s)
- Thomas Chaillou
- Département Environnements opérationnels, Institut de Recherche Biomédicale des Armées, antenne de La Tronche, BP 87, 38702, La Tronche Cedex, France,
| | | | | | | | | | | | | |
Collapse
|
14
|
Sobrian SK, Walters E. Enhanced Satellite Cell Activity in Aging Skeletal Muscle after Manual Acupuncture-Induced Injury. Chin Med 2014. [DOI: 10.4236/cm.2014.51004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Eardley WGP, Watts SA, Clasper JC. Modelling for conflict: the legacy of ballistic research and current extremity in vivo modelling. J ROY ARMY MED CORPS 2013; 159:73-83. [PMID: 23720587 DOI: 10.1136/jramc-2013-000074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Extremity ballistic injury is unique and the literature intended to guide its management is commonly misinterpreted. In order to care for those injured in conflict and conduct appropriate research, clinicians must be able to identify key in vivo studies, understand their weaknesses and desist the propagation of miscited and misunderstood ballistic dogma. This review provides the only inclusive critical overview of key studies of relevance to military extremity injury. In addition, the non-ballistic studies of limb injury, stabilisation and contamination that will form the basis from which future small animal extremity studies are constructed are presented. With an awareness of the legacy of military wound models and an insight into available generic models of extremity injury and contamination, research teams are well placed to optimise future military extremity injury management.
Collapse
Affiliation(s)
- William G P Eardley
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, ICT Centre, Institute of Research and Development, Birmingham, UK.
| | | | | |
Collapse
|
16
|
Chaillou T, Koulmann N, Meunier A, Pugnière P, McCarthy JJ, Beaudry M, Bigard X. Ambient hypoxia enhances the loss of muscle mass after extensive injury. Pflugers Arch 2013; 466:587-98. [PMID: 23974966 DOI: 10.1007/s00424-013-1336-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 11/29/2022]
Abstract
Hypoxia induces a loss of skeletal muscle mass and alters myogenesis in vitro, but whether it affects muscle regeneration in vivo following injury remains to be elucidated. We hypothesized that hypoxia would impair the recovery of muscle mass during regeneration. To test this hypothesis, the soleus muscle of female rats was injured by notexin and allowed to recover for 3, 7, 14, and 28 days under normoxia or hypobaric hypoxia (5,500 m) conditions. Hypoxia impaired the formation and growth of new myofibers and enhanced the loss of muscle mass during the first 7 days of regeneration, but did not affect the final recovery of muscle mass at 28 days. The impaired regeneration under hypoxic conditions was associated with a blunted activation of mechanical target of rapamycin (mTOR) signaling as assessed by p70(S6K) and 4E-BP1 phosphorylation that was independent of Akt activation. The decrease in mTOR activity with hypoxia was consistent with the increase in AMP-activated protein kinase activity, but not related to the change in regulated in development and DNA response 1 protein content. Hypoxia increased the mRNA levels of the atrogene muscle ring finger-1 after 7 days of regeneration, though muscle atrophy F box transcript levels remained unchanged. The increase in MyoD and myogenin mRNA expression with regeneration was attenuated at 7 days with hypoxia. In conclusion, our results support the notion that the enhanced loss of muscle mass observed after 1 week of regeneration under hypoxic conditions could mainly result from the impaired formation and growth of new fibers resulting from a reduction in protein synthesis and satellite cell activity.
Collapse
Affiliation(s)
- T Chaillou
- Département Environnements opérationnels, Institut de Recherche Biomédicale des Armées, antenne de La Tronche, BP87, 38702, La Tronche, France,
| | | | | | | | | | | | | |
Collapse
|
17
|
Mitochondria as a potential regulator of myogenesis. ScientificWorldJournal 2013; 2013:593267. [PMID: 23431256 PMCID: PMC3574753 DOI: 10.1155/2013/593267] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/16/2013] [Indexed: 12/24/2022] Open
Abstract
Recent studies have shown that mitochondria play a role in the regulation of myogenesis. Indeed, the abundance, morphology, and functional properties of mitochondria become altered when the myoblasts differentiate into myotubes. For example, mitochondrial mass/volume, mtDNA copy number, and mitochondrial respiration are markedly increased after the onset of myogenic differentiation. Besides, mitochondrial enzyme activity is also increased, suggesting that the metabolic shift from glycolysis to oxidative phosphorylation as the major energy source occurs during myogenic differentiation. Several lines of evidence suggest that impairment of mitochondrial function and activity blocks myogenic differentiation. However, yet little is known about the molecular mechanisms underlying the regulation of myogenesis by mitochondria. Understanding how mitochondria are involved in myogenesis will provide a valuable insight into the underlying mechanisms that regulate the maintenance of cellular homeostasis. Here, we will summarize the current knowledge regarding the role of mitochondria as a potential regulator of myogenesis.
