1
|
Kletkiewicz H, Wojciechowski MS, Rogalska J. Cannabidiol effectively prevents oxidative stress and stabilizes hypoxia-inducible factor-1 alpha (HIF-1α) in an animal model of global hypoxia. Sci Rep 2024; 14:15952. [PMID: 38987284 PMCID: PMC11237132 DOI: 10.1038/s41598-024-66599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa. It has therapeutic effects in different paradigms of brain injury, acting as a neuroprotectant. As oxidative stress is a primary risk factor for brain damage after neonatal hypoxia, we tested the effect of CBD on oxidative status and non-protein-bound iron accumulation in the immature brain after hypoxia. Moreover, we tested whether cannabidiol affects the accumulation of hypoxia-inducible factor-1 alpha (HIF-1α) which plays a key role in the regulation of cellular adaptation to hypoxia and oxidative stress. We used 7-day-old mice randomly assigned to hypoxic or control groups. Immediately after hypoxia or control exposure, pups were randomly assigned to a vehicle or CBD treatment. 24 h later, they were decapitated and the brains were immediately removed and stored for further biochemical analyses. We found that CBD reduced lipid peroxidation and prevented antioxidant depletion. For the first time, we also demonstrated that CBD upregulated HIF-1α protein level. This study indicates that CBD may effective agent in attenuating the detrimental consequences of perinatal asphyxia.
Collapse
Affiliation(s)
- Hanna Kletkiewicz
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland.
| | - Michał S Wojciechowski
- Department of Vertebrate Zoology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Justyna Rogalska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
2
|
Nair S, Rocha‐Ferreira E, Fleiss B, Nijboer CH, Gressens P, Mallard C, Hagberg H. Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species. J Neurochem 2021; 158:59-73. [PMID: 33314066 PMCID: PMC8359360 DOI: 10.1111/jnc.15267] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Preclinical studies have shown that mesenchymal stem cells have a positive effect in perinatal brain injury models. The mechanisms that cause these neurotherapeutic effects are not entirely intelligible. Mitochondrial damage, inflammation, and reactive oxygen species are considered to be critically involved in the development of injury. Mesenchymal stem cells have immunomodulatory action and exert mitoprotective effects which attenuate production of reactive oxygen species and promote restoration of tissue function and metabolism after perinatal insults. This review summarizes the present state, the underlying causes, challenges and possibilities for effective clinical translation of mesenchymal stem cell therapy.
Collapse
Affiliation(s)
- Syam Nair
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Neuroscience and PhysiologySahlgrenska Academy, University of GothenburgGothenburgSweden
- Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Eridan Rocha‐Ferreira
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Neuroscience and PhysiologySahlgrenska Academy, University of GothenburgGothenburgSweden
- Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Bobbi Fleiss
- School of Health and Biomedical SciencesRMIT UniversityBundooraVictoriaAustralia
- Université de Paris, NeuroDiderotParisFrance
| | - Cora H Nijboer
- Department for Developmental Origins of DiseaseUniversity Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht UniversityUtrechtNetherlands
| | | | - Carina Mallard
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Neuroscience and PhysiologySahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
3
|
Al Rahim M, Thatipamula S, Pasinetti GM, Hossain MA. Neuronal Pentraxin 1 Promotes Hypoxic-Ischemic Neuronal Injury by Impairing Mitochondrial Biogenesis via Interactions With Active Bax[6A7] and Mitochondrial Hexokinase II. ASN Neuro 2021; 13:17590914211012888. [PMID: 34098747 PMCID: PMC8191073 DOI: 10.1177/17590914211012888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dysfunction is a key mechanism of cell death in hypoxic-ischemic brain injury. Neuronal pentraxin 1 (NP1) has been shown to play crucial roles in mitochondria-mediated neuronal death. However, the underlying mechanism(s) of NP1-induced mitochondrial dysfunction in hypoxia-ischemia (HI) remains obscure. Here, we report that NP1 induction following HI and its subsequent localization to mitochondria, leads to disruption of key regulatory proteins for mitochondrial biogenesis. Brain mitochondrial DNA (mtDNA) content and mtDNA-encoded subunit I of complex IV (mtCOX-1) expression was increased post-HI, but not the nuclear DNA-encoded subunit of complex II (nSDH-A). Up-regulation of mitochondrial proteins COXIV and HSP60 further supported enhanced mtDNA function. NP1 interaction with active Bax (Bax6A7) was increased in the brain after HI and in oxygen-glucose deprivation (OGD)-induced neuronal cultures. Importantly, NP1 colocalized with mitochondrial hexokinase II (mtHKII) following OGD leading to HKII dissociation from mitochondria. Knockdown of NP1 or SB216763, a GSK-3 inhibitor, prevented OGD-induced mtHKII dissociation and cellular ATP decrease. NP1 also modulated the expression of mitochondrial transcription factor A (Tfam) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), regulators of mitochondrial biogenesis, following HI. Together, we reveal crucial roles of NP1 in mitochondrial biogenesis involving interactions with Bax[6A7] and mtHKII in HI brain injury.
Collapse
Affiliation(s)
- Md Al Rahim
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Shabarish Thatipamula
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Giulio M Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States.,James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
| | - Mir Ahamed Hossain
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Pang R, Advic-Belltheus A, Meehan C, Fullen DJ, Golay X, Robertson NJ. Melatonin for Neonatal Encephalopathy: From Bench to Bedside. Int J Mol Sci 2021; 22:5481. [PMID: 34067448 PMCID: PMC8196955 DOI: 10.3390/ijms22115481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
Neonatal encephalopathy is a leading cause of morbidity and mortality worldwide. Although therapeutic hypothermia (HT) is now standard practice in most neonatal intensive care units in high resource settings, some infants still develop long-term adverse neurological sequelae. In low resource settings, HT may not be safe or efficacious. Therefore, additional neuroprotective interventions are urgently needed. Melatonin's diverse neuroprotective properties include antioxidant, anti-inflammatory, and anti-apoptotic effects. Its strong safety profile and compelling preclinical data suggests that melatonin is a promising agent to improve the outcomes of infants with NE. Over the past decade, the safety and efficacy of melatonin to augment HT has been studied in the neonatal piglet model of perinatal asphyxia. From this model, we have observed that the neuroprotective effects of melatonin are time-critical and dose dependent. Therapeutic melatonin levels are likely to be 15-30 mg/L and for optimal effect, these need to be achieved within the first 2-3 h after birth. This review summarises the neuroprotective properties of melatonin, the key findings from the piglet and other animal studies to date, and the challenges we face to translate melatonin from bench to bedside.
Collapse
Affiliation(s)
- Raymand Pang
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Adnan Advic-Belltheus
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Christopher Meehan
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Daniel J. Fullen
- Translational Research Office, University College London, London W1T 7NF, UK;
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Nicola J. Robertson
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
5
|
Previous adaptation triggers distinct molecular pathways and modulates early and long-term neuroprotective effects of pregnancy swimming preventing neonatal hypoxia-ischemia damage in rats. Brain Res 2020; 1733:146722. [DOI: 10.1016/j.brainres.2020.146722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/15/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
|
6
|
Jia L, Wang J, Cao H, Zhang X, Rong W, Xu Z. Activation of PGC-1α and Mitochondrial Biogenesis Protects Against Prenatal Hypoxic-ischemic Brain Injury. Neuroscience 2020; 432:63-72. [PMID: 32114097 DOI: 10.1016/j.neuroscience.2020.02.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022]
Abstract
Survivals after prenatal hypoxia-ischemia (HI) usually suffer long-lasting cognitive defects. Reduced blood-oxygen supplies and the following reperfusion cause mitochondrial injury. Damaged mitochondria could be replaced by mitochondrial biogenesis program and peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) is the specific up-regulator. The objective of this study was to determine whether PGC-1α and mitochondrial biogenesis participate in the resistant responses of an immature brain to prenatal HI. We used a pregnant rat model of transient occlusion of uterine perfusion to induce intrauterine HI associated brain injury. SH-SY5Y cells exposed to oxygen-glucose deprivation was used to investigate the HI induced reactions in vitro. PGC-1α and its downstream signaling pathway (NRF-1 and TFAM) were examined by Western blot and quantitative Real-time PCR. Mitochondrial respiratory enzyme COX-IV was investigated by Western blot and immunohistochemistry. Mitochondrial density and morphology was detected by transmission electron microscopy. The hippocampal injury and cognitive function were examined. We found that the intrauterine HI triggered PGC-1α-NRF-1-TFAM pathway in both protein and mRNA levels. COX-IV expression significantly increased after HI injury. Intrauterine HI induced both mitochondrial impairment and mitochondrial biogenesis. Postnatal administration of pioglitazone further promoted PGC-1α and mitochondrial biogenesis, alleviated hippocampal injury, and improved performance in the behavioral tasks after intrauterine HI. Our investigation implicated activation of PGC-1α, and mitochondrial biogenesis is a neuroprotective mechanism against brain injury caused by systemic prenatal HI. Promotion of PGC-1α by pioglitazone might be a potential treatment for protecting against hippocampal injury and cognitive defects after intrauterine HI.
