1
|
Nejatie A, Yee SS, Jeter A, Saragovi HU. The cancer glycocode as a family of diagnostic biomarkers, exemplified by tumor-associated gangliosides. Front Oncol 2023; 13:1261090. [PMID: 37954075 PMCID: PMC10637394 DOI: 10.3389/fonc.2023.1261090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
One unexploited family of cancer biomarkers comprise glycoproteins, carbohydrates, and glycolipids (the Tumor Glycocode).A class of glycolipid cancer biomarkers, the tumor-marker gangliosides (TMGs) are presented here as potential diagnostics for detecting cancer, especially at early stages, as the biological function of TMGs makes them etiological. We propose that a quantitative matrix of the Cancer Biomarker Glycocode and artificial intelligence-driven algorithms will expand the menu of validated cancer biomarkers as a step to resolve some of the challenges in cancer diagnosis, and yield a combination that can identify a specific cancer, in a tissue-agnostic manner especially at early stages, to enable early intervention. Diagnosis is critical to reducing cancer mortality but many cancers lack efficient and effective diagnostic tests, especially for early stage disease. Ideal diagnostic biomarkers are etiological, samples are preferably obtained via non-invasive methods (e.g. liquid biopsy of blood or urine), and are quantitated using assays that yield high diagnostic sensitivity and specificity for efficient diagnosis, prognosis, or predicting response to therapy. Validated biomarkers with these features are rare. While the advent of proteomics and genomics has led to the identification of a multitude of proteins and nucleic acid sequences as cancer biomarkers, relatively few have been approved for clinical use. The use of multiplex arrays and artificial intelligence-driven algorithms offer the option of combining data of known biomarkers; however, for most, the sensitivity and the specificity are below acceptable criteria, and clinical validation has proven difficult. One strategic solution to this problem is to expand the biomarker families beyond those currently exploited. One unexploited family of cancer biomarkers comprise glycoproteins, carbohydrates, and glycolipids (the Tumor Glycocode). Here, we focus on a family of glycolipid cancer biomarkers, the tumor-marker gangliosides (TMGs). We discuss the diagnostic potential of TMGs for detecting cancer, especially at early stages. We include prior studies from the literature to summarize findings for ganglioside quantification, expression, detection, and biological function and its role in various cancers. We highlight the examples of TMGs exhibiting ideal properties of cancer diagnostic biomarkers, and the application of GD2 and GD3 for diagnosis of early stage cancers with high sensitivity and specificity. We propose that a quantitative matrix of the Cancer Biomarker Glycocode and artificial intelligence-driven algorithms will expand the menu of validated cancer biomarkers as a step to resolve some of the challenges in cancer diagnosis, and yield a combination that can identify a specific cancer, in a tissue-agnostic manner especially at early stages, to enable early intervention.
Collapse
Affiliation(s)
- Ali Nejatie
- Center for Translational Research, Lady Davis Research Institute-Jewish General Hospital, Montreal, QC, Canada
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Samantha S. Yee
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, United States
| | | | - Horacio Uri Saragovi
- Center for Translational Research, Lady Davis Research Institute-Jewish General Hospital, Montreal, QC, Canada
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Ophthalmology and Vision Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Sha Y, Han L, Sun B, Zhao Q. Identification of a Glycosyltransferase Signature for Predicting Prognosis and Immune Microenvironment in Neuroblastoma. Front Cell Dev Biol 2022; 9:769580. [PMID: 35071226 PMCID: PMC8773256 DOI: 10.3389/fcell.2021.769580] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 01/17/2023] Open
Abstract
Neuroblastoma (NB) is one of the most common solid tumors in children. Glycosyltransferases (GTs) play a crucial role in tumor development and immune escape and have been used as prognostic biomarkers in various tumors. However, the biological functions and prognostic significance of GTs in NB remain poorly understood. The expression data from Gene Expression Omnibus (GEO) and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) were collected as training and testing data. Based on a progression status, differentially expressed GTs were identified. We constructed a GTscore through support vector machine, least absolute shrinkage and selection operator, and Cox regression in NB, which included four prognostic GTs and was an independent prognostic risk factor for NB. Patients in the high GTscore group had an older age, MYCN amplification, advanced International Neuroblastoma Staging System stage, and high risk. Samples with high GTscores revealed high disialoganglioside (GD2) and neuron-specific enolase expression levels. In addition, a lack of immune cell infiltration was observed in the high GTscore group. This GTscore was also associated with the expression of chemokines (CCL2, CXCL9, and CXCL10) and immune checkpoint genes (cytotoxic T-lymphocyte–associated protein 4, granzyme H, and granzyme K). A low GTscore was also linked to an enhanced response to anti–PD-1 immunotherapy in melanoma patients, and one type of tumor was also derived from neuroectodermal cells such as NB. In conclusion, the constructed GTscore revealed the relationship between GT expression and the NB outcome, GD2 phenotype, and immune infiltration and provided novel clues for the prediction of prognosis and immunotherapy response in NB.
Collapse
Affiliation(s)
- Yongliang Sha
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Han
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Bei Sun
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Outpatient Office, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
3
|
Danolic D, Heffer M, Wagner J, Skrlec I, Alvir I, Mamic I, Susnjar L, Banovic M, Danolić D, Puljiz M. Role of ganglioside biosynthesis genetic polymorphism in cervical cancer development. J OBSTET GYNAECOL 2020; 40:1127-1132. [PMID: 31847655 DOI: 10.1080/01443615.2019.1692801] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cervical cancer is the most common gynaecological cancer in women. Cell mediated immunity plays a significant role in the progression or regression of neoplastic cervical lesions caused by human papilloma virus infection. Engagement of antigen-specific T cell receptors is a prerequisite for T cell activation. The initial events of T cell activation involve the movement of the T cell receptor into specialised microdomains known as lipid rafts. Gangliosides play an active role in the formation, stabilisation and biological functions of lipid rafts. This study aims to determine whether polymorphisms in the genes involved in the biosynthesis of gangliosides represent risk a factor for cervical cancer.Taqman methods for single nucleotide polymorphism genotyping was used. All subjects carried the homozygous wild-type genotypes for all analysed genes (CC for gene B4GALT5, AA for gene ST3GAL5, AA for gene ST8SIA1 and CC for gene B4GALNT1). A χ2 test showed significant differences in genotype failure for B4GALT5 rs138960078 (χ2 = 32.02, df = 1, p = .001) and genotype failure for B4GALNT1 rs144643461 (χ2 = 41.03, df = 1, p = .001) between cervical cancer group and control group. Genotype failures were significantly more frequent in the cervical cancer group. Unknown adjacent SNPs to rs138960078 in gene B4GALT5 and rs144643461 in gene B4GALNT1 could be associated with cervical cancer development.IMPACT STATEMENTWhat is already known on this subject? Individual genetic factors play an important role in the pathogenesis of disease. In recent years, the different SNPs and their potential effects on CC risk have been extensively studied. A large number of single nucleotide genetic variants associated with cervical cancer have been identified.What do the results of this study add? Our results suggest the presence of unknown adjacent SNPs to rs138960078 in gene B4GALT5 and rs144643461 in gene B4GALNT1 that could be associated with cervical cancer development.What are the implications of these findings for clinical practice and/or further research? Better understanding of causal-consequence relationship between ganglioside biosynthesis and TCR mediated activation with consequently cervical cancer development is needed. Our research opens a new possibilities for identification of polymorphisms in the genes involved in the biosynthesis of gangliosides which can be a risk factor for cervical cancer development.