Collapse
|
18
|
Pereira Lopes FR, Martin PKM, Frattini F, Biancalana A, Almeida FM, Tomaz MA, Melo PA, Borojevic R, Han SW, Martinez AMB. Double gene therapy with granulocyte colony-stimulating factor and vascular endothelial growth factor acts synergistically to improve nerve regeneration and functional outcome after sciatic nerve injury in mice. Neuroscience 2012; 230:184-97. [PMID: 23103791 DOI: 10.1016/j.neuroscience.2012.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/17/2022]
Abstract
Peripheral-nerve injuries are a common clinical problem and often result in long-term functional deficits. Reconstruction of peripheral-nerve defects is currently undertaken with nerve autografts. However, there is a limited availability of nerves that can be sacrificed and the functional recovery is never 100% satisfactory. We have previously shown that gene therapy with vascular endothelial growth factor (VEGF) significantly improved nerve regeneration, neuronal survival, and muscle activity. Our hypothesis is that granulocyte colony-stimulating factor (G-CSF) synergizes with VEGF to improve the functional outcome after sciatic nerve transection. The left sciatic nerves and the adjacent muscle groups of adult mice were exposed, and 50 or 100 μg (in 50 μl PBS) of VEGF and/or G-CSF genes was injected locally, just below the sciatic nerve, and transferred by electroporation. The sciatic nerves were transected and placed in an empty polycaprolactone (PCL) nerve guide, leaving a 3-mm gap to challenge nerve regeneration. After 6 weeks, the mice were perfused and the sciatic nerve, the dorsal root ganglion (DRG), the spinal cord and the gastrocnemius muscle were processed for light and transmission electron microscopy. Treated animals showed significant improvement in functional and histological analyses compared with the control group. However, the best results were obtained with the G-CSF+VEGF-treated animals: quantitative analysis of regenerated nerves showed a significant increase in the number of myelinated fibers and blood vessels, and the number of neurons in the DRG and motoneurons in the spinal cord was significantly higher. Motor function also showed that functional recovery occurred earlier in animals receiving G-CSF+VEGF-treatment. The gastrocnemius muscle showed an increase in weight and in the levels of creatine phosphokinase, suggesting an improvement of reinnervation and muscle activity. These results suggest that these two factors acted synergistically and optimized the nerve repair potential, improving regeneration after a transection lesion.
Collapse
Affiliation(s)
- F R Pereira Lopes
- Programa de Neurociência Básica e Clínica, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Frattini F, Lopes FRP, Almeida FM, Rodrigues RF, Boldrini LC, Tomaz MA, Baptista AF, Melo PA, Martinez AMB. Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury. Tissue Eng Part A 2012; 18:2030-9. [PMID: 22646222 DOI: 10.1089/ten.tea.2011.0496] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the fact that the peripheral nervous system is able to regenerate after traumatic injury, the functional outcomes following damage are limited and poor. Bone marrow mesenchymal stem cells (MSCs) are multipotent cells that have been used in studies of peripheral nerve regeneration and have yielded promising results. The aim of this study was to evaluate sciatic nerve regeneration and neuronal survival in mice after nerve transection followed by MSC treatment into a polycaprolactone (PCL) nerve guide. The left sciatic nerve of C57BL/6 mice was transected and the nerve stumps were placed into a biodegradable PCL tube leaving a 3-mm gap between them; the tube was filled with MSCs obtained from GFP+ animals (MSC-treated group) or with a culture medium (Dulbecco's modified Eagle's medium group). Motor function was analyzed according to the sciatic functional index (SFI). After 6 weeks, animals were euthanized, and the regenerated sciatic nerve, the dorsal root ganglion (DRG), the spinal cord, and the gastrocnemius muscle were collected and processed for light and electron microscopy. A quantitative analysis of regenerated nerves showed a significant increase in the number of myelinated fibers in the group that received, within the nerve guide, stem cells. The number of neurons in the DRG was significantly higher in the MSC-treated group, while there was no difference in the number of motor neurons in the spinal cord. We also found higher values of trophic factors expression in MSC-treated groups, especially a nerve growth factor. The SFI revealed a significant improvement in the MSC-treated group. The gastrocnemius muscle showed an increase in weight and in the levels of creatine phosphokinase enzyme, suggesting an improvement of reinnervation and activity in animals that received MSCs. Immunohistochemistry documented that some GFP+ -transplanted cells assumed a Schwann-cell-like phenotype, as evidenced by their expression of the S-100 protein, a Schwann cell marker. Our findings suggest that using a PCL tube filled with MSCs is a good strategy to improve nerve regeneration after a nerve transection in mice.
