1
|
Haggett JG, Domaille DW. ortho-Boronic Acid Carbonyl Compounds and Their Applications in Chemical Biology. Chemistry 2024; 30:e202302485. [PMID: 37967030 DOI: 10.1002/chem.202302485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
Iminoboronates and diazaborines are related classes of compounds that feature an imine ortho to an arylboronic acid (iminoboronate) or a hydrazone that cyclizes with an ortho arylboronic acid (diazaborine). Rather than acting as independent chemical motifs, the arylboronic acid impacts the rate of imine/hydrazone formation, hydrolysis, and exchange with competing nucleophiles. Increasing evidence has shown that the imine/hydrazone functionality also impacts arylboronic acid reactivity toward diols and reactive oxygen and nitrogen species (ROS/RNS). Untangling the communication between C=N linked functionalities and arylboronic acids has revealed a powerful and tunable motif for bioconjugation chemistries and other applications in chemical biology. Here, we survey the applications of iminoboronates and diazaborines in these fields with an eye toward understanding their utility as a function of neighboring group effects.
Collapse
Affiliation(s)
- Jack G Haggett
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
- Quantitative Biology and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| |
Collapse
|
2
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
3
|
Kashiwazaki G, Watanabe R, Nishikawa A, Kawamura K, Kitayama T, Hibi T. A selective hybrid fluorescent sensor for fructose detection based on a phenylboronic acid and BODIPY-based hydrophobicity probe. RSC Adv 2022; 12:15083-15090. [PMID: 35693230 PMCID: PMC9116957 DOI: 10.1039/d2ra01569b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
Fructose is widely used in the food industry. However, it may be involved in diseases by generating harmful advanced glycation end-products. We have designed and synthesized a novel fluorescent probe for fructose detection by combining a phenylboronic acid group with a BODIPY-based hydrophobicity probe. This probe showed a linear fluorescence response to d-fructose concentration in the range of 100-1000 μM, with a detection limit of 32 μM, which is advantageous for the simple and sensitive determination of fructose.
Collapse
Affiliation(s)
- Gengo Kashiwazaki
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University 3327-204, Nakamachi Nara Nara 631-8505 Japan
| | - Ryo Watanabe
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University 3327-204, Nakamachi Nara Nara 631-8505 Japan
| | - Akihiro Nishikawa
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University 3327-204, Nakamachi Nara Nara 631-8505 Japan
| | - Koyori Kawamura
- Department of Bioscience and Biotechnology, Faculty of Bioscience and Biotechnology, Fukui Prefectural University 4-1-1 Matsuoka-Kenjojima, Eiheiji Fukui 910-1195 Japan
| | - Takashi Kitayama
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University 3327-204, Nakamachi Nara Nara 631-8505 Japan
| | - Takao Hibi
- Department of Bioscience and Biotechnology, Faculty of Bioscience and Biotechnology, Fukui Prefectural University 4-1-1 Matsuoka-Kenjojima, Eiheiji Fukui 910-1195 Japan
| |
Collapse
|
4
|
Mansha M, Akram Khan S, Aziz MA, Zeeshan Khan A, Ali S, Khan M. Optical Chemical Sensing of Iodide Ions: A Comprehensive Review for the Synthetic Strategies of Iodide Sensing Probes, Challenges, and Future Aspects. CHEM REC 2022; 22:e202200059. [PMID: 35581148 DOI: 10.1002/tcr.202200059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Among several anions, iodide (I- ) ions play a crucial role in human biological activities. In it's molecular form (I2 ), iodine is utilized for several industrial applications such as syntheses of medicines, fabric dyes, food additives, solar cell electrolytes, catalysts, and agrochemicals. The excess or deficiency of I- ions in the human body and environmental samples have certain consequences. Therefore, the selective and sensitive detection of I- ions in the human body and environment is vital for monitoring their overall profile. Amongst various analytical techniques for the estimation of I- ions, optical-chemical sensing possesses the merits of high sensitivity, selectivity, and utilizing the least amount of sensing materials. The distinctive aims of this manuscript are (i) To comprehensively review the development of optical chemical sensors (fluorescent & colorimetric) reported between 2001-2021 using organic fluorescent molecules, supramolecular materials, conjugated polymers, and metal-organic frameworks (MOFs). (ii) To illustrate the design and synthetic strategies to create specific binding and high affinity of I- ions which could help minimize negative consequences associated with its large size and high polarizability. (iii) The challenges associated with sensitivity and selectivity of I- ions in aqueous and real samples. The probable future aspects concerning the optical chemical detection of I- ions have also been discussed in detail.