Collapse
Affiliation(s)
- Damir Danolic
- Department of Gynaecologic Oncology, University Hospital for Tumors, Clinical Hospital Centre "Sestre Milosrdnice", Zagreb, Croatia
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Jasenka Wagner
- Department of Biology, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Skrlec
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
- Department of Biology, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ilija Alvir
- Department of Gynaecologic Oncology, University Hospital for Tumors, Clinical Hospital Centre "Sestre Milosrdnice", Zagreb, Croatia
| | - Ivica Mamic
- Department of Gynaecologic Oncology, University Hospital for Tumors, Clinical Hospital Centre "Sestre Milosrdnice", Zagreb, Croatia
| | - Lucija Susnjar
- Department of Gynaecologic Oncology, University Hospital for Tumors, Clinical Hospital Centre "Sestre Milosrdnice", Zagreb, Croatia
| | - Marija Banovic
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Mario Puljiz
- Department of Gynaecologic Oncology, University Hospital for Tumors, Clinical Hospital Centre "Sestre Milosrdnice", Zagreb, Croatia
| |
Collapse
|
4
|
Manganelli V, Matarrese P, Antonioli M, Gambardella L, Vescovo T, Gretzmeier C, Longo A, Capozzi A, Recalchi S, Riitano G, Misasi R, Dengjel J, Malorni W, Fimia GM, Sorice M, Garofalo T. Raft-like lipid microdomains drive autophagy initiation via AMBRA1-ERLIN1 molecular association within MAMs. Autophagy 2020; 17:2528-2548. [PMID: 33034545 DOI: 10.1080/15548627.2020.1834207] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria-associated membranes (MAMs) are essential communication subdomains of the endoplasmic reticulum (ER) that interact with mitochondria. We previously demonstrated that, upon macroautophagy/autophagy induction, AMBRA1 is recruited to the BECN1 complex and relocalizes to MAMs, where it regulates autophagy by interacting with raft-like components. ERLIN1 is an endoplasmic reticulum lipid raft protein of the prohibitin family. However, little is known about its association with the MAM interface and its involvement in autophagic initiation. In this study, we investigated ERLIN1 association with MAM raft-like microdomains and its interaction with AMBRA1 in the regulation of the autophagic process. We show that ERLIN1 interacts with AMBRA1 at MAM raft-like microdomains, which represents an essential condition for autophagosome formation upon nutrient starvation, as demonstrated by knocking down ERLIN1 gene expression. Moreover, this interaction depends on the "integrity" of key molecules, such as ganglioside GD3 and MFN2. Indeed, knocking down ST8SIA1/GD3-synthase or MFN2 expression impairs AMBRA1-ERLIN1 interaction at the MAM level and hinders autophagy. In conclusion, AMBRA1-ERLIN1 interaction within MAM raft-like microdomains appears to be pivotal in promoting the formation of autophagosomes.Abbreviations: ACSL4/ACS4: acyl-CoA synthetase long chain family member 4; ACTB/β-actin: actin beta; AMBRA1: autophagy and beclin 1 regulator 1; ATG14: autophagy related 14; BECN1: beclin 1; CANX: calnexin; Cy5: cyanine 5; ECL: enhanced chemiluminescence; ER: endoplasmic reticulum; ERLIN1/KE04: ER lipid raft associated 1; FB1: fumonisin B1; FE: FRET efficiency; FRET: Förster/fluorescence resonance energy transfer; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GD3: aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)ceramide; HBSS: Hanks' balanced salt solution; HRP: horseradish peroxidase; LMNB1: lamin B1; mAb: monoclonal antibody; MAMs: mitochondria-associated membranes; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MYC/cMyc: proto-oncogene, bHLH transcription factor; P4HB: prolyl 4-hydroxylase subunit beta; pAb: polyclonal antibody; PE: phycoerythrin; SCAP/SREBP: SREBF chaperone; SD: standard deviation; ST8SIA1: ST8 alpha-N-acetyl-neuraminide alpha-2,8 sialyltransferase 1; SQSTM1/p62: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TUBB/beta-tubulin: tubulin beta class I; ULK1: unc-51 like autophagy activating kinase 1; VDAC1/porin: voltage dependent anion channel 1.
Collapse
Affiliation(s)
| | - Paola Matarrese
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Antonioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Lucrezia Gambardella
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Tiziana Vescovo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Christine Gretzmeier
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Agostina Longo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Antonella Capozzi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Serena Recalchi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Joern Dengjel
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Biology, University of Fribourg, Suisse, Germany
| | - Walter Malorni
- School of Pharmacy, University of Tor Vergata, Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
5
|
Andreas NJ, Basu Roy R, Gomez-Romero M, Horneffer-van der Sluis V, Lewis MR, Camuzeaux SSM, Jiménez B, Posma JM, Tientcheu L, Egere U, Sillah A, Togun T, Holmes E, Kampmann B. Performance of metabonomic serum analysis for diagnostics in paediatric tuberculosis. Sci Rep 2020; 10:7302. [PMID: 32350385 PMCID: PMC7190829 DOI: 10.1038/s41598-020-64413-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
We applied a metabonomic strategy to identify host biomarkers in serum to diagnose paediatric tuberculosis (TB) disease. 112 symptomatic children with presumptive TB were recruited in The Gambia and classified as bacteriologically-confirmed TB, clinically diagnosed TB, or other diseases. Sera were analysed using 1H nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Multivariate data analysis was used to distinguish patients with TB from other diseases. Diagnostic accuracy was evaluated using Receiver Operating Characteristic (ROC) curves. Model performance was tested in a validation cohort of 36 children from the UK. Data acquired using 1H NMR demonstrated a sensitivity, specificity and Area Under the Curve (AUC) of 69% (95% confidence interval [CI], 56-73%), 83% (95% CI, 73-93%), and 0.78 respectively, and correctly classified 20% of the validation cohort from the UK. The most discriminatory MS data showed a sensitivity of 67% (95% CI, 60-71%), specificity of 86% (95% CI, 75-93%) and an AUC of 0.78, correctly classifying 83% of the validation cohort. Amongst children with presumptive TB, metabolic profiling of sera distinguished bacteriologically-confirmed and clinical TB from other diseases. This novel approach yielded a diagnostic performance for paediatric TB comparable to that of Xpert MTB/RIF and interferon gamma release assays.
Collapse
Affiliation(s)
- Nicholas J Andreas
- Centre for International Child Health, Department of Paediatrics, Imperial College London, St. Mary's Hospital, Praed Street, London, W2 1NY, United Kingdom
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Robindra Basu Roy
- Centre for International Child Health, Department of Paediatrics, Imperial College London, St. Mary's Hospital, Praed Street, London, W2 1NY, United Kingdom
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia
- The Vaccine Centre, Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Maria Gomez-Romero
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, IRDB Building, Du Cane Road, London, W12 0NN, United Kingdom
- Clinical Phenotyping Centre, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Verena Horneffer-van der Sluis
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, IRDB Building, Du Cane Road, London, W12 0NN, United Kingdom
| | - Matthew R Lewis
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, IRDB Building, Du Cane Road, London, W12 0NN, United Kingdom
- Clinical Phenotyping Centre, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Stephane S M Camuzeaux
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, IRDB Building, Du Cane Road, London, W12 0NN, United Kingdom
| | - Beatriz Jiménez
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, IRDB Building, Du Cane Road, London, W12 0NN, United Kingdom
- Clinical Phenotyping Centre, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Joram M Posma
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Leopold Tientcheu
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia
| | - Uzochukwu Egere
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia
| | - Abdou Sillah
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia
| | - Toyin Togun
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia
- The Vaccine Centre, Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Elaine Holmes
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
| | - Beate Kampmann
- Centre for International Child Health, Department of Paediatrics, Imperial College London, St. Mary's Hospital, Praed Street, London, W2 1NY, United Kingdom.
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Vaccines and Immunity Theme, Atlantic Road, Fajara, The Gambia.