Collapse
Affiliation(s)
- Flávia Frattini
- Programa de Pesquisa em Neurociência Básica e Clínica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Winkler T, von Roth P, Matziolis G, Schumann MR, Hahn S, Strube P, Stoltenburg-Didinger G, Perka C, Duda GN, Tohtz SV. Time course of skeletal muscle regeneration after severe trauma. Acta Orthop 2011; 82:102-11. [PMID: 21142822 PMCID: PMC3230005 DOI: 10.3109/17453674.2010.539498] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Animal models of skeletal muscle injury should be thoroughly described and should mimic the clinical situation. We established a model of a critical size crush injury of the soleus muscle in rats. The aim was to describe the time course of skeletal muscle regeneration using mechanical, histological, and magnetic resonance (MR) tomographic methods. METHODS Left soleus muscles of 36 Sprague-Dawley rats were crushed in situ in a standardized manner. We scanned the lower legs of 6 animals by 7-tesla MR one week, 4 weeks, and 8 weeks after trauma. Regeneration was evaluated at these times by in vivo measurement of muscle contraction forces after fast-twitch and tetanic stimulation (groups 1W, 4W, 8W; 6 per group). Histological and immunohistological analysis was performed and the amount of fibrosis within the injured muscles was determined histomorphologically. RESULTS MR signals of the traumatized soleus muscles showed a clear time course concerning microstructure and T1 and T2 signal intensity. Newly developed neural endplates and myotendinous junctions could be seen in the injured zones of the soleus. Tetanic force increased continuously, starting at 23% (SD 4) of the control side (p < 0.001) 1 week after trauma and recovering to 55% (SD 23) after 8 weeks. Fibrotic tissue occupied 40% (SD 4) of the traumatized muscles after the first week, decreased to approximately 25% after 4 weeks, and remained at this value until 8 weeks. INTERPRETATION At both the functional level and the morphological level, skeletal muscle regeneration follows a distinct time course. Our trauma model allows investigation of muscle regeneration after a standardized injury to muscle fibers.
Collapse
Affiliation(s)
- Tobias Winkler
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | - Philipp von Roth
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | - Georg Matziolis
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | - Maria R Schumann
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | - Sebastian Hahn
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | - Patrick Strube
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | | | - Carsten Perka
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | - Georg N Duda
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | - Stephan V Tohtz
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| |
Collapse
|
21
|
Muscle regeneration occurs to coincide with mitochondrial biogenesis. Mol Cell Biochem 2010; 349:139-47. [DOI: 10.1007/s11010-010-0668-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/15/2010] [Indexed: 01/04/2023]
|
22
|
Stratos I, Graff J, Rotter R, Mittlmeier T, Vollmar B. Open blunt crush injury of different severity determines nature and extent of local tissue regeneration and repair. J Orthop Res 2010; 28:950-7. [PMID: 20069568 DOI: 10.1002/jor.21063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insufficiency of skeletal muscle regeneration is often accompanied with functional deficiencies. The goal of our study was to assess the restoration of peripheral muscle upon injury of different severity. Blunt crush injury of the soleus muscle in rats was induced by a clamp and stepwise amplified in severity by rising the locking level of the clamp, resulting in three different groups (1x lock; 2x lock; 3x lock; n = 30 animals per group). After assessment of the fast twitch and tetanic contraction capacity at days 1, 4, 7, 14, and 42 postinjury sampling of muscle tissue served for analysis of cell proliferation, including satellite cells, apoptosis, and leukocyte infiltration. Contraction force analysis demonstrated significantly higher values of relative muscle strength in the 1x lock group compared to the two other groups over 42 days. Calculation of the twitch-to-tetanic force ratio revealed significantly higher mean values at days 1, 7, and 14 in the animals of group 2x lock and 3x lock, indicating a transformation toward a fast-twitching muscular phenotype. Moreover, cell proliferation during the first 4 days was found dependent on the severity of muscle injury in that the higher the severity the higher the proliferation. At the same time, cell apoptosis was found increased, and at day 1 the local leukocyte infiltration was significantly higher in the 3x lock compared to the 1x lock group. These data indicate that severity of injury correlates with local repair responses, which, however, are not necessarily sufficient to fully restore muscle function.