Collapse
Affiliation(s)
- Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Abdul Zeeshan Khan
- Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Majad Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.,Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
5
|
Williams GT, Kedge JL, Fossey JS. Molecular Boronic Acid-Based Saccharide Sensors. ACS Sens 2021; 6:1508-1528. [PMID: 33844515 PMCID: PMC8155662 DOI: 10.1021/acssensors.1c00462] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Boronic acids can reversibly bind diols, a molecular feature that is ubiquitous within saccharides, leading to their use in the design and implementation of sensors for numerous saccharide species. There is a growing understanding of the importance of saccharides in many biological processes and systems; while saccharide or carbohydrate sensing in medicine is most often associated with detection of glucose in diabetes patients, saccharides have proven to be relevant in a range of disease states. Herein the relevance of carbohydrate sensing for biomedical applications is explored, and this review seeks to outline how the complexity of saccharides presents a challenge for the development of selective sensors and describes efforts that have been made to understand the underpinning fluorescence and binding mechanisms of these systems, before outlining examples of how researchers have used this knowledge to develop ever more selective receptors.
Collapse
Affiliation(s)
- George T. Williams
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Jonathan L. Kedge
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - John S. Fossey
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| |
Collapse
|
6
|
Yadav R, Kwamen C, Niemeyer J. Development of Fluorescent Chemosensors for Amino‐Sugars. Isr J Chem 2021. [DOI: 10.1002/ijch.202000104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rohan Yadav
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE) University of Duisburg-Essen Universitätsstrasse 7 45141 Essen Germany
| | - Carel Kwamen
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE) University of Duisburg-Essen Universitätsstrasse 7 45141 Essen Germany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE) University of Duisburg-Essen Universitätsstrasse 7 45141 Essen Germany
| |
Collapse
|
7
|
Preston-Herrera C, Jackson AS, Bachmann BO, Froese JT. Development and application of a high throughput assay system for the detection of Rieske dioxygenase activity. Org Biomol Chem 2021; 19:775-784. [PMID: 33439179 DOI: 10.1039/d0ob02412k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein we report the development of a new periodate-based reactive assay system for the fluorescent detection of the cis-diol metabolites produced by Rieske dioxygenases. This sensitive and diastereoselective assay system successfully evaluates the substrate scope of Rieske dioxygenases and determines the relative activity of a rationally designed Rieske dioxygenase variant library. The high throughput capacity of the assay system enables rapid and efficient substrate scope investigations and screening of large dioxygenase variant libraries.
Collapse
Affiliation(s)
| | - Aaron S Jackson
- Department of Chemistry, Ball State University, 2000 W Riverside Ave, Muncie, IN 47306, USA.
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
| | - Jordan T Froese
- Department of Chemistry, Ball State University, 2000 W Riverside Ave, Muncie, IN 47306, USA.