Collapse
Affiliation(s)
- Lijie Jia
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University School of Medicine, 910 Hengshan Road, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, 910 Hengshan Road, Shanghai 200030, China
| | - Jianwei Wang
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University School of Medicine, 910 Hengshan Road, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, 910 Hengshan Road, Shanghai 200030, China
| | - Huimin Cao
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University School of Medicine, 910 Hengshan Road, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, 910 Hengshan Road, Shanghai 200030, China
| | - Xiaoyu Zhang
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University School of Medicine, 910 Hengshan Road, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, 910 Hengshan Road, Shanghai 200030, China
| | - Weifang Rong
- Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Zifeng Xu
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University School of Medicine, 910 Hengshan Road, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, 910 Hengshan Road, Shanghai 200030, China.
| |
Collapse
|
7
|
Sex-Dependent Effects of Perinatal Inflammation on the Brain: Implication for Neuro-Psychiatric Disorders. Int J Mol Sci 2019; 20:ijms20092270. [PMID: 31071949 PMCID: PMC6539135 DOI: 10.3390/ijms20092270] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022] Open
Abstract
Individuals born preterm have higher rates of neurodevelopmental disorders such as schizophrenia, autistic spectrum, and attention deficit/hyperactivity disorders. These conditions are often sexually dimorphic and with different developmental trajectories. The etiology is likely multifactorial, however, infections both during pregnancy and in childhood have emerged as important risk factors. The association between sex- and age-dependent vulnerability to neuropsychiatric disorders has been suggested to relate to immune activation in the brain, including complex interactions between sex hormones, brain transcriptome, activation of glia cells, and cytokine production. Here, we will review sex-dependent effects on brain development, including glia cells, both under normal physiological conditions and following perinatal inflammation. Emphasis will be given to sex-dependent effects on brain regions which play a role in neuropsychiatric disorders and inflammatory reactions that may underlie early-life programming of neurobehavioral disturbances later in life.
Collapse
|
8
|
Falck M, Osredkar D, Maes E, Flatebø T, Wood TR, Walløe L, Sabir H, Thoresen M. Hypothermia Is Neuroprotective after Severe Hypoxic-Ischaemic Brain Injury in Neonatal Rats Pre-Exposed to PAM3CSK4. Dev Neurosci 2018; 40:189-197. [PMID: 29860252 DOI: 10.1159/000487798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Preclinical research on the neuroprotective effect of hypothermia (HT) after perinatal asphyxia has shown variable results, depending on comorbidities and insult severity. Exposure to inflammation increases vulnerability of the neonatal brain to hypoxic-ischaemic (HI) injury, and could be one explanation for those neonates whose injury is unexpectedly severe. Gram-negative type inflammatory exposure by lipopolysaccharide administration prior to a mild HI insult results in moderate brain injury, and hypothermic neuroprotection is negated. However, the neuroprotective effect of HT is fully maintained after gram-positive type inflammatory exposure by PAM3CSK4 (PAM) pre-administration in the same HI model. Whether HT is neuroprotective in severe brain injury with gram-positive inflammatory pre-exposure has not been investigated. METHODS 59 seven-day-old rat pups were subjected to a unilateral HI insult, with left carotid artery ligation followed by 90-min hypoxia (8% O2 at Trectal 36°C). An additional 196 pups received intraperitoneal 0.9% saline (control) or PAM1 mg/kg, 8 h before undergoing the same HI insult. After randomisation to 5 h normothermia (NT37°C) or HT32°C, pups survived 1 week before they were sacrificed by perfusion fixation. Brains were harvested for hemispheric and hippocampal area loss analyses at postnatal day 14, as well as immunostaining for neuron count in the HIP CA1 region. RESULTS Normothermic PAM animals (PAM-NT) had a comparable median area loss (hemispheric: 60% [95% CI 33-66]; hippocampal: 61% [95% CI 29-67]) to vehicle animals (Veh-NT) (hemispheric: 58% [95% CI 11-64]; hippocampal: 60% [95% CI 19-68]), which is defined as severe brain injury. Furthermore, mortality was low and similar in the two groups (Veh-NT 4.5% vs. PAM-NT 6.6%). HT reduced hemispheric and hippocampal injury in the Veh group by 13 and 28%, respectively (hemispheric: p = 0.048; hippocampal: p = 0.042). HT also provided neuroprotection in the PAM group, reducing hemispheric injury by 22% (p = 0.03) and hippocampal injury by 37% (p = 0.027). CONCLUSION In these experiments with severe brain injury, Toll-like receptor-2 triggering prior to HI injury does not have an additive injurious effect, and there is a small but significant neuroprotective effect of HT. HT appears to be neuroprotective over a continuum of injury severity in this model, and the effect size tapers off with increasing area loss. Our results indicate that gram-positive inflammatory exposure prior to HI injury does not negate the neuroprotective effect of HT in severe brain injury.
Collapse
Affiliation(s)
- Mari Falck
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Damjan Osredkar
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Paediatric Neurology, University Children's Hospital Ljubljana, Ljubljana, Slovenia
| | - Elke Maes
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Torun Flatebø
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Thomas Ragnar Wood
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lars Walløe
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Hemmen Sabir
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany.,Department of Pediatrics I/Neonatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marianne Thoresen
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Neonatal Neuroscience, Translational Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
9
|
Luan Y, Zhang X, Zhang Y, Dong Y. MicroRNA-210 Protects PC-12 Cells Against Hypoxia-Induced Injury by Targeting BNIP3. Front Cell Neurosci 2017; 11:285. [PMID: 29018330 PMCID: PMC5614931 DOI: 10.3389/fncel.2017.00285] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/01/2017] [Indexed: 11/30/2022] Open
Abstract
MicroRNA (miR)-210 is the most consistently and predominantly up-regulated miR in response to hypoxia in multiple cancer cells. The roles of miR-210 in rat adrenal gland pheochromocytoma (PC-12) cells remain unknown. We aimed to explore the possible effect of miR-210 in neonatal brain injury. We explored the potential molecular mechanism by using PC-12 cells under hypoxia. Scramble miRs, miR-210 mimic, miR-210 inhibitor or its negative control were respectively transfected into PC-12 cells. Cell viability, migration, invasion and apoptosis were also assessed to evaluate hypoxia-induced cell injury. The expression level of miR-210 was identified by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Apoptosis-related protein expression as well as key kinases in the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signal pathway was studied by Western blot analysis. Hypoxia suppressed cell viability, migration and invasion, but promoted apoptosis through activation of mitochondrial- and caspase-dependent pathways. Hypoxia markedly induced up-regulation of miR-210 in PC-12 cells. Overexpression of miR-210 protected PC-12 cells against hypoxia-induced injury. Bcl-2 adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) was proven to be a target gene of miR-210 in PC-12 cells. miR-210 overexpression ameliorated the hypoxia-induced injury in PC-12 cells by down-regulating BNIP3. Hypoxia-induced alterations of key kinases in the PI3K/AKT/mTOR signal pathway were affected by aberrant expression of BNIP3. These findings suggested that miR-210 protected PC-12 cells against hypoxia-induced injury by targeting BNIP3, involving the PI3K/AKT/mTOR signal pathway.
Collapse
Affiliation(s)
- Yonggang Luan
- Department of Neonatal Intensive Care Unit, Zhoukou Central HospitalZhoukou, China
| | - Xiaoli Zhang
- Department of Neonatal Intensive Care Unit, Zhoukou Central HospitalZhoukou, China
| | - Yongli Zhang
- Department of Neonatal Intensive Care Unit, Zhoukou Central HospitalZhoukou, China
| | - Yubin Dong
- Department of Neonatal Intensive Care Unit, Zhoukou Central HospitalZhoukou, China
| |
Collapse
|
10
|
Thornton C, Leaw B, Mallard C, Nair S, Jinnai M, Hagberg H. Cell Death in the Developing Brain after Hypoxia-Ischemia. Front Cell Neurosci 2017; 11:248. [PMID: 28878624 PMCID: PMC5572386 DOI: 10.3389/fncel.2017.00248] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 01/11/2023] Open
Abstract
Perinatal insults such as hypoxia–ischemia induces secondary brain injury. In order to develop the next generation of neuroprotective therapies, we urgently need to understand the underlying molecular mechanisms leading to cell death. The cell death mechanisms have been shown to be quite different in the developing brain compared to that in the adult. The aim of this review is update on what cell death mechanisms that are operating particularly in the setting of the developing CNS. In response to mild stress stimuli a number of compensatory mechanisms will be activated, most often leading to cell survival. Moderate-to-severe insults trigger regulated cell death. Depending on several factors such as the metabolic situation, cell type, nature of the stress stimulus, and which intracellular organelle(s) are affected, the cell undergoes apoptosis (caspase activation) triggered by BAX dependent mitochondrial permeabilzation, necroptosis (mixed lineage kinase domain-like activation), necrosis (via opening of the mitochondrial permeability transition pore), autophagic cell death (autophagy/Na+, K+-ATPase), or parthanatos (poly(ADP-ribose) polymerase 1, apoptosis-inducing factor). Severe insults cause accidental cell death that cannot be modulated genetically or by pharmacologic means. However, accidental cell death leads to the release of factors (damage-associated molecular patterns) that initiate systemic effects, as well as inflammation and (regulated) secondary brain injury in neighboring tissue. Furthermore, if one mode of cell death is inhibited, another route may step in at least in a scenario when upstream damaging factors predominate over protective responses. The provision of alternative routes through which the cell undergoes death has to be taken into account in the hunt for novel brain protective strategies.