- The Vaccine Centre, Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom.
| |
Collapse
|
6
|
Ramírez-Valadez KA, Vázquez-Victorio G, Macías-Silva M, González-Espinosa C. Fyn kinase mediates cortical actin ring depolymerization required for mast cell migration in response to TGF-β in mice. Eur J Immunol 2017; 47:1305-1316. [PMID: 28586109 DOI: 10.1002/eji.201646876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/13/2017] [Accepted: 06/03/2017] [Indexed: 12/31/2022]
Abstract
Transforming growth factor-β (TGF-β) is a potent mast cell (MC) chemoattractant able to modulate local inflammatory reactions. The molecular mechanism leading to TGF-β-directed MC migration is not fully described. Here we analyzed the role of the Src family protein kinase Fyn on the main TGF-β-induced cytoskeletal changes leading to MC migration. Utilizing bone marrow-derived mast cells (BMMCs) from WT and Fyn-deficient mice we found that BMMC migration to TGF-β was impaired in the absence of the kinase. TGF-β caused depolymerization of the cortical actin ring and changes on the phosphorylation of cofilin, LIMK and CAMKII only in WT cells. Defective cofilin activation and phosphorylation of regulatory proteins was detected in Fyn-deficient BMMCs and this finding correlated with a lower activity of the catalytic subunit of the phosphatase PP2A. Diminished TGF-β-induced chemotaxis of Fyn-deficient cells was also observed in an in vivo model of MC migration (bleomycin-induced scleroderma). Our results show that Fyn kinase is an important positive effector of TGF-β-induced chemotaxis through the control of PP2A activity and this is relevant to pathological processes that are related to TGF-β-dependent mast cell migration.
Collapse
Affiliation(s)
- Karla A Ramírez-Valadez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, México
| | - Genaro Vázquez-Victorio
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | - Marina Macías-Silva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | | |
Collapse
|
7
|
Role of lipid rafts in neuronal differentiation of dental pulp-derived stem cells. Exp Cell Res 2015; 339:231-40. [PMID: 26586565 DOI: 10.1016/j.yexcr.2015.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 01/14/2023]
Abstract
Human dental pulp-derived stem cells (hDPSCs) are characterized by a typical fibroblast-like morphology. They express specific markers for mesenchymal stem cells and are capable of differentiation into osteoblasts, adipoblasts and neurons in vitro. Previous studies showed that gangliosides are involved in the induction of early neuronal differentiation of hDPSCs. This study was undertaken to investigate the role of lipid rafts in this process. Lipid rafts are signaling microdomains enriched in glycosphingolipids, cholesterol, tyrosine kinase receptors, mono- or heterotrimeric G proteins and GPI-anchored proteins. We preliminary showed that established cells expressed multipotent mesenchymal stromal-specific surface antigens. Then, we analyzed the distribution of lipid rafts, revealing plasma membrane microdomains with GM2 and EGF-R enrichment. Following stimulation with EGF/bFGF, neuronal differentiation was observed. To analyze the functional role of lipid rafts in EGF/bFGF-induced hDPSCs differentiation, cells were preincubated with lipid raft affecting agents, i.e. [D]-PDMP or methyl-β-cyclodextrin. These compounds significantly prevented neuronal-specific antigen expression, as well as Akt and ERK 1/2 phosphorylation, induced by EGF/bFGF, indicating that lipid raft integrity is essential for EGF/bFGF-induced hDPSCs differentiation. These results suggest that lipid rafts may represent specific chambers, where multimolecular signaling complexes, including lipids (gangliosides, cholesterol) and proteins (EGF-R), play a role in hDPSCs differentiation.
Collapse
|
8
|
Ersek A, Xu K, Antonopoulos A, Butters TD, Santo AE, Vattakuzhi Y, Williams LM, Goudevenou K, Danks L, Freidin A, Spanoudakis E, Parry S, Papaioannou M, Hatjiharissi E, Chaidos A, Alonzi DS, Twigg G, Hu M, Dwek RA, Haslam SM, Roberts I, Dell A, Rahemtulla A, Horwood NJ, Karadimitris A. Glycosphingolipid synthesis inhibition limits osteoclast activation and myeloma bone disease. J Clin Invest 2015; 125:2279-92. [PMID: 25915583 DOI: 10.1172/jci59987] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/19/2015] [Indexed: 01/06/2023] Open
Abstract
Glycosphingolipids (GSLs) are essential constituents of cell membranes and lipid rafts and can modulate signal transduction events. The contribution of GSLs in osteoclast (OC) activation and osteolytic bone diseases in malignancies such as the plasma cell dyscrasia multiple myeloma (MM) is not known. Here, we tested the hypothesis that pathological activation of OCs in MM requires de novo GSL synthesis and is further enhanced by myeloma cell-derived GSLs. Glucosylceramide synthase (GCS) inhibitors, including the clinically approved agent N-butyl-deoxynojirimycin (NB-DNJ), prevented OC development and activation by disrupting RANKL-induced localization of TRAF6 and c-SRC into lipid rafts and preventing nuclear accumulation of transcriptional activator NFATc1. GM3 was the prevailing GSL produced by patient-derived myeloma cells and MM cell lines, and exogenous addition of GM3 synergistically enhanced the ability of the pro-osteoclastogenic factors RANKL and insulin-like growth factor 1 (IGF-1) to induce osteoclastogenesis in precursors. In WT mice, administration of GM3 increased OC numbers and activity, an effect that was reversed by treatment with NB-DNJ. In a murine MM model, treatment with NB-DNJ markedly improved osteolytic bone disease symptoms. Together, these data demonstrate that both tumor-derived and de novo synthesized GSLs influence osteoclastogenesis and suggest that NB-DNJ may reduce pathological OC activation and bone destruction associated with MM.
Collapse
|
9
|
Li Z, Zhao Y, Lin W, Ye M, Ling X. Rapid screening and identification of active ingredients in licorice extract interacting with V3 loop region of HIV-1 gp120 using ACE and CE-MS. J Pharm Biomed Anal 2015; 111:28-35. [PMID: 25854854 DOI: 10.1016/j.jpba.2015.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 12/16/2022]
Abstract
The binding of envelope protein gp120 to glycosphingolipids is very important during the human immunodeficiency virus entering into the host cell. This step occurs in the V3 loop region in particularly. The conserved core sequence of V3 loop in gp120 was named R15K. Anti-HIV drug targeting to R15K would avoid the drug-resistance caused by HIV-1 genetic diversity. Here, for the first time, affinity capillary electrophoresis (ACE) and capillary electrophoresis-mass spectrometry (CE-MS) were used for establishing a simple, rapid and effective method of screening the licorice extract for biological activity (anti-HIV), which avoided the complicated isolation and purification process. R15K, 3'-sialyllactose (the positive control), and d-galactose (the negative control) were used for the development and validation of ACE method. After the interaction between licorice extract and R15K was confirmed by ACE, the relative active ingredients were isolated by SPE and their structures were determined by CE-ESI-MS online. In this research, two mixtures from licorice extract were found to be active. Furthermore, glycyrrhizin and licorice saponin G2 were verified as the main ingredients that significantly interacted with R15K via CE-MS and LC-MS. The results of quantitative assays showed that the active mixture contained glycyrrhizin of 74.23% and licorice saponin G2 of 9.52%. Calculated by Scatchard analysis method, glycyrrhizin/R15K complex had the highest binding constant (1.69 ± 0.08) × 10(7)L/mol among 27 compounds isolated from licorice extract. The anti-HIV activity of glycyrrhizin was further confirmed by bioactive experiment of cellular level. This strategy might provide a high throughput screening and identifying platform for seeking HIV-1 inhibitors in natural products.