| |
Collapse
|
8
|
4-Iodophenylboronic Acid Stabilized Gold Cluster as a New Fluorescent Chemosensor for Saccharides Based on Excimer Emission Quenching. J Fluoresc 2021; 31:447-454. [PMID: 33417107 DOI: 10.1007/s10895-020-02672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
4-iodophenylboronic acid (IPBA) ligated luminescent gold cluster was synthesized by mixing an aqueous solution of IBPA and polyvinylpyrrolidone stabilized gold cluster (Au:PVP) in water at room temperature through chemisorption of iodine on gold nano surface. Transmission Electron microscopy (TEM) and matrix assisted laser desorption ionization (MALDI) analysis revealed that the size of these Au-clusters (1.4±0.2 nm) remain unchanged without any noticeable aggregation during synthesis. Owing to the formation of excimer between aryl moieties grafted over Au surface, the cluster exhibit strong emission peak at 335 nm. This luminescent gold cluster is used for sensing different saccharides in water at physiological pH through quenching of excimer emission peak. This strong excimer emission is significantly quenched in presence of saccharides through interaction with boronic acid moieties. The selectivity for different saccharides follows the order: fructose > galactose > maltose > glucose ~ ribose > sorbitol with hight affinity for fructose (KSV = 1.54 × 104 M-1) with Limit of Detection (LOD) of 100 μM.
Collapse
|
9
|
Bhavya N, Mahendra M, Doreswamy B, Kumar S, Gilandoust M, El-khatatneh NA. Computational and spectroscopic investigations on boronic acid based fluorescent carbohydrate sensor in aqueous solution at physiological pH 7.5. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
|
11
|
Wu N, Li J, Zhou M. A novel luminescent sensor for disaccharide detection in food: Synthesis and application of a water-soluble rod-coil ionic block copolymer. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Dopamine/2-Phenylethylamine Sensitivity of Ion-Selective Electrodes Based on Bifunctional-Symmetrical Boron Receptors. SENSORS 2019; 19:s19020283. [PMID: 30642018 PMCID: PMC6358993 DOI: 10.3390/s19020283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 01/15/2023]
Abstract
Piperazine-based compounds bearing two phenylboronic acid or two benzoxaborole groups (PBPA and PBBB) were applied as dopamine receptors in polymeric membranes (PVC/DOS) of ion-selective electrodes. The potentiometric sensitivity and selectivity of the sensors towards dopamine were evaluated and compared with the results obtained for 2-phenylethylamine. Since the developed electrodes displayed strong interference from 2-phenylethylamine, single-molecule geometry optimizations were performed using the density functional theory (DFT) method in order to investigate the origin of dopamine/2-phenylethylamine selectivity. The results indicated that phenylboronic acid and benzoxaborole receptors bind dopamine mainly through the dative B⁻N bond (like 2-phenylethylamine) and the potentiometric selectivity is mainly governed by the higher lipophilicity of 2-phenylethylamine.
Collapse
|
13
|
Resendez A, Halim MA, Singh J, Webb DL, Singaram B. Boronic acid recognition of non-interacting carbohydrates for biomedical applications: increasing fluorescence signals of minimally interacting aldoses and sucralose. Org Biomol Chem 2017; 15:9727-9733. [PMID: 29130464 DOI: 10.1039/c7ob01893b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To address carbohydrates that are commonly used in biomedical applications with low binding affinities for boronic acid based detection systems, two chemical modification methods were utilized to increase sensitivity. Modified carbohydrates were analyzed using a two component fluorescent probe based on boronic acid-appended viologen-HPTS (4,4'-o-BBV). Carbohydrates normally giving poor signals (fucose, l-rhamnose, xylose) were subjected to sodium borohydride (NaBH4) reduction in ambient conditions for 1 h yielding the corresponding sugar alcohols from fucose, l-rhamnose and xylose in essentially quantitative yields. Compared to original aldoses, apparent binding affinities were increased 4-25-fold. The chlorinated sweetener and colon permeability marker sucralose (Splenda), otherwise undetectable by boronic acids, was dechlorinated to a detectable derivative by reactive oxygen and hydroxide intermediates by the Fenton reaction or by H2O2 and UV light. This method is specific to sucralose as other common sugars, such as sucrose, do not contain any carbon-chlorine bonds. Significant fluorescence response was obtained for chemically modified sucralose with the 4,4'-o-BBV-HPTS probe system. This proof of principle can be applied to biomedical applications, such as gut permeability, malabsorption, etc.