Collapse
Affiliation(s)
- Claire Thornton
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom
| | - Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia
| | - Carina Mallard
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Syam Nair
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Masako Jinnai
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Henrik Hagberg
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom.,Department of Clinical Sciences and Physiology and Neuroscience, Perinatal Center, Sahlgrenska Academy, Gothenburg UniversityGothenburg, Sweden
| |
Collapse
|
11
|
Affiliation(s)
- Qingyi Ma
- Department of Basic Sciences, Center for Perinatal Biology, Division of Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Department of Basic Sciences, Center for Perinatal Biology, Division of Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
12
|
|
13
|
Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury. Neural Plast 2016; 2016:4901014. [PMID: 27047695 PMCID: PMC4800097 DOI: 10.1155/2016/4901014] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/12/2016] [Accepted: 02/07/2016] [Indexed: 12/03/2022] Open
Abstract
Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI) of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.
Collapse
|
14
|
Zuo W, Zhang S, Xia CY, Guo XF, He WB, Chen NH. Mitochondria autophagy is induced after hypoxic/ischemic stress in a Drp1 dependent manner: the role of inhibition of Drp1 in ischemic brain damage. Neuropharmacology 2014; 86:103-15. [PMID: 25018043 DOI: 10.1016/j.neuropharm.2014.07.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/24/2014] [Accepted: 07/01/2014] [Indexed: 02/01/2023]
Abstract
Mitochondria dysfunction is implicated in diverse conditions, including metabolic and neurodegenerative disorders. Mitochondrial dynamics has attracted increasing attention as to its relationship with mitochondria autophagy, also known as mitophagy, which is critical for degradation of dysfunctional mitochondria maintaining mitochondrial homeostasis. Mitochondrial fission and its role in clearance of injured mitochondria in acute ischemic injury, however, have not been elucidated yet. Here we showed that hypoxic/ischemic conditions led to fragmentation of mitochondria and induction of mitophagy in permanent middle cerebral artery occlusion (pMCAO) rats and oxygen-glucose deprivation (OGD) PC12 cells. Inhibition of Drp1 by pharmacologic inhibitor or siRNA resulted in accumulation of damaged mitochondria mainly through selectively blocking mitophagy without affecting mitochondrial biogenesis and non-selective autophagy. Drp1 inhibitors increased the infarct volume and aggravated the neurological deficits in a rat model of pMCAO. We demonstrated that the devastating role of disturbed mitochondrial fission by inhibiting Drp1 contributed to the damaged mitochondria-mediated injury such as ROS generation, cyt-c release and activation of caspase-3. Taken together, we proved that under hypoxic/ischemic stress a Drp1-dependent mitophagy was triggered which was involved in the removal of damaged mitochondria and cellular survival at the early stage of hypoxic/ischemic injury. Thus, Drp1 related pathway involved in selective removal of dysfunctional mitochondria is proposed as an efficient target for treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Wei Zuo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, and Neuroscience Center, Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, and Neuroscience Center, Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, and Neuroscience Center, Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Feng Guo
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, China
| | - Wen-Bin He
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, and Neuroscience Center, Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
15
|
Karalija A, Novikova LN, Kingham PJ, Wiberg M, Novikov LN. The effects of N-acetyl-cysteine and acetyl-L-carnitine on neural survival, neuroinflammation and regeneration following spinal cord injury. Neuroscience 2014; 269:143-51. [PMID: 24680856 DOI: 10.1016/j.neuroscience.2014.03.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/19/2014] [Indexed: 12/16/2022]
Abstract
Traumatic spinal cord injury induces a long-standing inflammatory response in the spinal cord tissue, leading to a progressive apoptotic death of spinal cord neurons and glial cells. We have recently demonstrated that immediate treatment with the antioxidants N-acetyl-cysteine (NAC) and acetyl-l-carnitine (ALC) attenuates neuroinflammation, induces axonal sprouting, and reduces the death of motoneurons in the vicinity of the trauma zone 4weeks after initial trauma. The objective of the current study was to investigate the effects of long-term antioxidant treatment on the survival of descending rubrospinal neurons after spinal cord injury in rats. It also examines the short- and long-term effects of treatment on apoptosis, inflammation, and regeneration in the spinal cord trauma zone. Spinal cord hemisection performed at the level C3 induced a significant loss of rubrospinal neurons 8 weeks after injury. At 2 weeks, an increase in the expression of the apoptosis-associated markers BCL-2-associated X protein (BAX) and caspase 3, as well as the microglial cell markers OX42 and ectodermal dysplasia 1 (ED1), was seen in the trauma zone. After 8 weeks, an increase in immunostaining for OX42 and the serotonin marker 5HT was detected in the same area. Antioxidant therapy reduced the loss of rubrospinal neurons by approximately 50%. Treatment also decreased the expression of BAX, caspase 3, OX42 and ED1 after 2 weeks. After 8 weeks, treatment decreased immunoreactivity for OX42, whereas it was increased for 5HT. In conclusion, this study provides further insight in the effects of treatment with NAC and ALC on descending pathways, as well as short- and long-term effects on the spinal cord trauma zone.
Collapse
Affiliation(s)
- A Karalija
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden; Department of Surgical and Perioperative Science, Section of Hand and Plastic Surgery, Umeå University, SE-901 87 Umeå, Sweden.
| | - L N Novikova
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | - P J Kingham
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | - M Wiberg
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden; Department of Surgical and Perioperative Science, Section of Hand and Plastic Surgery, Umeå University, SE-901 87 Umeå, Sweden
| | - L N Novikov
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
16
|
Permeability transition pore-mediated mitochondrial superoxide flashes regulate cortical neural progenitor differentiation. PLoS One 2013; 8:e76721. [PMID: 24116142 PMCID: PMC3792897 DOI: 10.1371/journal.pone.0076721] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/27/2013] [Indexed: 12/02/2022] Open
Abstract
In the process of neurogenesis, neural progenitor cells (NPCs) cease dividing and differentiate into postmitotic neurons that grow dendrites and an axon, become excitable, and establish synapses with other neurons. Mitochondrial biogenesis and aerobic metabolism provide energy substrates required to support the differentiation, growth and synaptic activity of neurons. Mitochondria may also serve signaling functions and, in this regard, it was recently reported that mitochondria can generate rapid bursts of superoxide (superoxide flashes), the frequency of which changes in response to environmental conditions and signals including oxygen levels and Ca2+ fluxes. Here we show that the frequency of mitochondrial superoxide flashes increases as embryonic cerebral cortical neurons differentiate from NPCs, and provide evidence that the superoxide flashes serve a signaling function that is critical for the differentiation process. The superoxide flashes are mediated by mitochondrial permeability transition pore (mPTP) opening, and pharmacological inhibition of the mPTP suppresses neuronal differentiation. Moreover, superoxide flashes and neuronal differentiation are inhibited by scavenging of mitochondrial superoxide. Conversely, manipulations that increase superoxide flash frequency accelerate neuronal differentiation. Our findings reveal a regulatory role for mitochondrial superoxide flashes, mediated by mPTP opening, in neuronal differentiation.
Collapse
|
17
|
Järlestedt K, Rousset CI, Ståhlberg A, Sourkova H, Atkins AL, Thornton C, Barnum SR, Wetsel RA, Dragunow M, Pekny M, Mallard C, Hagberg H, Pekna M. Receptor for complement peptide C3a: a therapeutic target for neonatal hypoxic‐ischemic brain injury. FASEB J 2013; 27:3797-804. [DOI: 10.1096/fj.13-230011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Anders Ståhlberg
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Hana Sourkova
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Alison L. Atkins
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | | | - Scott R. Barnum
- Department of MicrobiologyUniversity of AlabamaBirminghamAlabamaUSA
| | - Rick A. Wetsel
- Research Center for Immunology and Autoimmune DiseasesInstitute of Molecular Medicine for the Prevention of Human DiseasesUniversity of Texas‐HoustonHoustonTexasUSA
| | - Mike Dragunow
- Department of PharmacologyFaculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
- The National Research Centre for Growth and DevelopmentFaculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Milos Pekny
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Carina Mallard
- Perinatal CenterSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Henrik Hagberg
- Perinatal CenterSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Obstetrics and GynecologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Centre for the Developing BrainKing's CollegeLondonUK
| | - Marcela Pekna
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
18
|
Døhlen G, Antal EA, Castellheim A, Thaulow E, Kielland A, Saugstad OD. Hyperoxic resuscitation after hypoxia-ischemia induces cerebral inflammation that is attenuated by tempol in a reporter mouse model with very young mice. J Perinat Med 2013; 41:251-7. [PMID: 23241583 DOI: 10.1515/jpm-2012-0135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/16/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND Oxygen supplementation is still part of international resuscitation protocols for premature children. Mechanisms for tissue damage by hypoxia/ischemia in the extreme premature involve inflammation. AIM AND METHOD To study cerebral inflammation after hypoxia/ischemia and oxygen treatment in the premature, we measured NF-κB activity in 5-day-old transgenic reporter mice in response to experimental hypoxia/ischemia. results were correlated to cerebral histological evaluation and plasma cytokine levels. A treatment strategy with the antioxidant tempol was tested. RESULTS One day after hypoxia/ischemia NF-κB activation was increased compared to controls [mean difference: 10.6±4.6% (P=0.03)]. Exposure to 100% oxygen after hypoxia/ischemia further increased NF-κB activation compared to hypoxia/ischemia alone [mean difference: 15.0±5.5% (P=0.01)]. Histological changes in the brain were positively correlated with NF-κB activity (P<0.001), but we found no significant difference in tissue damage between resuscitation with air and resuscitation with pure oxygen. Administration of tempol reduced NF-κB activation [mean difference: 14.6±5.0% (P=0.01)] and the plasma level of cytokines; however, the histological damage score was not affected. CONCLUSION Cerebral inflammatory response after hypoxia/ischemia in a mouse model with immature brain development corresponding to human prematurity prior to 32 weeks' gestation was influenced by administration of oxygen. Tempol treatment attenuated inflammation but did not reduce the extent of histological cerebral damage.