Collapse
Affiliation(s)
- Ioannis Stratos
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany
| | | | | | | | | |
Collapse
|
23
|
Ge Y, Wu AL, Warnes C, Liu J, Zhang C, Kawasome H, Terada N, Boppart MD, Schoenherr CJ, Chen J. mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms. Am J Physiol Cell Physiol 2009; 297:C1434-44. [PMID: 19794149 DOI: 10.1152/ajpcell.00248.2009] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rapamycin-sensitive signaling is required for skeletal muscle differentiation and remodeling. In cultured myoblasts, the mammalian target of rapamycin (mTOR) has been reported to regulate differentiation at different stages through distinct mechanisms, including one that is independent of mTOR kinase activity. However, the kinase-independent function of mTOR remains controversial, and no in vivo studies have examined those mTOR myogenic mechanisms previously identified in vitro. In this study, we find that rapamycin impairs injury-induced muscle regeneration. To validate the role of mTOR with genetic evidence and to probe the mechanism of mTOR function, we have generated and characterized transgenic mice expressing two mutants of mTOR under the control of human skeletal actin (HSA) promoter: rapamycin-resistant (RR) and RR/kinase-inactive (RR/KI). Our results show that muscle regeneration in rapamycin-administered mice is restored by RR-mTOR expression. In the RR/KI-mTOR mice, nascent myofiber formation during the early phase of regeneration proceeds in the presence of rapamycin, but growth of the regenerating myofibers is blocked by rapamycin. Igf2 mRNA levels increase drastically during early regeneration, which is sensitive to rapamycin in wild-type muscles but partially resistant to rapamycin in both RR- and RR/KI-mTOR muscles, consistent with mTOR regulation of Igf2 expression in a kinase-independent manner. Furthermore, systemic ablation of S6K1, a target of mTOR kinase, results in impaired muscle growth but normal nascent myofiber formation during regeneration. Therefore, mTOR regulates muscle regeneration through kinase-independent and kinase-dependent mechanisms at the stages of nascent myofiber formation and myofiber growth, respectively.
Collapse
Affiliation(s)
- Yejing Ge
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
CRASSOUS BRIGITTE, RICHARD-BULTEAU HÉLÈNE, DELDICQUE LOUISE, SERRURIER BERNARD, PASDELOUP MARIELLE, FRANCAUX MARC, BIGARD XAVIER, KOULMANN NATHALIE. Lack of Effects of Creatine on the Regeneration of Soleus Muscle after Injury in Rats. Med Sci Sports Exerc 2009; 41:1761-9. [DOI: 10.1249/mss.0b013e31819f75cb] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Ameis K, Kanaan YM, Das JR, George M, Sobrian S. Effect of Manual Acupuncture-Induced Injury on Rat Skeletal Muscle. Med Acupunct 2008. [DOI: 10.1089/acu.2008.0641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kamal Ameis
- Howard University College of Medicine, Washington, DC
| | | | | | | | - Sonya Sobrian
- Howard University College of Medicine, Washington, DC
| |
Collapse
|
26
|
Pierce AP, de Waal E, McManus LM, Shireman PK, Chaudhuri AR. Oxidation and structural perturbation of redox-sensitive enzymes in injured skeletal muscle. Free Radic Biol Med 2007; 43:1584-93. [PMID: 18037124 DOI: 10.1016/j.freeradbiomed.2007.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 07/19/2007] [Accepted: 08/17/2007] [Indexed: 10/22/2022]
Abstract
Molecular events that control skeletal muscle injury and regeneration are poorly understood. However, inflammation associated with oxidative stress is considered a key player in modulating this process. To understand the consequences of oxidative stress associated with muscle injury, inflammation, and regeneration, hind-limb muscles of C57Bl/6J mice were studied after injection of cardiotoxin (CT). Within 1 day post-CT injection, polymorphonuclear neutrophilic leukocyte accumulation was extensive. Compared to baseline, tissue myeloperoxidase (MPO) activity was elevated eight- and fivefold at 1 and 7 days post-CT, respectively. Ubiquitinylated protein was elevated 1 day postinjury and returned to baseline by 21 days. Cysteine residues of creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were irreversibly oxidized within 1 day post-CT injection and were associated with protein conformational changes that fully recovered after 21 days. Importantly, protein structural alterations occurred in conjunction with significant decreases in CK activity at 1, 3, and 7 days post-CT injury. Interestingly, elevations in tissue MPO activity paralleled the time course of conformational changes in CK and GAPDH. In combination, these results demonstrate that muscle proteins in vivo are structurally and functionally altered via the generation of reactive oxygen species produced during inflammatory events after muscle injury and preceding muscle regeneration.