Collapse
Affiliation(s)
- Angel Resendez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
| | | | | | | | | |
Collapse
|
14
|
Thareja S, Zhu M, Ji X, Wang B. Boron-based small molecules in disease detection and treatment (2013–2016). HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2017-0086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AbstractRecent years have seen tremendous development in the design and synthesis of boron-based compounds as potential therapeutics and for detection applications. The present review highlights the most recent development of these boron-based small molecules, covering clinically used ixazomib, tavaborole, crisaborole and other molecules from 2013 to 2016.
Collapse
Affiliation(s)
- Suresh Thareja
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Xingyue Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
15
|
Triazole-linked fluorescent bisboronic acid capable of selective recognition of the Lewis Y antigen. Bioorg Med Chem Lett 2017; 27:1983-1988. [PMID: 28351593 DOI: 10.1016/j.bmcl.2017.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 01/07/2023]
Abstract
Cell surface carbohydrates of the Lewis blood group antigens, Lewis X (Lex), Lewis Y (Ley), Lewis A (Lea), and their sialylated derivatives, such as sialy Lewis X (sLex) and sialy Lewis A (sLea), play important roles in various recognition processes. These cell surface carbohydrates have also been associated with the development and progression of many types of cancers. Recently, we synthesized four anthracene-based fluorescent bisboronic acid sensors (compounds 2a-d) linked by 'click' chemistry with tethers of different lengths to match the epitope of various Lewis group of sugars. Among the four compounds, 2a appears to have both high sensitivity and selectivity for Ley among other carbohydrate antigens.
Collapse
|
16
|
Lu Q, Zhan M, Deng L, Qing G, Sun T. Rapid and high-efficiency discrimination of different sialic acid species using dipeptide-based fluorescent sensors. Analyst 2017; 142:3564-3568. [PMID: 28872647 DOI: 10.1039/c7an00762k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel fluorescence sensing matrix is developed by combining six dipeptide-based fluorescent sensors, which allows rapid discrimination of different sialic acid species.
Collapse
Affiliation(s)
- Qi Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Mimi Zhan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Lijing Deng
- West China Hospital
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Guangyan Qing
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- School of Chemistry
| |
Collapse
|
17
|
Tsuchido Y, Sato R, Nodomi N, Hashimoto T, Akiyoshi K, Hayashita T. Saccharide Recognition Based on Self-Assembly of Amphiphilic Phenylboronic Acid Azoprobes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10761-10766. [PMID: 27658017 DOI: 10.1021/acs.langmuir.6b02917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We designed amphiphilic phenylboronic acid azoprobes (B-Azo-Cn) and evaluated their saccharide recognition function in relation to the micelle formation changes of the self-assembled B-Azo-Cn. First, we evaluated B-Azo-C8 in a 1% methanol-99% water solution under basic conditions. The wavelength of maximum absorption in the ultraviolet-visible (UV-vis) spectra of B-Azo-C8 was shifted, and the solution showed a color change with the addition of saccharides. The morphology of B-Azo-C8 was evaluated using dynamic light scattering (DLS) measurements and transmission electron microscopy (TEM) observations. B-Azo-C8 formed aggregates in the absence of saccharides and in the presence of glucose. In the presence of fructose, micelle-formed B-Azo-C8 was dispersed, indicating that B-Azo-C8 changed its dispersion state by recognizing fructose. The effect of alkyl chain length on the saccharide recognition ability was examined as well. B-Azo-C4 and B-Azo-C12 did not recognize saccharides in a 1% methanol-99% water solution under basic conditions, indicating that an appropriate alkyl chain length was required for recognizing saccharides. The control of the hydrophilic-lipophilic balance (HLB) was a key factor for saccharide recognition.