Collapse
Affiliation(s)
- Zhongjie Li
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yiran Zhao
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Weiwei Lin
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Min Ye
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| | - Xiaomei Ling
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
10
|
Chigwechokha PK, Komatsu M, Itakura T, Shiozaki K. Nile Tilapia Neu3 sialidases: Molecular cloning, functional characterization and expression in Oreochromis niloticus. Gene 2014; 552:155-64. [DOI: 10.1016/j.gene.2014.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 11/16/2022]
|
11
|
Boccuto L, Aoki K, Flanagan-Steet H, Chen CF, Fan X, Bartel F, Petukh M, Pittman A, Saul R, Chaubey A, Alexov E, Tiemeyer M, Steet R, Schwartz CE. A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation. Hum Mol Genet 2013; 23:418-33. [PMID: 24026681 DOI: 10.1093/hmg/ddt434] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
'Salt & Pepper' syndrome is an autosomal recessive condition characterized by severe intellectual disability, epilepsy, scoliosis, choreoathetosis, dysmorphic facial features and altered dermal pigmentation. High-density SNP array analysis performed on siblings first described with this syndrome detected four shared regions of loss of heterozygosity (LOH). Whole-exome sequencing narrowed the candidate region to chromosome 2p11.2. Sanger sequencing confirmed a homozygous c.994G>A transition (p.E332K) in the ST3GAL5 gene, which encodes for a sialyltransferase also known as GM3 synthase. A different homozygous mutation of this gene has been previously associated with infantile-onset epilepsy syndromes in two other cohorts. The ST3GAL5 enzyme synthesizes ganglioside GM3, a glycosophingolipid enriched in neural tissue, by adding sialic acid to lactosylceramide. Unlike disorders of glycosphingolipid (GSL) degradation, very little is known regarding the molecular and pathophysiologic consequences of altered GSL biosynthesis. Glycolipid analysis confirmed a complete lack of GM3 ganglioside in patient fibroblasts, while microarray analysis of glycosyltransferase mRNAs detected modestly increased expression of ST3GAL5 and greater changes in transcripts encoding enzymes that lie downstream of ST3GAL5 and in other GSL biosynthetic pathways. Comprehensive glycomic analysis of N-linked, O-linked and GSL glycans revealed collateral alterations in response to loss of complex gangliosides in patient fibroblasts and in zebrafish embryos injected with antisense morpholinos that targeted zebrafish st3gal5 expression. Morphant zebrafish embryos also exhibited increased apoptotic cell death in multiple brain regions, emphasizing the importance of GSL expression in normal neural development and function.
Collapse
|
12
|
Kouzel IU, Pohlentz G, Storck W, Radamm L, Hoffmann P, Bielaszewska M, Bauwens A, Cichon C, Schmidt MA, Mormann M, Karch H, Müthing J. Association of Shiga toxin glycosphingolipid receptors with membrane microdomains of toxin-sensitive lymphoid and myeloid cells. J Lipid Res 2013; 54:692-710. [PMID: 23248329 PMCID: PMC3617944 DOI: 10.1194/jlr.m031781] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/14/2012] [Indexed: 11/20/2022] Open
Abstract
Glycosphingolipids (GSLs) of the globo-series constitute specific receptors for Shiga toxins (Stxs) released by certain types of pathogenic Escherichia coli strains. Stx-loaded leukocytes may act as transporter cells in the blood and transfer the toxin to endothelial target cells. Therefore, we performed a thorough investigation on the expression of globo-series GSLs in serum-free cultivated Raji and Jurkat cells, representing B- and T-lymphocyte descendants, respectively, as well as THP-1 and HL-60 cells of the monocyte and granulocyte lineage, respectively. The presence of Stx-receptors in GSL preparations of Raji and THP-1 cells and the absence in Jurkat and HL-60 cells revealed high compliance of solid-phase immunodetection assays with the expression profiles of receptor-related glycosyltransferases, performed by qRT-PCR analysis, and Stx2-caused cellular damage. Canonical microdomain association of Stx GSL receptors, sphingomyelin, and cholesterol in membranes of Raji and THP-1 cells was assessed by comparative analysis of detergent-resistant membrane (DRM) and nonDRM fractions obtained by density gradient centrifugation and showed high correlation based on nonparametric statistical analysis. Our comprehensive study on the expression of Stx-receptors and their subcellular distribution provides the basis for exploring the functional role of lipid raft-associated Stx-receptors in cells of leukocyte origin.
Collapse
Affiliation(s)
- Ivan U. Kouzel
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Wiebke Storck
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Lena Radamm
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Petra Hoffmann
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Andreas Bauwens
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Christoph Cichon
- Institute of Infectiology, University of Münster, D-48149 Münster, Germany
| | | | - Michael Mormann
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
13
|
Furukawa JI, Fujitani N, Shinohara Y. Recent advances in cellular glycomic analyses. Biomolecules 2013; 3:198-225. [PMID: 24970165 PMCID: PMC4030886 DOI: 10.3390/biom3010198] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/28/2013] [Accepted: 02/14/2013] [Indexed: 12/21/2022] Open
Abstract
A large variety of glycans is intricately located on the cell surface, and the overall profile (the glycome, given the entire repertoire of glycoconjugate-associated sugars in cells and tissues) is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that control cell-cell adhesion, immune response, microbial pathogenesis and other cellular events. The glycomic profile also reflects cellular alterations, such as development, differentiation and cancerous change. A glycoconjugate-based approach would therefore be expected to streamline discovery of novel cellular biomarkers. Development of such an approach has proven challenging, due to the technical difficulties associated with the analysis of various types of cellular glycomes; however, recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various classes of glycoconjugates. This review focuses on recent advances in the technical aspects of cellular glycomic analyses of major classes of glycoconjugates, including N- and O-linked glycans, derived from glycoproteins, proteoglycans and glycosphingolipids. Articles that unveil the glycomics of various biologically important cells, including embryonic and somatic stem cells, induced pluripotent stem (iPS) cells and cancer cells, are discussed.
Collapse
Affiliation(s)
- Jun-Ichi Furukawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Naoki Fujitani
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
14
|
Bauwens A, Betz J, Meisen I, Kemper B, Karch H, Müthing J. Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature. Cell Mol Life Sci 2013; 70:425-57. [PMID: 22766973 PMCID: PMC11113656 DOI: 10.1007/s00018-012-1060-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/25/2012] [Accepted: 06/14/2012] [Indexed: 12/23/2022]
Abstract
The two major Shiga toxin (Stx) types, Stx1 and Stx2, produced by enterohemorrhagic Escherichia coli (EHEC) in particular injure renal and cerebral microvascular endothelial cells after transfer from the human intestine into the circulation. Stxs are AB(5) toxins composed of an enzymatically active A subunit and the pentameric B subunit, which preferentially binds to the glycosphingolipid globotriaosylceramide (Gb3Cer/CD77). This review summarizes the current knowledge on Stx-caused cellular injury and the structural diversity of Stx receptors as well as the initial molecular interaction of Stxs with the human endothelium of different vascular beds. The varying lipoforms of Stx receptors and their spatial organization in lipid rafts suggest a central role in different modes of receptor-mediated endocytosis and intracellular destiny of the toxins. The design and development of tailored Stx neutralizers targeting the oligosaccharide-toxin recognition event has become a very real prospect to ameliorate or prevent life-threatening renal and neurological complications.
Collapse
Affiliation(s)
- Andreas Bauwens
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Josefine Betz
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Iris Meisen
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Björn Kemper
- Center for Biomedical Optics and Photonics, University of Münster, Robert-Koch-Str. 45, 48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
15
|
Gracheva E, Samovilova N, Golovanova N, Piksina G, Shishkina V, Prokazova N. Activation of ganglioside GM3 biosynthesis in human blood mononuclear cells in atherosclerosis. ACTA ACUST UNITED AC 2013; 59:459-68. [DOI: 10.18097/pbmc20135904459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using blood monocytes and lymphocytes from atherosclerotic patients and healthy subjects we have investigated activity of GM3 synthase, cellular levels of ganglioside GM3 and its role in monocyte adhesion to cultured human umbilical vein endothelial cells (HUVEC). The results showed that activity of GM3 synthase and cellular levels of ganglioside GM3 in blood mononuclear cells from atherosclerotic patients were several-fold higher than those from healthy subjects. In monocytes the activity of GM3 synthase was one an order of magnitude higher than in lymphocytes from both groups studied; this suggests the major contribution of monocytes to enhanced biosynthesis and levels of GM3 in mononuclear cells in atherosclerosis. Enrichment of monocytes from healthy subjects with ganglioside GM3 by incubation in medium containing this ganglioside increased adherence of these monocytes to HUVEC up to the values typical for monocytes from atherosclerotic patients. In addition, an increase in CD11b integrin expression was observed that was comparable to that seen in lipopolysaccharide-activated monocytes. It is suggested that in atherosclerosis the enhanced cellular levels of GM3 in monocytes and lymphocytes may be an important element of cell activation that facilitates their adhesion to endothelial cells and penetration into intima.