Collapse
Affiliation(s)
- Anson P Pierce
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
27
|
Richard-Bulteau H, Serrurier B, Crassous B, Banzet S, Peinnequin A, Bigard X, Koulmann N. Recovery of skeletal muscle mass after extensive injury: positive effects of increased contractile activity. Am J Physiol Cell Physiol 2007; 294:C467-76. [PMID: 18077604 DOI: 10.1152/ajpcell.00355.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to test the hypothesis that increasing physical activity by running exercise could favor the recovery of muscle mass after extensive injury and to determine the main molecular mechanisms involved. Left soleus muscles of female Wistar rats were degenerated by notexin injection before animals were assigned to either a sedentary group or an exercised group. Both regenerating and contralateral intact muscles from active and sedentary rats were removed 5, 7, 14, 21, 28 and 42 days after injury (n = 8 rats/group). Increasing contractile activity through running exercise during muscle regeneration ensured the full recovery of muscle mass and muscle cross-sectional area as soon as 21 days after injury, whereas muscle weight remained lower even 42 days postinjury in sedentary rats. Proliferator cell nuclear antigen and MyoD protein expression went on longer in active rats than in sedentary rats. Myogenin protein expression was higher in active animals than in sedentary animals 21 days postinjury. The Akt-mammalian target of rapamycin (mTOR) pathway was activated early during the regeneration process, with further increases of mTOR phosphorylation and its downstream effectors, eukaryotic initiation factor-4E-binding protein-1 and p70(s6k), in active rats compared with sedentary rats (days 7-14). The exercise-induced increase in mTOR phosphorylation, independently of Akt, was associated with decreased levels of phosphorylated AMP-activated protein kinase. Taken together, these results provided evidence that increasing contractile activity during muscle regeneration ensured early and full recovery of muscle mass and suggested that these beneficial effects may be due to a longer proliferative step of myogenic cells and activation of mTOR signaling, independently of Akt, during the maturation step of muscle regeneration.
Collapse
|
28
|
Mendler L, Pintér S, Kiricsi M, Baka Z, Dux L. Regeneration of reinnervated rat soleus muscle is accompanied by fiber transition toward a faster phenotype. J Histochem Cytochem 2007; 56:111-23. [PMID: 17938279 DOI: 10.1369/jhc.7a7322.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functional recovery of skeletal muscles after peripheral nerve transection and microsurgical repair is generally incomplete. Several reinnervation abnormalities have been described even after nerve reconstruction surgery. Less is known, however, about the regenerative capacity of reinnervated muscles. Previously, we detected remarkable morphological and motor endplate alterations after inducing muscle necrosis and subsequent regeneration in the reinnervated rat soleus muscle. In the present study, we comparatively analyzed the morphometric properties of different fiber populations, as well as the expression pattern of myosin heavy chain isoforms at both immunohistochemical and mRNA levels in reinnervated versus reinnervated-regenerated muscles. A dramatic slow-to-fast fiber type transition was found in reinnervated soleus, and a further change toward the fast phenotype was observed in reinnervated-regenerated muscles. These findings suggest that the (fast) pattern of reinnervation plays a dominant role in the specification of fiber phenotype during regeneration, which can contribute to the long-lasting functional impairment of the reinnervated muscle. Moreover, because the fast II fibers (and selectively, a certain population of the fast IIB fibers) showed better recovery than did the slow type I fibers, the faster phenotype of the reinnervated-regenerated muscle seems to be actively maintained by selective yet undefined cues.