Collapse
Affiliation(s)
- Gaute Døhlen
- Department of Paediatric Research, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
19
|
Ultrastructural modifications in the mitochondria of hypoxia-adapted Drosophila melanogaster. PLoS One 2012; 7:e45344. [PMID: 23028948 PMCID: PMC3446896 DOI: 10.1371/journal.pone.0045344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 08/21/2012] [Indexed: 01/05/2023] Open
Abstract
Chronic hypoxia (CH) occurs under certain physiological or pathological conditions, including in people who reside at high altitude or suffer chronic cardiovascular or pulmonary diseases. As mitochondria are the predominant oxygen-consuming organelles to generate ATP through oxidative phosphorylation in cells, their responses, through structural or molecular modifications, to limited oxygen supply play an important role in the overall functional adaptation to hypoxia. Here, we report the adaptive mitochondrial ultrastructural modifications and the functional impacts in a recently generated hypoxia-adapted Drosophila melanogaster strain that survives severe, otherwise lethal, hypoxic conditions. Using electron tomography, we discovered increased mitochondrial volume density and cristae abundance, yet also cristae fragmentation and a unique honeycomb-like structure in the mitochondria of hypoxia-adapted flies. The homeostatic levels of adenylate and energy charge were similar between hypoxia-adapted and naïve control flies and the hypoxia-adapted flies remained active under severe hypoxia as quantified by negative geotaxis behavior. The equilibrium ATP level was lower in hypoxia-adapted flies than those of the naïve controls tested under severe hypoxia that inhibited the motion of control flies. Our results suggest that the structural rearrangement in the mitochondria of hypoxia-adapted flies may be an important adaptive mechanism that plays a critical role in preserving adenylate homeostasis and metabolism as well as muscle function under chronic hypoxic conditions.
Collapse
|
20
|
Queiroga CSF, Tomasi S, Widerøe M, Alves PM, Vercelli A, Vieira HLA. Preconditioning triggered by carbon monoxide (CO) provides neuronal protection following perinatal hypoxia-ischemia. PLoS One 2012; 7:e42632. [PMID: 22952602 PMCID: PMC3429477 DOI: 10.1371/journal.pone.0042632] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/09/2012] [Indexed: 11/18/2022] Open
Abstract
Perinatal hypoxia-ischemia is a major cause of acute mortality in newborns and cognitive and motor impairments in children. Cerebral hypoxia-ischemia leads to excitotoxicity and necrotic and apoptotic cell death, in which mitochondria play a major role. Increased resistance against major damage can be achieved by preconditioning triggered by subtle insults. CO, a toxic molecule that is also generated endogenously, may have a role in preconditioning as low doses can protect against inflammation and apoptosis. In this study, the role of CO-induced preconditioning on neurons was addressed in vitro and in vivo. The effect of 1 h of CO treatment on neuronal death (plasmatic membrane permeabilization and chromatin condensation) and bcl-2 expression was studied in cerebellar granule cells undergoing to glutamate-induced apoptosis. CO's role was studied in vivo in the Rice-Vannucci model of neonatal hypoxia-ischemia (common carotid artery ligature +75 min at 8% oxygen). Apoptotic cells, assessed by Nissl staining were counted with a stereological approach and cleaved caspase 3-positive profiles in the hippocampus were assessed. Apoptotic hallmarks were analyzed in hippocampal extracts by Western Blot. CO inhibited excitotoxicity-induced cell death and increased Bcl-2 mRNA in primary cultures of neurons. In vivo, CO prevented hypoxia-ischemia induced apoptosis in the hippocampus, limited cytochrome c released from mitochondria and reduced activation of caspase-3. Still, Bcl-2 protein levels were higher in hippocampus of CO pre-treated rat pups. Our results show that CO preconditioning elicits a molecular cascade that limits neuronal apoptosis. This could represent an innovative therapeutic strategy for high-risk cerebral hypoxia-ischemia patients, in particular neonates.
Collapse
Affiliation(s)
- Cláudia S. F. Queiroga
- Chronic Diseases Research Center (CEDOC), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (IBET)/Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Simone Tomasi
- Neuroscience Institute Cavalieri Ottolenghi (NICO) - AOU San Luigi Gonzaga, Orbassano, Turin, Italy
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin Medical School, Turin, Italy
| | - Marius Widerøe
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Paula M. Alves
- Chronic Diseases Research Center (CEDOC), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO) - AOU San Luigi Gonzaga, Orbassano, Turin, Italy
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin Medical School, Turin, Italy
| | - Helena L. A. Vieira
- Chronic Diseases Research Center (CEDOC), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (IBET)/Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
21
|
Chavez-Valdez R, Martin LJ, Flock DL, Northington FJ. Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia. Neuroscience 2012; 219:192-203. [PMID: 22579794 DOI: 10.1016/j.neuroscience.2012.05.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/23/2012] [Accepted: 05/01/2012] [Indexed: 01/28/2023]
Abstract
Receptor interacting protein (RIP)-1 kinase activity mediates a novel pathway that signals for regulated necrosis, a form of cell death prominent in traumatic and ischemic brain injury. Recently, we showed that an allosteric inhibitor of RIP-1 kinase activity, necrostatin-1 (Nec-1), provides neuroprotection in the forebrain following neonatal hypoxia-ischemia (HI). Because Nec-1 also prevents early oxidative injury, we hypothesized that mechanisms involved in this neuroprotection may involve preservation of mitochondrial function and prevention of secondary energy failure. Therefore, our objective was to determine if Nec-1 treatment following neonatal HI attenuates oxidative stress and mitochondrial injury. Postnatal day (p) 7 mice exposed to HI were injected intracerebroventricularly with 0.1 μL (80 μmol) of Nec-1 or vehicle. Nec-1 treatment prevented nitric oxide (NO•), inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine increase, and attenuated glutathione oxidation that was found in vehicle-treated mice at 3h following HI. Similarly, Nec-1 following HI prevented: (i) up-regulation of hypoxia inducible factor-1 alpha (HIF-1α) and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) expression, (ii) decline in mitochondrial complex-I activity, (iii) decrease in ATP levels, and (iv) mitochondrial structural pathology in astrocytes and in neurons. Up-regulation of glial fibrillary acidic protein (GFAP) following HI was also prevented by Nec-1 treatment. No differences by gender were observed. We conclude that Nec-1 immediately after HI, is strongly mitoprotective and prevents secondary energy failure by blocking early NO• accumulation, glutathione oxidation and attenuating mitochondrial dysfunction.
Collapse
Affiliation(s)
- R Chavez-Valdez
- Department of Pediatrics, Division of Neonatology, Johns Hopkins Medical Institutions, Johns Hopkins Hospital, 600 N. Wolfe Street, CMSC 6-104, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
22
|
Zhao YD, Cheng SY, Ou S, Chen PH, Ruan HZ. Functional response of hippocampal CA1 pyramidal cells to neonatal hypoxic-ischemic brain damage. Neurosci Lett 2012; 516:5-8. [PMID: 22402191 DOI: 10.1016/j.neulet.2012.02.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/11/2012] [Accepted: 02/21/2012] [Indexed: 11/24/2022]
Abstract
Perinatal hypoxic-ischemic (H-I) is a major cause of brain injury in the newborn. The hippocampus is more sensitive to H-I injury than the other brain regions. It is believed that H-I brain damage causes a loss of neurons in the central nervous system. The patterns of neuronal death include apoptosis and necrosis. With regard to the responses of neurons, the neural functional changes should be earlier than the morphologic changes. The aim of the present study is to evaluate the electrophysiological characteristics and the synaptic transmission functions. Seven-day-old Sprague-Dawley rat pups were randomly divided into sham operation and H-I groups. The patch clamp, immunohistochemistry and Western blotting techniques were used to achieve this objective. The results of the study showed a decrease in neuronal excitability and a significant increase in the frequency of spontaneous excitatory postsynaptic currents and the duration of EPSCs in the CA1 pyramidal cells of H-I brain damage rats. The glutamate transporter subtype 1 (GLT-1) expression level of the hippocampal CA1 area in the H-I group was decreased compared with the control. There was no difference in the amplitude of excitatory postsynaptic currents and should be no difference in the expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR), N-methyl-D-aspartate receptor (NMDAR) and synaptophysin between the control and H-I brain injury group. These results revealed that changes of electrophysiological characteristics and synaptic functions occur instantly after H-I brain damage in the hippocampal pyramidal cells of neonatal rats. The failure to eliminate glutamate should be one of the important factors of excitotoxicity injury on hippocampal CA1 pyramidal cells, while neuronal excitation was not increased in the H-I brain injury model.