Collapse
Affiliation(s)
- E.V. Gracheva
- Research Institute of Experimental Cardiology, Cardiology Research Center of the Ministry of Public Health and Social Development
| | - N.N. Samovilova
- Research Institute of Experimental Cardiology, Cardiology Research Center of the Ministry of Public Health and Social Development
| | - N.K. Golovanova
- Research Institute of Experimental Cardiology, Cardiology Research Center of the Ministry of Public Health and Social Development
| | - G.F. Piksina
- Research Institute of Experimental Cardiology, Cardiology Research Center of the Ministry of Public Health and Social Development
| | - V.S. Shishkina
- Research Institute of Experimental Cardiology, Cardiology Research Center of the Ministry of Public Health and Social Development
| | - N.V. Prokazova
- Research Institute of Experimental Cardiology, Cardiology Research Center of the Ministry of Public Health and Social Development
| |
Collapse
|
16
|
Glycohydrolases β-hexosaminidase and β-galactosidase are associated with lipid microdomains of Jurkat T-lymphocytes. Biochimie 2012; 94:684-94. [DOI: 10.1016/j.biochi.2011.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/21/2011] [Indexed: 11/21/2022]
|
17
|
Lee S, Valentine SJ, Reilly JP, Clemmer DE. Analyzing a Mixture of Disaccharides by IMS-VUVPD-MS. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2012; 309:161-167. [PMID: 22518093 PMCID: PMC3327510 DOI: 10.1016/j.ijms.2011.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Comparative analyses utilizing collision induced dissociation (CID) and vacuum ultraviolet photodissociation (VUVPD) for seven isobaric disaccharides have been performed in order to differentiate the linkage type and anomeric configuration of the isomers. Although an individual CID spectrum of a disaccharide ion provides information related to its structure, CID does not sufficiently differentiate mixture components due to the identical mass-to-charge values of most of the intense fragments. In contrast to the ambiguity of the CID analyses for the disaccharide mixture, VUVPD (157 nm) generates unique fragments for each disaccharide ion that are useful for distinguishing individual components from the mixture. When combined with a gas-phase ion mobility separation of the ions, the identification of each component from the mixture can be obtained.
Collapse
|
18
|
β-Hexosaminidase over-expression affects lysosomal glycohydrolases expression and glycosphingolipid metabolism in mammalian cells. Mol Cell Biochem 2011; 363:109-18. [DOI: 10.1007/s11010-011-1163-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
|
19
|
Wipfler D, Srinivasan GV, Sadick H, Kniep B, Arming S, Willhauck-Fleckenstein M, Vlasak R, Schauer R, Schwartz-Albiez R. Differentially regulated expression of 9-O-acetyl GD3 (CD60b) and 7-O-acetyl-GD3 (CD60c) during differentiation and maturation of human T and B lymphocytes. Glycobiology 2011; 21:1161-72. [PMID: 21507905 DOI: 10.1093/glycob/cwr050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
GD3 (CD60a) and its 9-O-acetylated variant (CD60b) are intracellular regulators of apoptosis in T lymphocytes. Surface expressed 9-O-acetyl- and 7-O-acetyl-GD3 (CD60b and CD60c) may have a functional impact on activated T and B cells. In order to investigate the balance between surface and intracellular expression and synthesis and degradation of these glycosphingolipids in human lymphocytes of various differentiation stages, we analyzed (i) expression of GD3 molecules on native T and B cells and thymocytes by flow cytometry and (ii) activity and regulation of possible key enzymes for CD60a,b,c synthesis and degradation at the transcriptional level. Both, surface and cytoplasmic expression of CD60a and CD60c was highest in tonsillar T cells. In thymocytes, CD60c outweighs the other CD60 variants and was mainly found in the cytoplasm. All lymphocyte preparations contained sialate O-acetyltransferase activity producing 7-O-acetyl-GD3. Sialidase activity was highest in peripheral blood lymphocytes followed by thymocytes and tonsillar T and B cells. Transcription of GD3 synthase (ST8SiaI), the key enzyme for GD3 synthesis, was highest in tonsillar T cells, whereas transcriptional levels of sialidase NEU3 and O-acetylesterase H-Lse were lowest in activated T cells. This balance between enzymes of sialic acid metabolism may explain the strong overall staining intensity for all GD3 forms in T cells. Both CASD1, presumably encoding a sialic acid-specific O-acetyltransferase, and H-Lse showed highest transcription in peripheral B lymphocytes corresponding to the low expression of CD60b and c in these cells. Our data point to regulatory functions of these anabolic and catabolic key enzymes for the expression of GD3 and its O-acetylated variants in lymphocytes at a given differentiation stage.
Collapse
Affiliation(s)
- Dirk Wipfler
- German Cancer Research Center, D015 Translational Immunology, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhu Y, Gumlaw N, Karman J, Zhao H, Zhang J, Jiang JL, Maniatis P, Edling A, Chuang WL, Siegel C, Shayman JA, Kaplan J, Jiang C, Cheng SH. Lowering glycosphingolipid levels in CD4+ T cells attenuates T cell receptor signaling, cytokine production, and differentiation to the Th17 lineage. J Biol Chem 2011; 286:14787-94. [PMID: 21402703 DOI: 10.1074/jbc.m111.218610] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lipid rafts reportedly have a role in coalescing key signaling molecules into the immunological synapse during T cell activation, thereby modulating T cell receptor (TCR) signaling activity. Recent findings suggest that a correlation may exist between increased levels of glycosphingolipids (GSLs) in the lipid rafts of T cells and a heightened response of those T cells toward activation. Here, we show that lowering the levels of GSLs in CD4(+) T cells using a potent inhibitor of glucosylceramide synthase (Genz-122346) led to a moderation of the T cell response toward activation. TCR proximal signaling events, such as phosphorylation of Lck, Zap70 and LAT, as well as early Ca(2+) mobilization, were attenuated by treatment with Genz-122346. Concomitant with these events were significant reductions in IL-2 production and T cell proliferation. Similar findings were obtained with CD4(+) T cells isolated from transgenic mice genetically deficient in GM3 synthase activity. Interestingly, lowering the GSL levels in CD4(+) T cells by either pharmacological inhibition or disruption of the gene for GM3 synthase also specifically inhibited the differentiation of T cells to the Th(17) lineage but not to other Th subsets in vitro. Taken together with the recently reported effects of Raftlin deficiency on Th(17) differentiation, these results strongly suggest that altering the GSL composition of lipid rafts modulates TCR signaling activity and affects Th(17) differentiation.
Collapse
Affiliation(s)
- Yunxiang Zhu
- Genzyme Corporation, Framingham, Massachusetts 01701-9322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Miguel L, Owen DM, Lim C, Liebig C, Evans J, Magee AI, Jury EC. Primary human CD4+ T cells have diverse levels of membrane lipid order that correlate with their function. THE JOURNAL OF IMMUNOLOGY 2011; 186:3505-16. [PMID: 21307290 DOI: 10.4049/jimmunol.1002980] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane lipid microdomains (lipid rafts) play an important role in T cell function by forming areas of high lipid order that facilitate activation. However, their role in regulating T cell differentiation and function remains controversial. In this study, by applying a new approach involving microscopy and flow cytometry, we characterize membrane lipid order in ex vivo primary human CD4(+) T cells. We reveal that differential membrane lipid order dictates the response to TCR stimulation. T cells with high membrane order formed stable immune synapses and proliferated robustly, intermediate order cells had reduced proliferative ability accompanied by unstable immune synapse formation, whereas low order T cells were profoundly unresponsive to TCR activation. We also observed that T cells from patients with autoimmune rheumatic disease had expanded intermediate order populations compared with healthy volunteers. This may be important in dictating the nature of the immune response since most IFN-γ(+)CD4(+) T cells were confined within intermediate membrane order populations, whereas IL-4(+)CD4(+) T cells were contained within the high order populations. Importantly, we were able to alter T cell function by pharmacologically manipulating membrane order. Thus, the results presented from this study identify that ex vivo CD4(+) T cells sustain a gradient of plasma membrane lipid order that influences their function in terms of proliferation and cytokine production. This could represent a new mechanism to control T cell functional plasticity, raising the possibility that therapeutic targeting of membrane lipid order could direct altered immune cell activation in pathology.