Collapse
Affiliation(s)
- Luca Mendler
- Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary.
| | | | | | | | | |
Collapse
|
29
|
Ochoa O, Sun D, Reyes-Reyna SM, Waite LL, Michalek JE, McManus LM, Shireman PK. Delayed angiogenesis and VEGF production in CCR2-/- mice during impaired skeletal muscle regeneration. Am J Physiol Regul Integr Comp Physiol 2007; 293:R651-61. [PMID: 17522124 DOI: 10.1152/ajpregu.00069.2007] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of vascular endothelial growth factor (VEGF) levels and angiogenic events during skeletal muscle regeneration remains largely unknown. This study examined angiogenesis, VEGF levels, and muscle regeneration after cardiotoxin (CT)-induced injury in mice lacking the CC chemokine receptor 2 (CCR2). Muscle regeneration was significantly decreased in CCR2-/- mice as was the early accumulation of macrophages after injury. In both mouse strains, tissue VEGF was similar at baseline (no injections) and significantly decreased at day 3 post-CT. Tissue VEGF in wild-type (WT) mice was restored within 7 days postinjury but remained significantly reduced in CCR2-/- mice until day 21. Capillary density (capillaries/mm(2)) within regenerating muscle was maximal in WT mice at day 7 and double that of baseline muscle. In comparison, maximal capillary density in CCR2-/- mice occurred at 21 days postinjury. Maximal capillary density developed concurrent with the restoration of tissue VEGF in both strains. A highly significant, inverse relationship existed between the size of regenerated muscle fibers and capillaries per square millimeter. Although this relationship was comparable in WT and CCR2-/- animals, there was a significant decrease in the magnitude of this response in the absence of CCR2, reflecting the observation that regenerated muscle fiber size in CCR2-/- mice was only 50% of baseline at 42 days postinjury, whereas WT mice had attained baseline fiber size by day 21. Thus CCR2-dependent events in injured skeletal muscle, including impaired macrophage recruitment, contribute to restoration of tissue VEGF levels and the dynamic processes of capillary formation and muscle regeneration.
Collapse
MESH Headings
- Adipose Tissue
- Animals
- Capillaries/physiology
- Chemokine CCL2/metabolism
- Cobra Cardiotoxin Proteins
- Female
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Muscle Fibers, Skeletal/pathology
- Muscle Proteins/physiology
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/injuries
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiology
- Myositis/chemically induced
- Myositis/pathology
- Myositis/physiopathology
- Neovascularization, Physiologic/physiology
- Organ Size
- Receptors, CCR2
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Regeneration/physiology
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Oscar Ochoa
- Department of Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Plant DR, Colarossi FE, Lynch GS. Notexin causes greater myotoxic damage and slower functional repair in mouse skeletal muscles than bupivacaine. Muscle Nerve 2006; 34:577-85. [PMID: 16881061 DOI: 10.1002/mus.20616] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the myotoxins bupivacaine and notexin are employed for studying processes that regulate muscle regeneration after injury, no studies have compared their efficacy in causing muscle damage or assessing functional regeneration in mouse skeletal muscles. Bupivacaine causes extensive injury in rat muscles but its effects on mouse muscles are variable. We compared functional and morphological properties of regenerating mouse extensor digitorum longus (EDL) muscles after notexin or bupivacaine injection and tested the hypothesis that muscle damage would be more extensive and functional repair less complete after notexin injection. Bupivacaine caused degeneration of 45% of fibers and reduced maximum force (Po) to 42% of control after 3 days. In contrast, notexin caused complete fiber breakdown and loss of functional capacity after 3 days (P < 0.05). At 7 and 10 days after bupivacaine, Po was restored to 65% and 71% of control, respectively, whereas Po of notexin-injected muscles was only 10% and 39% of control at these time-points, respectively (P < 0.05). At 7 and 10 days after bupivacaine, approximately 30% of fibers were centrally nucleated (regenerating), whereas notexin-injected muscles were comprised entirely of regenerating fibers (P < 0.05). The results demonstrate that notexin causes a more extensive and complete injury than bupivacaine, and is a useful model for studying muscle regeneration in mice.