Collapse
Affiliation(s)
- Yan-Dong Zhao
- Department of Neurobiology, College of Basic Medical Sciences, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
23
|
Neonatal hypoxia–ischemia induces sex-related changes in rat brain mitochondria. Mitochondrion 2012; 12:271-9. [DOI: 10.1016/j.mito.2011.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/10/2011] [Accepted: 10/17/2011] [Indexed: 12/13/2022]
|
24
|
Molecular mechanisms of neonatal brain injury. Neurol Res Int 2012; 2012:506320. [PMID: 22363841 PMCID: PMC3272851 DOI: 10.1155/2012/506320] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/11/2011] [Indexed: 12/12/2022] Open
Abstract
Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary, secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent evidence that intervention may be feasible also days-weeks after the insult.
Collapse
|
25
|
On the properties of calcium-induced permeability transition in neonatal heart mitochondria. J Bioenerg Biomembr 2011; 43:757-64. [DOI: 10.1007/s10863-011-9401-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
|
26
|
Abstract
Knowledge of the nature, prognosis, and ways to treat brain lesions in neonatal infants has increased remarkably. Neonatal hypoxic-ischaemic encephalopathy (HIE) in term infants, mirrors a progressive cascade of excito-oxidative events that unfold in the brain after an asphyxial insult. In the laboratory, this cascade can be blocked to protect brain tissue through the process of neuroprotection. However, proof of a clinical effect was lacking until the publication of three positive randomised controlled trials of moderate hypothermia for term infants with HIE. These results have greatly improved treatment prospects for babies with asphyxia and altered understanding of the theory of neuroprotection. The studies show that moderate hypothermia within 6 h of asphyxia improves survival without cerebral palsy or other disability by about 40% and reduces death or neurological disability by nearly 30%. The search is on to discover adjuvant treatments that can further enhance the effects of hypothermia.
Collapse
|
27
|
Mouaffak F, Kebir O, Bellon A, Gourevitch R, Tordjman S, Viala A, Millet B, Jaafari N, Olié JP, Krebs MO. Association of an UCP4 (SLC25A27) haplotype with ultra-resistant schizophrenia. Pharmacogenomics 2011; 12:185-93. [PMID: 21332312 DOI: 10.2217/pgs.10.179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIMS Neuronal uncoupling proteins are involved in the regulation of reactive oxygen species production and intracellular calcium homeostasis, and thus, play a neuroprotective role. In order to explore the potential consequences of neuronal uncoupling proteins variants we examined their association in a sample of Caucasian patients suffering from schizophrenia and phenotyped them according to antipsychotic response. MATERIALS & METHODS Using a case-control design, we compared the frequencies of 15 genetic variants spanning UCP2, UCP4 and UCP5 in 106 French Caucasian patients suffering from schizophrenia and 127 healthy controls. In addition, patients with schizophrenia who responded to antipsychotic treatment were compared with patients with ultra-resistant schizophrenia (URS). This latter population presented no clinical, social and/or occupational remission despite at least two periods of treatment with conventional or atypical antipsychotic drugs and also with clozapine. RESULTS There were no differences in the distribution of the respective alleles between URS and responding patients. However, one haplotype spanning UCP4 was found to be significantly under-represented in URS patients. This relationship remained significant after multiple testing corrections. CONCLUSION Although our sample is of limited size and not representative of schizophrenia as a whole, the association found between the URS group and the UCP4 haplotype is noteworthy as it may influence treatment outcome in schizophrenia.
Collapse
Affiliation(s)
- Fayçal Mouaffak
- INSERM, Laboratoire de Physiopathologie des Maladies Psychiatriques, U894 Centre de Psychiatrie et Neurosciences, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Iwata O, Iwata S. Filling the evidence gap: how can we improve the outcome of neonatal encephalopathy in the next 10 years? Brain Dev 2011; 33:221-8. [PMID: 21185138 DOI: 10.1016/j.braindev.2010.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/26/2010] [Accepted: 11/29/2010] [Indexed: 11/18/2022]
Abstract
Neonatal encephalopathy associated with perinatal hypoxia-ischaemia is one of the most common causes of death and permanent disability worldwide. However, of a wide range of "experimentally neuroprotective treatments" invented so far, only therapeutic hypothermia has been promoted into a standard clinical practice. Such a wide gap in the efficacy of neuroprotective treatments between the experimental setting and clinical practice may be attributed to the strategic flaw in translating basic knowledge into clinical care. When previous clinical studies are carefully reviewed, one may notice that few therapeutic options were chosen based on their track records in experimental studies; protective effects of some drugs had been assumed only based on their pharmacokinetics in adult species; several therapies were chosen merely because clinicians were familiar to these treatments for other purpose; some other therapies were imported too preliminarily from laboratory to clinical practice, potentially ignoring the difference in physiological and pathological backgrounds between rodent models and human patients. When further clinical trials are planned, it is important to ask whether (i) the treatment is supported by pharmacokinetics specific to immature brain, and (ii) the neuroprotective effect of the treatment has consistently been demonstrated using clinically relevant models and study designs. The use of translational large animal models allows the practical simulation and fine-tuning of clinical protocols, which may further assist successful translation of basic knowledge. In addition to the effort to develop alternative therapeutic options, it is important to maximise the effect of the current only neuroprotective option, or therapeutic hypothermia. Independent variables which influence the efficacy of hypothermia have to be elucidated to improve its therapeutic protocol, and to increase the number of patients who will benefit from this treatment.
Collapse
Affiliation(s)
- Osuke Iwata
- Centre for Developmental & Cognitive Neuroscience, Department of Paediatrics, Kurume University School of Medicine, Kurume City, Fukuoka, Japan.
| | | |
Collapse
|
29
|
Perrone S, Negro S, Tataranno ML, Buonocore G. Oxidative stress and antioxidant strategies in newborns. J Matern Fetal Neonatal Med 2011; 23 Suppl 3:63-5. [PMID: 20807155 DOI: 10.3109/14767058.2010.509940] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oxidative stress (OS) is defined as an unbalance between prooxidant and antioxidant factors that can lead to cellular and tissue damage.The newborn, especially if preterm, is highly prone to OS and to the toxic effect of free radicals (FR). At birth, the newborn is exposed to a relatively hyperoxic environment caused by an increased oxygen bioavailability with greatly enhanced generation of FR. Additional sources (inflammation, hypoxia, ischemia, glutamate, and free iron release) occur magnifying OS. In the preterm baby, the perinatal transition is accompanied by the immaturity of the antioxidant systems and the reduced ability to induce efficient homeostatic mechanisms designed to control overproduction of cell-damaging FR. Improved understanding of the pathophysiological mechanism involved in perinatal brain lesions helps to identify potential targets for neuroprotective interventions, and the knowledge of these mechanisms has enabled scientists to develop new therapeutic strategies that have confirmed their neuroprotective effects in animal studies. Considering the growing role of OS in preterm newborn morbidity in respect to the higher risk of FR damage in these babies, a strict control of oxygen administration, lutein, melatonin, and hypothermia show great promise as potential neuroprotectants. This review provides an overview of the pathogenesis of free radical-mediated diseases of the newborn and the antioxidant strategies for now tested to reduce the OS and its damaging effects.
Collapse
Affiliation(s)
- Serafina Perrone
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Italy
| | | | | | | |
Collapse
|
30
|
Lin WY, Chang YC, Lee HT, Huang CC. CREB activation in the rapid, intermediate, and delayed ischemic preconditioning against hypoxic-ischemia in neonatal rat. J Neurochem 2010. [DOI: 10.1111/j.0022-3042.2008.05828.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Attenuation of reactive gliosis does not affect infarct volume in neonatal hypoxic-ischemic brain injury in mice. PLoS One 2010; 5:e10397. [PMID: 20442854 PMCID: PMC2861004 DOI: 10.1371/journal.pone.0010397] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/02/2010] [Indexed: 12/13/2022] Open
Abstract
Background Astroglial cells are activated following injury and up-regulate the expression of the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin. Adult mice lacking the intermediate filament proteins GFAP and vimentin (GFAP−/−Vim−/−) show attenuated reactive gliosis, reduced glial scar formation and improved regeneration of neuronal synapses after neurotrauma. GFAP−/−Vim−/− mice exhibit larger brain infarcts after middle cerebral artery occlusion suggesting protective role of reactive gliosis after adult focal brain ischemia. However, the role of astrocyte activation and reactive gliosis in the injured developing brain is unknown. Methodology/Principal Findings We subjected GFAP−/−Vim−/− and wild-type mice to unilateral hypoxia-ischemia (HI) at postnatal day 9 (P9). Bromodeoxyuridine (BrdU; 25 mg/kg) was injected intraperitoneally twice daily from P9 to P12. On P12 and P31, the animals were perfused intracardially. Immunohistochemistry with MAP-2, BrdU, NeuN, and S100 antibodies was performed on coronal sections. We found no difference in the hemisphere or infarct volume between GFAP−/−Vim−/− and wild-type mice at P12 and P31, i.e. 3 and 22 days after HI. At P31, the number of NeuN+ neurons in the ischemic and contralateral hemisphere was comparable between GFAP−/−Vim−/− and wild-type mice. In wild-type mice, the number of S100+ astrocytes was lower in the ipsilateral compared to contralateral hemisphere (65.0±50.1 vs. 85.6±34.0, p<0.05). In the GFAP−/−Vim−/− mice, the number of S100+ astrocytes did not differ between the ischemic and contralateral hemisphere at P31. At P31, GFAP−/−Vim−/− mice showed an increase in NeuN+BrdU+ (surviving newly born) neurons in the ischemic cortex compared to wild-type mice (6.7±7.7; n = 29 versus 2.9±3.6; n = 28, respectively, p<0.05), but a comparable number of S100+BrdU+ (surviving newly born) astrocytes. Conclusions/Significance Our results suggest that attenuation of reactive gliosis in the developing brain does not affect the hemisphere or infarct volume after HI, but increases the number of surviving newborn neurons.
