Kato Y, Miyakawa T, Kurita JI, Tanokura M. Structure of FBP11 WW1-PL Ligand Complex Reveals the Mechanism of Proline-rich Ligand Recognition by Group II/III WW Domains.
J Biol Chem 2006;
281:40321-9. [PMID:
17065151 DOI:
10.1074/jbc.m609321200]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FBP11/HYPA is a mammalian homologue of yeast splicing factor Prp40. The first WW domain of FBP11/HYPA (FBP11 WW1) is essential for preventing severe neurological diseases such as Huntington disease and Rett syndrome and strongly resembles the WW domain of FCA, the essential regulator for flowering time control. We have solved the structure of FBP11 WW1 and a Pro-Pro-Leu-Pro ligand complex, and demonstrated the binding mechanism with mutational analysis using surface plasmon resonance. The overall structure of FBP11 WW1 in the complex form is quite similar to the structures of WW domains from Group I and IV in complexes. In addition, conformation of FBP11 WW1 does not change much upon ligand binding. The binding orientation of the ligand against FBP11 WW1 is the same as that of the Group IV WW domain-ligand complex, but opposite to that of the Group I complex. The ligand interacts with two grooves formed by surface aromatic residues. The Pro and Leu residues in the ligand interact with the grooves and the Loop I region of FBP11 WW1, respectively, which are necessary interactions for binding the ligand. Interestingly, the two aromatic grooves recognize the Pro residues in entirely different manners, which allows FBP11 WW1 to recognize shorter sequences than the SH3 domain. Combined with homology models of other WW domains, the present report shows the detailed mechanism of ligand binding by Group II/III WW domains, and provides information useful in designing drugs to treat neurodegenerative diseases.
Collapse