Collapse
Affiliation(s)
- David R Plant
- Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
31
|
Shireman PK, Contreras-Shannon V, Ochoa O, Karia BP, Michalek JE, McManus LM. MCP-1 deficiency causes altered inflammation with impaired skeletal muscle regeneration. J Leukoc Biol 2006; 81:775-85. [PMID: 17135576 DOI: 10.1189/jlb.0506356] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We examined the role of MCP-1, a potent chemotactic and activating factor for macrophages, in perfusion, inflammation, and skeletal muscle regeneration post-ischemic injury. MCP-1-/- or C57Bl/6J control mice [wild-type (WT)] underwent femoral artery excision (FAE). Muscles were collected for histology, assessment of tissue chemokines, and activity measurements of lactate dehydrogenase (LDH) and myeloperoxidase. In MCP-1-/- mice, restoration of perfusion was delayed, and LDH and fiber size, indicators of muscle regeneration, were decreased. Altered inflammation was observed with increased neutrophil accumulation in MCP-1-/- versus WT mice at Days 1 and 3 (P< or =0.003), whereas fewer macrophages were present in MCP-1-/- mice at Day 3. As necrotic tissue was removed in WT mice, macrophages decreased (Day 7). In contrast, macrophage accumulation in MCP-1-/- was increased in association with residual necrotic tissue and impaired muscle regeneration. Consistent with altered inflammation, neutrophil chemotactic factors (keratinocyte-derived chemokine and macrophage inflammatory protein-2) were increased at Day 1 post-FAE. The macrophage chemotactic factor MCP-5 was increased significantly in WT mice at Day 3 compared with MCP-1-/- mice. However, at post-FAE Day 7, MCP-5 was significantly elevated in MCP-1-/- mice versus WT mice. Addition of exogenous MCP-1 did not induce proliferation in murine myoblasts (C2C12 cells) in vitro. MCP-1 is essential for reperfusion and the successful completion of normal skeletal muscle regeneration after ischemic tissue injury. Impaired muscle regeneration in MCP-1-/- mice suggests an important role for macrophages and MCP-1 in tissue reparative processes.
Collapse
Affiliation(s)
- Paula K Shireman
- Department of Surgery, University of Texas Health Science Center, MC 7741, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Contreras-Shannon V, Ochoa O, Reyes-Reyna SM, Sun D, Michalek JE, Kuziel WA, McManus LM, Shireman PK. Fat accumulation with altered inflammation and regeneration in skeletal muscle of CCR2-/- mice following ischemic injury. Am J Physiol Cell Physiol 2006; 292:C953-67. [PMID: 17020936 DOI: 10.1152/ajpcell.00154.2006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemokines recruit inflammatory cells to sites of injury, but the role of the CC chemokine receptor 2 (CCR2) during regenerative processes following ischemia is poorly understood. We studied injury, inflammation, perfusion, capillary formation, monocyte chemotactic protein-1 (MCP-1) levels, muscle regeneration, fat accumulation, and transcription factor activation in hindlimb muscles of CCR2-/- and wild-type (WT) mice following femoral artery excision (FAE). In both groups, muscle injury and restoration of vascular perfusion were similar. Nevertheless, edema and neutrophil accumulation were significantly elevated in CCR2-/- compared with WT mice at day 1 post-FAE and fewer macrophages were present at day 3. MCP-1 levels in post-ischemic calf muscle of CCR2-/- animals were significantly elevated over baseline through 14 days post-FAE and were higher than WT mice at days 1, 7, and 14. In addition, CCR2-/- mice exhibited impaired muscle regeneration, decreased muscle fiber size, and increased intermuscular adipocytes with similar capillaries/mm(2) postinjury. Finally, the transcription factors, MyoD and signal transducers of and activators of transcription-3 (STAT3), were significantly increased above baseline but did not differ significantly between groups at any time point post-FAE. These findings suggest that increases in MCP-1, and possibly, MyoD and STAT3, may modulate molecular signaling in CCR2-/- mice during inflammatory and regenerative events. Furthermore, alterations in neutrophil and macrophage recruitment in CCR2-/- mice may critically alter the normal progression of downstream regenerative events in injured skeletal muscle and may direct myogenic precursor cells in the regenerating milieu toward an adipogenic phenotype.