Collapse
|
32
|
One-carbon metabolism and schizophrenia: current challenges and future directions. Trends Mol Med 2009; 15:562-70. [PMID: 19896901 DOI: 10.1016/j.molmed.2009.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 01/08/2023]
Abstract
Schizophrenia is a heterogeneous disease generally considered to result from a combination of heritable and environmental factors. Although its pathophysiology has not been fully determined, biological studies support the involvement of several possible components including altered DNA methylation, abnormal glutamatergic transmission, altered mitochondrial function, folate deficiency and high maternal homocysteine levels. Although these factors have been explored separately, they all involve one-carbon (C1) metabolism. Furthermore, C1 metabolism is well positioned to integrate gene-environment interactions by influencing epigenetic regulation. Here, we discuss the potential roles of C1 metabolism in the pathophysiology of schizophrenia. Understanding the contribution of these mechanisms could yield new therapeutic approaches aiming to counteract disease onset or progression.
Collapse
|
33
|
Kajta M, Makarewicz D, Ziemińska E, Jantas D, Domin H, Lasoń W, Kutner A, Łazarewicz JW. Neuroprotection by co-treatment and post-treating with calcitriol following the ischemic and excitotoxic insult in vivo and in vitro. Neurochem Int 2009; 55:265-74. [DOI: 10.1016/j.neuint.2009.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 03/11/2009] [Accepted: 03/16/2009] [Indexed: 12/23/2022]
|
34
|
Lin WY, Chang YC, Lee HT, Huang CC. CREB activation in the rapid, intermediate, and delayed ischemic preconditioning against hypoxic-ischemia in neonatal rat. J Neurochem 2009; 108:847-59. [PMID: 19183266 DOI: 10.1111/j.1471-4159.2008.05828.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ischemic preconditioning (IP) is a defense program in which exposure to sublethal ischemia followed by a period of reperfusion results in subsequent resistance to severe ischemic insults. Very few in vivo IP models have been established for neonatal brain. We examined whether rapid, intermediate, and delayed IP against hypoxic-ischemia (HI) could be induced in neonatal brain, and if so, whether the IP involved phosphorylation of cAMP response element-binding protein (pCREB) after HI. Postnatal day 7 rat pups were subjected to HI at 2 h (2-h IP), 6 h (6-h IP), or 22 h (22-h IP) after IP. We found all three IP groups had significantly reduced neuronal damage and TUNEL-(+) cells 24 h post-HI than no-IP group. Compared with control, the no-IP group had significant decreases of pCREB and mitochondria Bcl-2 levels in the ipsilateral cortex 24 h post-HI. In contrast, the three IP groups had increased pCREB and mitochondria Bcl-2 levels, and significant differences were found between three IP and no-IP groups. The increases of cleavage of caspase-3 and poly (ADP-ribose) polymerase and of cells with nuclear apoptosis inducing factor post-HI in no-IP group were all significantly reduced in three IP groups. The increases of caspase-3 and calpain-mediated proteolysis of a-spectrin post-HI were significantly reduced only in 22-h IP group. Furthermore, all three IP groups had long-term neuroprotection at behavioral and pathological levels compared with no-IP group. In conclusion, IP, rapid, intermediate, or delayed, in neonatal rat brain activates CREB, up-regulates Bcl-2, induces extensive brakes on caspase-dependent and -independent apoptosis after HI, and provides long-term neuroprotection.
Collapse
Affiliation(s)
- Wan-Ying Lin
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | |
Collapse
|
35
|
Tichauer KM, Wong DYL, Hadway JA, Rylett RJ, Lee TY, St Lawrence K. Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen. Pediatr Res 2009; 65:301-6. [PMID: 19033882 DOI: 10.1203/pdr.0b013e318194faa6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reduced cerebral function after neonatal hypoxia-ischemia is an early indicator of hypoxic-ischemic encephalopathy. Near-infrared spectroscopy offers a clinically relevant means of detecting impaired cerebral metabolism from the measurement of the cerebral metabolic rate of oxygen (CMRO2). The purpose of this study was to determine the relationship between postinsult CMRO2 and duration of hypoxia-ischemia in piglets. Twelve piglets were subjected to randomly selected durations of hypoxia-ischemia (5-28 min) and five animals served as controls. Measurements of CMRO2 were taken before and for 24 h after hypoxia-ischemia. Histology was carried out in nine piglets (six insults, three controls) to estimate brain injury. In the first 4 h after the insult, average CMRO2 of the insult group was significantly depressed (33 +/- 3% reduction compared with controls) and by 8 h, a significant correlation developed, which persisted for the remainder of the study, between CMRO2 and the duration of ischemia. Histologic staining suggested little brain damage resulted from shorter insult durations and considerable damage from more prolonged insults. This study demonstrated that near-infrared spectroscopy could detect early changes in CMRO2 after hypoxia-ischemia for a range of insult severities and CMRO2 could be used to distinguish insult severity by 8 h after the insult.
Collapse
Affiliation(s)
- Kenneth M Tichauer
- Imaging Division, Lawson Health Research Institute, London, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
36
|
Winter JD, Tichauer KM, Gelman N, Thompson RT, Lee TY, St Lawrence K. Changes in cerebral oxygen consumption and high-energy phosphates during early recovery in hypoxic-ischemic piglets: a combined near-infrared and magnetic resonance spectroscopy study. Pediatr Res 2009; 65:181-7. [PMID: 18852691 DOI: 10.1203/pdr.0b013e31818f06fb] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Near-infrared spectroscopy (NIRS) offers the ability to assess brain function at the bedside of critically ill neonates. Our group previously demonstrated a persistent reduction in the cerebral metabolic rate of oxygen (CMRO(2)) after hypoxia-ischemia (HI) in newborn piglets. The purpose of this current study was to determine the causes of this reduction by combining NIRS with magnetic resonance spectroscopy (MRS) to measure high-energy metabolites and diffusion-weighted imaging to measure cellular edema. Nine piglets were exposed to 30 min of HI and nine piglets served as controls. Proton and phosphorous MRS spectra, apparent diffusion coefficient (ADC) maps, and CMRO(2) measurements were collected periodically before and for 5.5 h after HI. A significant decrease in CMRO(2) (26 +/- 7%) was observed after HI. Incomplete recovery of nucleotide triphosphate concentration (8 +/- 3% <controls) and reduced ADC (16 +/- 5%) suggested mitochondrial dysfunction. However, CMRO(2) did not correlate with any metabolite concentration during the last 3 h of the recovery period, and no significant changes were found in phosphocreatine and lactate levels. Therefore, the CMRO(2) decrease is likely a combination of impaired mitochondrial function and reduced energy demands during the acute phase, which has been previously observed in the mature brain.
Collapse
Affiliation(s)
- Jeff D Winter
- Imaging Division, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Perrone S, Turrisi G, Buonocore G. Antioxidant therapy and neuroprotection in the newborn. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17455111.2.6.715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Injury to the perinatal brain is a leading cause of childhood mortality and lifelong disability. Despite recent improvements in neonatal care, no effective treatment for perinatal brain lesions is available. The newborn, especially if preterm, is highly prone to oxidative stress (OS) and to the toxic effect of free radicals (FRs). At birth, the newborn is exposed to a relatively hyperoxic environment caused by an increased oxygen bioavailability with greatly enhanced generation of FRs. Additional sources (e.g., inflammation, hypoxia, ischemia, glutamate and free iron release) occur, magnifying OS. In the preterm baby, the perinatal transition is accompanied by the immaturity of the antioxidant systems and the reduced ability to induce efficient homeostatic mechanisms designed to control overproduction of cell-damaging FRs. Improved understanding of the pathophysiological mechanism involved in perinatal brain lesions helps to identify potential targets for neuroprotective interventions, and the knowledge of these mechanisms has enabled scientists to develop new therapeutic strategies that have confirmed their neuroprotective effects in animal studies. Considering the growing role of OS in preterm newborn morbidity in respect to the higher risk of FR damage in these babies, erythropoietin, allopurinol, melatonin and hypothermia demonstrate great promise as potential neuroprotectans. This article provides an overview of the pathogenesis of FR-mediated diseases of the newborn and the antioxidant strategies now tested in order to reduce OS and its damaging effects.
Collapse
Affiliation(s)
| | | | - Giuseppe Buonocore
- Professor of Paediatrics, Department of Pediatrics, Obstetrics & Reproductive Medicine, University of Siena, Italy
| |
Collapse
|
38
|
Degos V, Teissier N, Gressens P, Puybasset L, Mantz J. [Inflammation and acute brain injuries in intensive care]. ACTA ACUST UNITED AC 2008; 27:1008-15. [PMID: 19010639 DOI: 10.1016/j.annfar.2008.07.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 07/17/2008] [Indexed: 11/26/2022]
Abstract
Patients with acute brain injuries or susceptibility to post-surgery stroke are a major therapeutic challenge for intensive care and anaesthesiology medicine. The control of systemic stress involved in brain damage is necessary to reduce the frequency and severity of secondary brain lesions. Inflammation is known to be directly involved in acute brain lesions. The brain is a major participant in inflammation control through activation or inhibition effects. The exact mechanisms involved in deleterious effects following acute brain injuries due to inflammation are still unknown. This non-exhaustive study will expose the principal processes involved in inflammatory brain disease and explain the consequences of peripheral inflammation for the brain. Neuroprotection strategies in acute neuroinflammation will be reported with a focus on anaesthetic agents and the inflammation cascade.