Collapse
Affiliation(s)
- Laura Miguel
- Division of Medicine, Centre for Rheumatology Research, University College London, London W1P 4JF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
22
|
Borges AR, Wieczorek L, Johnson B, Benesi AJ, Brown BK, Kensinger RD, Krebs FC, Wigdahl B, Blumenthal R, Puri A, McCutchan FE, Birx DL, Polonis VR, Schengrund CL. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1. Virology 2010; 408:80-8. [PMID: 20880566 PMCID: PMC2966527 DOI: 10.1016/j.virol.2010.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/20/2010] [Accepted: 09/05/2010] [Indexed: 11/21/2022]
Abstract
Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3'-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC(50)s ranging from 0.1 to 7.4 μg/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions.
Collapse
Affiliation(s)
- Andrew Rosa Borges
- Military HIV Research Program, Henry M. Jackson Foundation, Rockville, MD 20850
| | - Lindsay Wieczorek
- Military HIV Research Program, Henry M. Jackson Foundation, Rockville, MD 20850
| | - Benitra Johnson
- Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD
| | - Alan J. Benesi
- Department of Chemistry, The Pennsylvania State University, State College, PA
| | - Bruce K. Brown
- Military HIV Research Program, Henry M. Jackson Foundation, Rockville, MD 20850
| | - Richard D. Kensinger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA
| | - Fred C. Krebs
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA
| | - Robert Blumenthal
- Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD
| | - Anu Puri
- Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD
| | | | - Deborah L. Birx
- Military HIV Research Program, Division of Retrovirology, Walter Reed Army Institute of Research, Rockville, MD
| | - Victoria R. Polonis
- Military HIV Research Program, Division of Retrovirology, Walter Reed Army Institute of Research, Rockville, MD
| | - Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
23
|
Karman J, Tedstone JL, Gumlaw NK, Zhu Y, Yew N, Siegel C, Guo S, Siwkowski A, Ruzek M, Jiang C, Cheng SH. Reducing glycosphingolipid biosynthesis in airway cells partially ameliorates disease manifestations in a mouse model of asthma. Int Immunol 2010; 22:593-603. [PMID: 20497953 DOI: 10.1093/intimm/dxq044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lipid rafts reportedly play an important role in modulating the activation of mast cells and granulocytes, the primary effector cells of airway hyperresponsiveness and asthma. Activation is mediated through resident signaling molecules whose activity, in part, may be modulated by the composition of glycosphingolipids (GSLs) in membrane rafts. In this study, we evaluated the impact of inhibiting GSL biosynthesis in mast cells and in the ovalbumin (OVA)-induced mouse model of asthma using either a small molecule inhibitor or anti-sense oligonucleotides (ASOs) directed against specific enzymes in the GSL pathway. Lowering GSL levels in mast cells through inhibition of glucosylceramide synthase (GCS) reduced phosphorylation of Syk tyrosine kinase and phospholipase C gamma 2 (PLC-gamma2) as well as cytoplasmic Ca(2+) levels. Modulating these intracellular signaling events also resulted in a significant decrease in mast cell degranulation. Primary mast cells isolated from a GM3 synthase (GM3S) knockout mouse exhibited suppressed activation-induced degranulation activity further supporting a role of GSLs in this process. In previously OVA-sensitized mice, intra-nasal administration of ASOs to GCS, GM3S or lactosylceramide synthase (LCS) significantly suppressed metacholine-induced airway hyperresponsiveness and pulmonary inflammation to a subsequent local challenge with OVA. However, administration of the ASOs into mice that had been sensitized and locally challenged with the allergen did not abate the consequent pulmonary inflammatory sequelae. These results suggest that GSLs contribute to the initiation phase of the pathogenesis of airway hyperreactivity and asthma and lowering GSL levels may offer a novel strategy to modulate these manifestations.
Collapse
Affiliation(s)
- Jozsef Karman
- Genzyme Corporation, 49 New York Avenue, Framingham, MA 01701, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Freund D, Fonseca AV, Janich P, Bornhäuser M, Corbeil D. Differential expression of biofunctional GM1 and GM3 gangliosides within the plastic-adherent multipotent mesenchymal stromal cell population. Cytotherapy 2010; 12:131-42. [PMID: 20196693 DOI: 10.3109/14653240903476438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AIMS It is unclear whether the plastic-adherent multipotent mesenchymal stromal cells (MSC) isolated from human bone marrow (BM) represent a uniform cell population or are heterogeneous in terms of cell-surface constituents and hence functionality. METHODS We investigated the expression profile of certain biofunctional lipids by plastic-adherent MSC, focusing particularly on two membrane microdomain (lipid raft)-associated monosialogangliosides, GM1 and GM3, using indirect confocal laser scanning fluorescence microscopy and flow cytometry. RESULTS Phenotypically, we observed a differential expression where certain MSC subsets exhibited GM1, GM3 or both at the plasma membrane. Furthermore, disialoganglioside GD2 detection increased the complexity of the expression patterns, giving rise to seven identifiable cell phenotypes. Variation of standard culture conditions, such as the number of cell passage and period in culture, as well as donors, did not influence the heterologous ganglioside expression profile. In contrast, the binding of various lectins appeared homogeneous throughout the MSC population, indicating that the general glycosylation pattern remained common. Morphologically, the expression of a given ganglioside-based phenotype was not related to a cell with particular size or shape. Interestingly, a segregation of GM1 and GM3 clusters was observed, GM3 being mostly excluded from the highly curved plasma membrane protrusions. CONCLUSIONS These data highlight the phenotypic heterogeneity of plastic-adherent MSC in terms of certain lipid constituents of the plasma membrane, and the presence and/or absence of distinct ganglioside-based membrane microdomains suggest their potential functional diversity.
Collapse
Affiliation(s)
- Daniel Freund
- Tissue Engineering Laboratories, BIOTEC and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | | | | | | | | |
Collapse
|
25
|
Müthing J, Distler U. Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:425-479. [PMID: 19609886 DOI: 10.1002/mas.20253] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glycosphingolipids (GSLs), composed of a hydrophilic carbohydrate chain and a lipophilic ceramide anchor, play pivotal roles in countless biological processes, including infectious diseases and the development of cancer. Knowledge of the number and sequence of monosaccharides and their anomeric configuration and linkage type, which make up the principal items of the glyco code of biologically active carbohydrate chains, is essential for exploring the function of GSLs. As part of the investigation of the vertebrate glycome, GSL analysis is undergoing rapid expansion owing to the application of novel biochemical and biophysical technologies. Mass spectrometry (MS) takes part in the network of collaborations to further unravel structural and functional aspects within the fascinating world of GSLs with the ultimate aim to better define their role in human health and disease. However, a single-method analytical MS technique without supporting tools is limited yielding only partial structural information. Because of its superior resolving power, robustness, and easy handling, high-performance thin-layer chromatography (TLC) is widely used as an invaluable tool in GSL analysis. The intention of this review is to give an insight into current advances obtained by coupling supplementary techniques such as TLC and mass spectrometry. A retrospective view of the development of this concept and the recent improvements by merging (1) TLC separation of GSLs, (2) their detection with oligosaccharide-specific proteins, and (3) in situ MS analysis of protein-detected GSLs directly on the TLC plate, are provided. The procedure works on a nanogram scale and was successfully applied to the identification of cancer-associated GSLs in several types of human tumors. The combination of these two supplementary techniques opens new doors by delivering specific structural information of trace quantities of GSLs with only limited investment in sample preparation.