Collapse
|
33
|
Koulmann N, Sanchez H, N'Guessan B, Chapot R, Serrurier B, Peinnequin A, Ventura-Clapier R, Bigard X. The responsiveness of regenerated soleus muscle to pharmacological calcineurin inhibition. J Cell Physiol 2006; 208:116-22. [PMID: 16547932 DOI: 10.1002/jcp.20643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The responsiveness of mature regenerated soleus (SOL) muscles to cyclosporin A (CsA) administration was studied in rats. Forty-two days after notexin-induced degeneration of left SOL muscles, rats were treated with CsA (25 mg/kg x day) or vehicle daily for 3 weeks. CsA administration decreased by eightfold the level of transcription of MCIP-1, a well-known calcineurin-induced gene, in intact as well as in regenerated muscles (P < 0.001). In response to CsA-administration we observed a slow-to-fast transition in the MHC profile, more marked in regenerated than in intact muscles (P < 0.05), but mainly restricted to MHC-Ibeta toward MHC-IIA. Immunohistochemical analysis showed that MHC-IIA was often co-expressed with MHC-Ibeta within myofibers of intact muscles, whereas it was mainly expressed within pure fast fibers of regenerated muscles. MHC-Ibeta mRNA levels were lower in regenerated than in intact muscles, but did not change in response to CsA-administration. CsA administration induced a significant increase in MHC-IIA mRNA levels (P < 0.001) similar in both intact and regenerated muscles. Present results suggest that in vivo in intact SOL muscles, calcineurin blocks the upregulation of the MHC-IIA isoform at the transcriptional level. On the other hand, the higher response of regenerated muscles to CsA administration cannot be explained by transcriptional events, and may result from either a more rapid turnover of MHC proteins in regenerated muscles than in intact ones, or translational events. This study further suggests that the developmental history of myofibers could play a role in the adaptability of skeletal muscle to variations in neuromuscular activity.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Body Weight
- Calcineurin/physiology
- Calcineurin Inhibitors
- Cyclosporine/pharmacology
- Electrophoresis, Polyacrylamide Gel
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/genetics
- Gene Expression Regulation/physiology
- Immunohistochemistry
- Intracellular Signaling Peptides and Proteins
- Male
- Muscle, Skeletal/anatomy & histology
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/physiology
- Myosin Heavy Chains/analysis
- Myosin Heavy Chains/genetics
- Organ Size
- Protein Isoforms/analysis
- Protein Isoforms/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Wistar
- Regeneration/drug effects
- Regeneration/physiology
- Transcription Factors/analysis
- Transcription Factors/genetics
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Nathalie Koulmann
- Département des facteurs humains, Centre de Recherches du Service de Santé des Armées, La Tronche Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Shireman PK, Contreras-Shannon V, Reyes-Reyna SM, Robinson SC, McManus LM. MCP-1 parallels inflammatory and regenerative responses in ischemic muscle. J Surg Res 2006; 134:145-57. [PMID: 16488443 DOI: 10.1016/j.jss.2005.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/30/2005] [Accepted: 12/05/2005] [Indexed: 11/17/2022]
Abstract
BACKGROUND Monocyte chemotactic protein-1 (MCP-1) is important in macrophage recruitment and activation. However, the magnitude and temporal sequence of MCP-1 expression in relation to tissue injury and regeneration following ischemic injury remains unknown. MATERIALS AND METHODS Hind limb ischemia was induced by femoral artery excision (FAE) in C57Bl/6J mice; a sham surgery was performed on the contralateral leg. Muscle lysates were used to measure MCP-1 and activities of creatine kinase, lactate dehydrogenase, and myeloperoxidase. Histology and immunohistochemistry were used to localize inflammation and MCP-1. RESULTS FAE resulted in a prolonged period of ischemia and the administration of MCP-1 did not alter the restoration of perfusion. One day after femoral artery excision, extensive muscle necrosis and neutrophils were prevalent throughout the musculature of the lower leg. By 3 days, a mononuclear cell infiltrate predominated in association with robust muscle regeneration as indicated by myoD expression. Concomitantly, myeloperoxidase was maximally increased. Muscle enzymes (creatine kinase and lactate dehydrogenase) were maximally decreased within 3 days and returned to baseline levels by day 14, a time course consistent with injury and regeneration observed by histology. In parallel with these inflammatory and regenerative events, MCP-1 in muscle was maximally increased at day 3. By immunohistochemistry, MCP-1 was within vascular endothelial cells and infiltrating macrophages in areas of ischemic injury. CONCLUSIONS The transient increases and selective tissue distribution of MCP-1 during early inflammation and muscle regeneration support the hypothesis that this cytokine participates in the early reparative events preceding the restoration of vascular perfusion following ischemic injury.
Collapse
Affiliation(s)
- Paula K Shireman
- South Texas Veterans Health Care System, San Antonio, TX 78229-3900, USA.
| | | | | | | | | |
Collapse
|
35
|
Crassous B, Koulmann N, Deldicque L, Francaux M, Bigard X. Effets de la supplémentation en créatine sur la cinétique de régénérescence du muscle squelettique après lésion étendue. Sci Sports 2005. [DOI: 10.1016/j.scispo.2005.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Gregorevic P, Plant DR, Stupka N, Lynch GS. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration. J Physiol 2004; 558:549-60. [PMID: 15181161 PMCID: PMC1664957 DOI: 10.1113/jphysiol.2004.066217] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.
Collapse
Affiliation(s)
- Paul Gregorevic
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|