Collapse
Affiliation(s)
- V Degos
- Unité Inserm U676, hôpital Robert-Debré, 48, boulevard Serrurier, 75019 Paris, France.
| | | | | | | | | |
Collapse
|
39
|
Tang S, Machaalani R, Waters KA. Brain-derived neurotrophic factor (BDNF) and TrkB in the piglet brainstem after post-natal nicotine and intermittent hypercapnic hypoxia. Brain Res 2008; 1232:195-205. [DOI: 10.1016/j.brainres.2008.07.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 07/03/2008] [Accepted: 07/07/2008] [Indexed: 01/03/2023]
|
40
|
Yin W, Signore AP, Iwai M, Cao G, Gao Y, Chen J. Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 2008; 39:3057-63. [PMID: 18723421 DOI: 10.1161/strokeaha.108.520114] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Mitochondrial biogenesis is regulated through the coordinated actions of both nuclear and mitochondrial genomes to ensure that the organelles are replenished on a regular basis. This highly regulated process has been well defined in skeletal and heart muscle, but its role in neuronal cells, particularly when under stress or injury, is not well understood. In this study, we report for the first time rapidly increased mitochondrial biogenesis in a rat model of neonatal hypoxic/ischemic brain injury (H-I). METHODS Postnatal day 7 rats were subjected to H-I induced by unilateral carotid artery ligation followed by 2.5 hours of hypoxia. The relative amount of brain mitochondrial DNA (mtDNA) was measured semiquantitatively using long fragment PCR at various time points after H-I. HSP60 and COXIV proteins were detected by Western blot. Expression of three genes critical for the transcriptional regulation of mitochondrial biogenesis, peroxisome proliferator-activated receptor coactivator-1 (PGC-1), nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor A (TFAM), were examined by Western blot and RT-PCR. RESULTS Brain mtDNA content was markedly increased 6 hours after H-I, and continued to increase up to 24 hours after H-I. Paralleling the temporal change in mtDNA content, mitochondrial number and proteins HSP60 and COXIV, and citrate synthase activity were increased in neurons in the cortical infarct border zone after H-I. Moreover, cortical expression of NRF-1 and TFAM were increased 6 to 24 hours after H-I, whereas PGC-1 was not changed. CONCLUSIONS Neonatal H-I brain injury rapidly induces mitochondrial biogenesis, which may constitute a novel component of the endogenous repair mechanisms of the brain.
Collapse
Affiliation(s)
- Wei Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
41
|
Degos V, Loron G, Mantz J, Gressens P. Neuroprotective Strategies for the Neonatal Brain. Anesth Analg 2008; 106:1670-80. [DOI: 10.1213/ane.0b013e3181733f6f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Pozo Devoto VM, Giusti S, Chavez JC, de Plazas SF. Hypoxia-induced apoptotic cell death is prevented by oestradiol via oestrogen receptors in the developing central nervous system. J Neuroendocrinol 2008; 20:375-80. [PMID: 18208555 DOI: 10.1111/j.1365-2826.2008.01652.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The neuroprotective effects of oestrogens have been demonstrated against a variety of insults, including excitotoxicity, oxidative stress and cerebral ischemia under certain conditions. However, the molecular mechanisms underlying oestrogen neuroprotection are still unclear. We aimed to determine whether 17beta-oestradiol (E(2)) administration post-hypoxia (p-hx) was neuroprotective and whether these actions were mediated through oestrogen receptors (ER). For this purpose, 12-embyonic day-old chickens were subjected to acute hypoxia [8% (O(2)), 60 min], followed by different reoxygenation periods. To test the neuroprotective effect of E(2) and its mechanism, embryos were injected 30 min after the end of hypoxia with E(2) alone or with ICI 182 780, a competitive antagonist of ER. Cytochrome c (cyt c) release, an indicator of mitochondrial apoptotic pathway, was measured by western blot in optic lobe cytosolic extracts. DNA fragmentation by TUNEL fluorescence and caspase-3 fragmentation by immunofluorescence were detected on optic lobe sections. Acute hypoxia produces a significant increase in cyt c release from mitochondria at 4 h p-hx, followed by an increase in TUNEL positive cells 2 h later (6 h p-hx). Administration of E(2) (0.5 mg/egg) produced a significant decrease in cytosolic cyt c levels at 4 h p-hx, in caspase-3 activation and in TUNEL positive cells at 6 h p-hx compared to vehicle treated embryos. In the E(2)-ICI 182 780 treated embryos, cyt c release, caspase-3 fragmentation and TUNEL positive cells were similar to the hypoxic embryos, thus suggesting the requirement of an E(2)-ER interaction for E(2) mediated neuroprotective effects. In conclusion, E(2) prevents hypoxia-induced cyt c release and posterior cell death and these effects are mediated by oestrogen receptors.
Collapse
Affiliation(s)
- V M Pozo Devoto
- Institute of Cell Biology and Neuroscience Prof. E. De Robertis, School of Medicine, University of Buenos Aires, Paraguay, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
43
|
Villapol S, Acarin L, Faiz M, Castellano B, Gonzalez B. Distinct spatial and temporal activation of caspase pathways in neurons and glial cells after excitotoxic damage to the immature rat brain. J Neurosci Res 2008; 85:3545-56. [PMID: 17668855 DOI: 10.1002/jnr.21450] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although cleaved caspase-3 is known to be involved in apoptotic cell death mechanisms in neurons, it can also be involved in a nonapoptotic role in astrocytes after postnatal excitotoxic injury. Here we evaluate participation of upstream pathways activating caspase-3 in neurons and glial cells, by studying the intrinsic pathway via caspase-9, the extrinsic pathway via caspase-8, and activation of the p53-dependent pathway. N-methyl-D-aspartate (NMDA) was injected intracortically in 9-day-old postnatal rats, which were sacrificed at several survival times between 4 hr postlesion (pl) and 7 days pl. We analyzed temporal and spatial expression of caspase-8, caspase-9, and p53 and correlation with neuronal and glial markers and caspase-3 activation. Caspase-9 was significantly activated at 10 hpl, strongly correlating with caspase-3. It was present mainly in damaged cortical and hippocampal neurons but was also seen in astrocytes and oligodendrocytes in layer VI and corpus callosum (cc). Caspase-8 showed a diminished correlation with caspase-3. It was present in cortical neurons at 10-72 hpl, showing layer specificity, and also in astroglial and microglial nuclei, mainly in layer VI and cc. p53 Expression increased at 10-72 hpl but did not correlate with caspase-3. p53 Was seen in neurons of the degenerating cortex and in some astrocytes and microglial cells of layer VI and cc. In conclusion, after neonatal excitotoxicity, mainly the mitochondrial intrinsic pathway mediates neuronal caspase-3 and cell death. In astrocytes, caspase-3 is not widely correlated with caspase-8, caspase-9, or p53, except in layer VI-cc astrocytes, where activation of upstream cascades occurs.
Collapse
Affiliation(s)
- Sonia Villapol
- Medical Histology, Faculty of Medicine, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
44
|
Johnston MV, Hoon AH. Cerebral palsy. Neuromolecular Med 2008; 8:435-50. [PMID: 17028368 DOI: 10.1385/nmm:8:4:435] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 11/30/1999] [Accepted: 03/08/2006] [Indexed: 12/28/2022]
Abstract
Cerebral palsy (CP) is a group of disorders of movement and posture resulting from nonprogressive disturbances of the fetal or neonatal brain. More than 80% of cases of CP in term infants originate in the prenatal period; in premature infants, both prenatal or postnatal causes contribute. The most prevalent pathological lesion seen in CP is periventricular white matter injury (PWMI) resulting from vulnerability of the immature oligodendrocytes (pre-OLs) before 32 wk of gestation. PWMI is responsible for the spastic diplegia form of CP and a spectrum of cognitive and behavioral disorders. Oxidative stress and excitotoxicity resulting from excessive stimulation of ionotropic glutamate receptors on preOLs are the most prominent molecular mechanisms for PWMI. Asphyxia around the time of birth in term infants accounts for less than 15% of CP in developed countries but the incidence is higher in underdeveloped areas. Asphyxia causes a different pattern of brain injury and CP than is seen after preterm injuries. This type of CP is associated with the clinical syndrome of hypoxic-ischemic encephalopathy shortly after the insult, and the cortex, basal ganglia, and brainstem are selectively vulnerable to injury. Experimental models indicate that neurons in the neonatal brain are more likely to die by delayed apoptosis extending over days to weeks than those in the adult brain. Neurons die by glutamate-mediated excitotoxicity involving downstream caspase-dependent and caspase-independent cell death pathways. Recent reports indicate that males and females preferentially utilize different pathways. Clinical trials indicate that mild hypothermia reduces death or disability in term infants following asphyxia and basic research suggests that this approach might be combined with pharmacological strategies in the future.