Collapse
Affiliation(s)
- Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany.
| | | |
Collapse
|
26
|
Prokazova NV, Samovilova NN, Gracheva EV, Golovanova NK. Ganglioside GM3 and its biological functions. BIOCHEMISTRY (MOSCOW) 2009; 74:235-49. [PMID: 19364317 DOI: 10.1134/s0006297909030018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolism, topology, and possible mechanisms for regulation of the ganglioside GM3 content in the cell are reviewed. Under consideration are biological functions of GM3, such as involvement in cell differentiation, proliferation, oncogenesis, and apoptosis.
Collapse
Affiliation(s)
- N V Prokazova
- Institute of Experimental Cardiology, Russian Cardiology Research Center, Russian Ministry of Health, 121552 Moscow, Russia.
| | | | | | | |
Collapse
|
27
|
Park JE, Wu DY, Prendes M, Lu SX, Ragupathi G, Schrantz N, Chapman PB. Fine specificity of natural killer T cells against GD3 ganglioside and identification of GM3 as an inhibitory natural killer T-cell ligand. Immunology 2008; 123:145-55. [PMID: 18154620 DOI: 10.1111/j.1365-2567.2007.02760.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
GD3, a ganglioside expressed on melanoma, is the only tumour-associated glycolipid described to date that can induce a CD1d-restricted natural killer T (NKT)-cell response. We analysed the fine specificity of GD3-reactive NKT cells and discovered that immunization with GD3 induced two populations of GD3-reactive NKT cells. One population was CD4+ CD8- and was specific for GD3; the other population was CD4- CD8- and cross-reacted with GM3 in a CD1d-restricted manner, but did not cross-react with GM2, GD2, or lactosylceramide. This indicated that the T-cell receptors reacting with GD3 recognize glucose-galactose linked to at least one N-acetyl-neuraminic acid but will not accommodate a terminal N-acetylgalactosamine. Immunization with GM2, GM3, GD2, or lactosylceramide did not induce an NKT-cell response. Coimmunization of GM3-loaded antigen-presenting cells (APCs) with GD3-loaded APCs suppressed the NKT-cell response to GD3 in a CD1d-restricted manner. This suppressive effect was specific for GM3 and was a local effect lasting 2-4 days. In vitro, GM3-loaded APCs also suppressed the interleukin-4 response, but not the interferon-gamma response, of NKT cells to alpha-galactosylceramide. However, there was no effect on the T helper type 2 responses of conventional T cells. We found that this suppression was not mediated by soluble factors. We hypothesize that GM3 induces changes to the APC that lead to suppression of T helper type 2-like NKT-cell responses.
Collapse
Affiliation(s)
- Jun-Eui Park
- Department of Medicine, Swim Across America Laboratory, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Nan X, Carubelli I, Stamatos NM. Sialidase expression in activated human T lymphocytes influences production of IFN-gamma. J Leukoc Biol 2006; 81:284-96. [PMID: 17028199 DOI: 10.1189/jlb.1105692] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sialidases influence cellular activity by removing terminal sialic acid from glycoproteins and glycolipids. Four genetically distinct sialidases (Neu1-4) have been identified in mammalian cells. In this study, we demonstrate that only lysosomal Neu1 and plasma membrane-associated Neu3 are detected in freshly isolated and activated human T lymphocytes. Activation of lymphocytes by exposure to anti-CD3 and anti-CD28 IgG resulted in a ninefold increase in Neu1-specific activity after growth of cells in culture for 5 days. In contrast, the activity of Neu3 changed minimally in activated lymphocytes. The increase in Neu1 enzyme activity correlated with increased synthesis of Neu1-specific mRNA. Neu1 was present on the surface of freshly isolated and activated CD4 and CD8 T lymphocytes, as determined by staining intact cells with anti-Neu1 IgG and analysis by flow cytometry and by Western blot analysis of biotin-labeled cell surface proteins. Cell surface Neu1 was found tightly associated with a subunit of protective protein/cathepsin A (PPCA). Compared with freshly isolated lymphocytes, activated cells expressed more surface binding sites for galactose-recognizing lectins Erythrina cristagalli (ECA) and Arachis hypogaea. Growth of cells in the presence of sialidase inhibitors 2,3-dehydro-2-deoxy-N-acetylneuraminic acid or 4-guanidino-2-deoxy-2,3-dehydro-N-acetylneuraminic acid resulted in a smaller increase in number of ECA-binding sites and a greater amount of cell surface sialic acid in activated cells. Inhibition of sialidase activity also resulted in reduced expression of IFN-gamma in activated cells. The down-regulation of IFN-gamma occurred at the transcriptional level. Thus, sialidase activity in activated T lymphocytes contributes to the hyposialylation of specific cell surface glycoconjugates and to the production of IFN-gamma.
Collapse
Affiliation(s)
- Xinli Nan
- Institute of Human Biology, and Department of Medicine, University of Maryland Medical Center, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
29
|
Guthmann MD, Castro MA, Cinat G, Venier C, Koliren L, Bitton RJ, Vázquez AM, Fainboim L. Cellular and humoral immune response to N-Glycolyl-GM3 elicited by prolonged immunotherapy with an anti-idiotypic vaccine in high-risk and metastatic breast cancer patients. J Immunother 2006; 29:215-23. [PMID: 16531822 DOI: 10.1097/01.cji.0000188502.11348.34] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, the immunogenicity and toxicity profile of 1E10, an anti-idiotypic vaccine mimicking the N-glycolyl-GM3 ganglioside, was investigated with an extended vaccination protocol. The year-long vaccination scheme consisted of 6 biweekly intradermal injections (induction phase), followed by 10 monthly boosters (maintenance). Nineteen patients with high-risk (stage III) or metastatic breast cancer were vaccinated with different dose levels of 1E10 (0.5, 1, and 2 mg). The humoral and cellular responses to 1E10 and the targeted ganglioside were assessed at baseline and throughout the treatment. Local skin reactions represented the most common adverse event (National Cancer Institute Toxicity Criteria (NCIC) grades I and II), followed by mild flu-like symptoms lasting for 1 to 2 days. Two patients were removed from the study because of vaccine-related hypersensitivity reactions. A third patient was removed from the study after a transient loss of consciousness with uncertain relation to the vaccine. All patients showed a strong antibody response to the targeted ganglioside. In addition, ganglioside-specific T-cell responses were recorded in 5 of 13 evaluable patients. Vaccination with 1E10 was immunogenic and relatively well tolerated. Because similar results were observed with the 3 tested dose levels, the 0.5-mg dose level was selected for future trials.
Collapse
Affiliation(s)
- Marcelo D Guthmann
- Hospital de Clínicas José de San Martín, University of Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ziulkoski A, Andrade C, Crespo P, Sisti E, Trindade V, Daniotti J, Guma F, Borojevic R. Gangliosides of myelosupportive stroma cells are transferred to myeloid progenitors and are required for their survival and proliferation. Biochem J 2006; 394:1-9. [PMID: 16321139 PMCID: PMC1385996 DOI: 10.1042/bj20051189] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In previous studies, we have shown that the myelopoiesis dependent upon myelosupportive stroma required production of growth factors and heparan-sulphate proteoglycans, as well as generation of a negatively charged sialidase-sensitive intercellular environment between the stroma and the myeloid progenitors. In the present study, we have investigated the production, distribution and role of gangliosides in an experimental model of in vitro myelopoiesis dependent upon AFT-024 murine liver-derived stroma. We used the FDC-P1 cell line, which is dependent upon GM-CSF (granulocyte/macrophage colony-stimulating factor) for both survival and proliferation, as a reporter system to monitor bioavailability and local activity of GM-CSF. G(M3) was the major ganglioside produced by stroma, but not by myeloid cells, and it was required for optimal stroma myelosupportive function. It was released into the supernatant and selectively incorporated into the myeloid progenitor cells, where it segregated into rafts in which it co-localized with the GM-CSF-receptor alpha chain. This ganglioside was also metabolized further by myeloid cells into gangliosides of the a and b series, similar to endogenous G(M3). In these cells, G(M1) was the major ganglioside and it was segregated at the interface by stroma and myeloid cells, partially co-localizing with the GM-CSF-receptor alpha chain. We conclude that myelosupportive stroma cells produce and secrete the required growth factors, the cofactors such as heparan sulphate proteoglycans, and also supply gangliosides that are transferred from stroma to target cells, generating on the latter ones specific membrane domains with molecular complexes that include growth factor receptors.