Collapse
Affiliation(s)
- Michael V Johnston
- Kennedy Krieger Institute and Department of Neurology, Johns Hopkins University School of Medicine, 707 North Broadway, Baltimore, MD 21205, USA.
| | | |
Collapse
|
45
|
Talhouk RS, Zeinieh MP, Mikati MA, El-Sabban ME. Gap junctional intercellular communication in hypoxia-ischemia-induced neuronal injury. Prog Neurobiol 2007; 84:57-76. [PMID: 18006137 DOI: 10.1016/j.pneurobio.2007.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 08/29/2007] [Accepted: 10/04/2007] [Indexed: 01/07/2023]
Abstract
Brain hypoxia-ischemia is a relatively common and serious problem in neonates and in adults. Its consequences include long-term histological and behavioral changes and reduction in seizure threshold. Gap junction intercellular communication is pivotal in the spread of hypoxia-ischemia related injury and in mediating its long-term effects. This review provides a comprehensive and critical review of hypoxia-ischemia and hypoxia in the brain and the potential role of gap junctions in the spread of the neuronal injury induced by these insults. It also presents the effects of hypoxia-ischemia and of hypoxia on the state of gap junctions in vitro and in vivo. Understanding the mechanisms involved in gap junction-mediated neuronal injury due to hypoxia will lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rabih S Talhouk
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | | | | | | |
Collapse
|
46
|
Burgos M, Neary JT, González FA. P2Y2 nucleotide receptors inhibit trauma-induced death of astrocytic cells. J Neurochem 2007; 103:1785-800. [PMID: 17868308 DOI: 10.1111/j.1471-4159.2007.04872.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nucleotides as well as other neurotransmitters are known to be released to the extracellular space upon injury. To determine whether nucleotides acting on P2Y(2) nucleotide receptors promote protective or degenerative events after trauma in astrocytic cells, a well-established model of in vitro brain trauma was applied to 1321N1 cells expressing recombinant P2Y(2) nucleotide receptors (P2Y(2)R-1321N1). Cellular death was examined by measuring DNA fragmentation and caspase activation. Fragmented DNA was observed 48 h post-injury in 1321N1 cells, while P2Y(2) nucleotide receptor expressing cells did not show DNA fragmentation. A laddering pattern of fragmented DNA following injury was observed upon inhibition of P2Y(2) nucleotide receptors with suramin. Time-dependent increases of cleaved caspase-9, a mitochondrial-associated caspase, correlated with injury-induced cellular death. A decreased bax/bcl-2 gene expression ratio was observed in P2Y(2)R-1321N1 cells after traumatic injury, while untransfected 1321N1 cells showed a significant time-dependent increase of the bax/bcl-2 gene expression ratio. Activation of protein kinases was assessed to determine the signaling pathways involved in cell death and survival responses following traumatic injury. In P2Y(2)R-1321N1 and 1321N1 cells p38 phosphorylation was stimulated in a time-dependent manner but the phosphatidylinositol 3-kinase-dependent activation of extracellular signal-regulated kinase 1/2 and protein kinase B (PKB)/Akt was only observed in P2Y(2)R-1321N1 cells after injury. The stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) signaling pathway was not activated by traumatic injury in either astrocytic cell line. Inhibition of p38 kinase signaling pathway by treatment with PD1693, a MKK3/6 inhibitor, abolished the expression of cleaved caspase-9, the increase in the bax/bcl-2 gene expression ratio, as well as the fragmentation of DNA that followed injury of 1321N1 cells. Taken together, our results demonstrate a novel role for P2Y(2) nucleotide receptors and extracellular nucleotides in mediating survival responses to glial cells undergoing cellular death induced by trauma.
Collapse
Affiliation(s)
- Michelle Burgos
- Department of Biochemistry, Medical-Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | | | | |
Collapse
|
47
|
Moxon-Lester L, Sinclair K, Burke C, Cowin GJ, Rose SE, Colditz P. Increased cerebral lactate during hypoxia may be neuroprotective in newborn piglets with intrauterine growth restriction. Brain Res 2007; 1179:79-88. [PMID: 17936737 DOI: 10.1016/j.brainres.2007.08.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/08/2007] [Accepted: 08/10/2007] [Indexed: 01/07/2023]
Abstract
Intrauterine growth restriction (IUGR) can increase susceptibility to perinatal hypoxic brain injury for reasons that are unknown. Previous studies of the neonatal IUGR brain have suggested that the cerebral mitochondrial capacity is reduced but the glycolytic capacity increased relative to normal weight (NW) neonates. In view of these two factors, we hypothesized that the generation of brain lactate during a mild hypoxic insult would be greater in neonatal IUGR piglets compared to NW piglets. Brain lactate/N-acetylaspartate (NAA) ratios and apparent diffusion coefficients (ADCs) were determined by proton magnetic resonance spectroscopy and imaging of the brain before, during and after hypoxia in seven neonatal piglets with asymmetric IUGR and six NW piglets. During hypoxia, IUGR piglets had significantly higher brain lactate/NAA ratios than NW piglets (P=0.046). The lactate response in the IUGR piglets correlated inversely with apoptosis in the thalamus and frontal cortex of the brain measured 4 h post hypoxia (Pearson's r=0.86, P<0.05). Apoptosis in IUGR piglets with high brain lactate was similar to that in the NW piglets whereas IUGR piglets with low brain lactate had significantly higher apoptosis than NW piglets (P=0.019). ADCs in the high lactate IUGR piglets were significantly lower during hypoxia than in all the other piglets. This signifies increased diffusion of water into brain cells during hypoxia, possibly in response to increased intracellular osmolality caused by high intracellular lactate concentrations. These findings support previous studies showing increased susceptibility to hypoxic brain injury in IUGR neonates but suggest that increased glycolysis during hypoxia confers neuroprotection in some IUGR piglets.
Collapse
Affiliation(s)
- Leith Moxon-Lester
- Perinatal Research Centre, University of Queensland, Royal Brisbane and Women's Hospital, Level 6 Ned Hanlon Building, Brisbane, Australia.
| | | | | | | | | | | |
Collapse
|
48
|
Saliba E, Favrais G, Gressens P. Neuroprotection of the newborn: from bench to cribside. Semin Fetal Neonatal Med 2007; 12:239-40. [PMID: 17368121 DOI: 10.1016/j.siny.2007.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Robertson CL, Saraswati M, Fiskum G. Mitochondrial dysfunction early after traumatic brain injury in immature rats. J Neurochem 2007; 101:1248-57. [PMID: 17403141 DOI: 10.1111/j.1471-4159.2007.04489.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria play central roles in acute brain injury; however, little is known about mitochondrial function following traumatic brain injury (TBI) to the immature brain. We hypothesized that TBI would cause mitochondrial dysfunction early (<4 h) after injury. Immature rats underwent controlled cortical impact (CCI) or sham injury to the left cortex, and mitochondria were isolated from both hemispheres at 1 and 4 h after TBI. Rates of phosphorylating (State 3) and resting (State 4) respiration were measured with and without bovine serum albumin. The respiratory control ratio was calculated (State 3/State 4). Rates of mitochondrial H(2)O(2) production, pyruvate dehydrogenase complex enzyme activity, and cytochrome c content were measured. Mitochondrial State 4 rates (ipsilateral/contralateral ratios) were higher after TBI at 1 h, which was reversed with bovine serum albumin. Four hours after TBI, pyruvate dehydrogenase complex activity and cytochrome c content (ipsilateral/contralateral ratios) were lower in TBI mitochondria. These data demonstrate abnormal mitochondrial function early (<or=4 h) after TBI in the developing brain. Future studies directed at reversing mitochondrial abnormalities could guide neuroprotective interventions after pediatric TBI.
Collapse
Affiliation(s)
- Courtney L Robertson
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
50
|
Yata K, Matchett GA, Tsubokawa T, Tang J, Kanamaru K, Zhang JH. Granulocyte-colony stimulating factor inhibits apoptotic neuron loss after neonatal hypoxia-ischemia in rats. Brain Res 2007; 1145:227-38. [PMID: 17359943 PMCID: PMC1888563 DOI: 10.1016/j.brainres.2007.01.144] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 01/27/2007] [Accepted: 01/30/2007] [Indexed: 11/30/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is an important clinical problem with few effective treatments. Granulocyte-colony stimulating factor (G-CSF) is an endogenous peptide hormone of the hematopoietic system that has been shown to be neuroprotective in focal ischemia in vivo and is currently in phase I/II clinical trials for ischemic stroke in humans. We tested G-CSF in a rat model of neonatal hypoxia-ischemia in postnatal day 7 unsexed rat pups. Three groups of animals were used: hypoxia-ischemia (HI, n=67), hypoxia-ischemia with G-CSF treatment (HI+G, n=65), and healthy control (C, n=53). G-CSF (50 microg/kg, subcutaneous) was administered 1 h after HI and given on four subsequent days (five total injections). Animals were euthanized 24 h, 1, 2, and 3 weeks after HI. Assessment included brain weight, histology, immunohistochemistry, and Western blotting. G-CSF treatment was associated with improved quantitative brain weight and qualitative Nissl histology after hypoxia-ischemia. TUNEL demonstrated reduced apoptosis in group HI+G. Western blot demonstrated decreased expression of Bax and cleaved caspase-3 in group HI+G. G-CSF treatment was also associated with increased expression of STAT3, Bcl-2, and Pim-1, all of which may have participated in the anti-apoptotic effect of the drug. We conclude that G-CSF ameliorates hypoxic-ischemic brain injury and that this may occur in part by an inhibition of apoptotic cell death.
Collapse
Affiliation(s)
- Kenichiro Yata
- Department of Physiology, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | | | | | | | |
Collapse
|