Collapse
Affiliation(s)
- Ana L. Ziulkoski
- *Laboratório de Bioquímica e Biologia Celular de Lipídios, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- †Instituto de Ciências da Saúde, Centro Universitário FEEVALE, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Cláudia M. B. Andrade
- *Laboratório de Bioquímica e Biologia Celular de Lipídios, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pilar M. Crespo
- ‡Centro de Investigaciones in Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Elisa Sisti
- *Laboratório de Bioquímica e Biologia Celular de Lipídios, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- †Instituto de Ciências da Saúde, Centro Universitário FEEVALE, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Vera M. T. Trindade
- *Laboratório de Bioquímica e Biologia Celular de Lipídios, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jose L. Daniotti
- ‡Centro de Investigaciones in Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fátima C. R. Guma
- *Laboratório de Bioquímica e Biologia Celular de Lipídios, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Radovan Borojevic
- §Instituto de Ciências Biomédicas & Programa Avançado de Biologia Celular Aplicada à Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- To whom correspondence should be addressed (email )
| |
Collapse
|
31
|
Crespo FA, Sun X, Cripps JG, Fernandez-Botran R. The immunoregulatory effects of gangliosides involve immune deviation favoring type-2 T cell responses. J Leukoc Biol 2006; 79:586-95. [PMID: 16415169 DOI: 10.1189/jlb.0705395] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Gangliosides, sialic acid-containing glycosphingolipids present in most cell membranes, are thought to participate in the maintenance of immune privilege and tumor-induced immunosuppression. However, the mechanisms responsible for their immunomodulatory activity remain poorly understood. The purpose of this study was to investigate whether gangliosides are able to modulate the balance of type-1/type-2 T cell responses and to characterize the cellular mechanisms involved. The effects of different gangliosides on anti-CD3-stimulated murine splenocytes and purified T cells were studied. The presence of gangliosides during T cell activation reduced the expression of interferon-gamma (IFN-gamma) and enhanced that of interleukin (IL)-4, suggesting a shift toward a type-2 response. Intracellular cytokine staining demonstrated that gangliosides inhibited IFN-gamma production in CD4+, CD8+, and natural killer (NK)1.1+ cell populations and enhanced IL-4 in CD4+ T cells. The ganglioside-mediated enhancement in IL-4 production was independent of changes in endogenous IFN-gamma, did not occur with cells from CD1d-deficient mice, and was partially inhibited by anti-CD1d antibodies. The inhibitory effects on IFN-gamma were independent of endogenous IL-4 or the presence of NKT cells and were unaffected by anti-CD1d antibodies. These results suggest that gangliosides may modify the immunological environment by promoting immune deviation in favor of type-2 T cell responses.
Collapse
Affiliation(s)
- Fabian A Crespo
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
32
|
Ermini L, Secciani F, La Sala GB, Sabatini L, Fineschi D, Hale G, Rosati F. Different glycoforms of the human GPI-anchored antigen CD52 associate differently with lipid microdomains in leukocytes and sperm membranes. Biochem Biophys Res Commun 2005; 338:1275-83. [PMID: 16266689 DOI: 10.1016/j.bbrc.2005.10.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
CD52 is a human GPI-anchored antigen, expressed exclusively in the immune system and part of the reproductive system (epididymal cells). Sperm cells acquire the antigen from the epididymal secretions when transiting in the epididymal corpus and cauda. The peptide backbone of CD52, consisting of only 12 aminoacids, is generally considered no more than a scaffold for post-translational modifications, such as GPI-anchor and especially N-glycosylation which occur at the third asparagine. The latter modification is highly heterogeneous, especially in the reproductive system, giving rise to many different glycoforms, some of which are tissue specific. A peculiar O-glycan-containing glycoform is also found in reproductive and immune systems. We determined to locate CD52 in microdomains of leukocytes and sperm membranes using two antibodies: (1) CAMPATH-1G, the epitope of which includes the last three aminoacids and part of the GPI-anchor of glycoforms present in leukocytes and sperm cells; (2) anti-gp20, the epitope of which belongs to the unique O-glycan-bearing glycoform also present in both cell types. Using a Brij 98 solubilization protocol and sucrose gradient partition we demonstrated that the CD52 glycoforms recognized by both antibodies are markers of typical raft microdomains in leukocytes, whereas in capacitated sperm the O-glycoform is included in GM3-rich microdomains different from the cholesterol and GM1-rich lipid rafts with which CAMPATH antigen is stably associated. The importance of the association between GM3 and O-glycans for formation of specialized microdomains was confirmed by heterologous CD52 insertion experiments. When prostasomes from human seminal fluid were incubated with rat sperm from different epididymal regions, the CD52 glycoform recognized by anti-gp20 decorated rat epididymal corpus and cauda sperm, associated with the same low-cholesterol GM3-rich sperm membrane fractions as in human sperm. The glycoforms recognized by CAMPATH-1G were not found in rat sperm. The relationship between this differential insertion and differences in glycosylation of rat and human CD52 is discussed.
Collapse
Affiliation(s)
- L Ermini
- Department of Evolutionary Biology, University of Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Clowers BH, Dwivedi P, Steiner WE, Hill HH, Bendiak B. Separation of sodiated isobaric disaccharides and trisaccharides using electrospray ionization-atmospheric pressure ion mobility-time of flight mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:660-9. [PMID: 15862767 DOI: 10.1016/j.jasms.2005.01.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/27/2004] [Accepted: 01/14/2005] [Indexed: 05/11/2023]
Abstract
A series of isobaric disaccharide-alditols, four derived from O-linked glycoproteins, and select trisaccharides were rapidly resolved using tandem high resolution atmospheric pressure ion-mobility time-of-flight mass spectrometry. Electrospray ionization was used to create the gas-phase sodium adducts of each carbohydrate. Using this technique it was possible to separate up to three isobaric disaccharide alditols and three trisaccharides in the gas phase. Reduced mobility values and experimentally determined ion-neutral cross sections are reported for each sodium-carbohydrate complex. These studies demonstrated that ion mobility separations at atmospheric pressure can provide a high-resolution dimension for analysis of carbohydrate ions that is complementary to traditional mass spectral (m/z) ion analysis. Combining these independent principles for separation of ions provides a powerful new bioanalytical tool for the identification of isomeric carbohydrates.
Collapse
Affiliation(s)
- Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
Memory T cells exhibit low activation thresholds and mediate rapid effector responses when recalled by antigen; contrasting the higher activation threshold, slower responses and predominant IL-2 production by naive T cells. While the sequence of intracellular events coupling the T cell-receptor (TCR) to naive T cell activation is well characterized, biochemical control of memory T cell differentiation and function remains undefined. In this review, we will discuss recent developments in T cell-receptor signal transduction as they pertain to memory T cells, and will discuss how signal dampening may drive memory generation, and more efficient spatial organization of signaling molecules may promote rapid recall responses.
Collapse
Affiliation(s)
- Meena R Chandok
- Division of Transplantation, Department of Surgery, University of Maryland School of Medicine, MSTF Building, Room 400, 685 W. Baltimore St., Baltimore, MD 21201, USA
| | | |
Collapse
|
35
|
Abstract
Glycosylation can have a profound influence on the function of a variety of eukaryotic cells. In particular, it can affect signal transduction and cell-cell communication properties and thus shape critical cell decisions, including the regulation of differentiation and apoptosis. Regulation of glycosylation has multiple layers of complexity, both structural and functional, which make its experimental and theoretical analysis difficult to perform and interpret. Novel research methodologies provided by systems biology can help to address many outstanding issues and integrate glycosylation with other metabolic and cell regulation processes. Here we review the toolbox available for biochemical systems analysis of glycosylation.
Collapse
Affiliation(s)
- Michael P Murrell
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | |
Collapse
|