Collapse
Affiliation(s)
- Yuji Tsuchido
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Ryo Sato
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Nana Nodomi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University , Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Katsura Int'tech Center , Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| |
Collapse
|
18
|
Carbon nanodots as fluorescent platforms for recognition of fluoride ion via the inner filter effect of simple arylboronic acids. Experimental and theoretical investigations. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Haidekker MA, Theodorakis EA. Ratiometric mechanosensitive fluorescent dyes: Design and applications. JOURNAL OF MATERIALS CHEMISTRY. C 2016; 4:2707-2718. [PMID: 27127631 PMCID: PMC4844075 DOI: 10.1039/c5tc03504j] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Fluorescent molecules, with their almost instantaneous response to external influences and relatively low-cost measurement instrumentation, have been attractive analytical tools and biosensors for centuries. More recently, advanced chemical synthesis and targeted design have accelerated the development of fluorescent probes. This article focuses on dyes with segmental mobility (known as fluorescent molecular rotors) that act as mechanosensors, which are known for their relationship of emission quantum yield with microviscosity. Fluorescence lifetime is directly related to quantum yield, but steady-state emission intensity is not. To remove confounding factors with steady-state instrumentation, dual-band emission dyes can be used, and molecular rotors have been developed that either have intrinsic dual emission or that have a non-sensitive reference unit to provide a calibration emission band. We report on theory, chemical structure, applications and targeted design of several classes of dual-emission molecular rotors.
Collapse
Affiliation(s)
- Mark A. Haidekker
- College of Engineering, University of Georgia, 597 D. W. Brooks Drive, Athens, GA 30602, USA
| | - Emmanuel A. Theodorakis
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive MC: 0358, La Jolla, CA 92093-0358, USA. Fax: 1-858-822-0386; Tel: 1-858-822-0456
| |
Collapse
|
20
|
Goldberg AR, Northrop BH. Spectroscopic and Computational Investigations of The Thermodynamics of Boronate Ester and Diazaborole Self-Assembly. J Org Chem 2016; 81:969-80. [PMID: 26734844 DOI: 10.1021/acs.joc.5b02548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The solution phase self-assembly of boronate esters, diazaboroles, oxathiaboroles, and dithiaboroles from the condensation of arylboronic acids with aromatic diol, diamine, hydroxythiol, and dithiol compounds in chloroform has been investigated by (1)H NMR spectroscopy and computational methods. Six arylboronic acids were included in the investigations with each boronic acid varying in the substituent at its 4-position. Both computational and experimental results show that the para-substituent of the arylboronic acid does not significantly influence the favorability of forming a condensation product with a given organic donor. The type of donor, however, greatly influences the favorability of self-assembly. (1)H NMR spectroscopy indicates that condensation reactions between arylboronic acids and catechol to give boronate esters are the most favored thermodynamically, followed by diazaborole formation. Computational investigations support this conclusion. Neither oxathiaboroles nor dithiaboroles form spontaneously at equilibrium in chloroform at room temperature. Computational results suggest that the effect of borylation on the frontier orbitals of each donor helps to explain differences in the favorability of their condensation reactions with arylboronic acids. The results can inform the use of boronic acids as they are increasingly utilized in the dynamic self-assembly of organic materials and as components in dynamic combinatorial libraries.
Collapse
Affiliation(s)
- Alexander R Goldberg
- Department of Chemistry, Wesleyan University , Middletown, Connecticut 06459, United States
| | - Brian H Northrop
- Department of Chemistry, Wesleyan University , Middletown, Connecticut 06459, United States
| |
Collapse
|
21
|
Liu B, Novikova N, Simpson MC, Timmer MSM, Stocker BL, Söhnel T, Ware DC, Brothers PJ. Lighting up sugars: fluorescent BODIPY–gluco-furanose and –septanose conjugates linked by direct B–O–C bonds. Org Biomol Chem 2016; 14:5205-9. [DOI: 10.1039/c6ob00726k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
O-BODIPY–glucose conjugates are linked through covalent B–O–C(glucose) bonds, and feature a rare instance of the unnatural septanose form of glucose.
Collapse
Affiliation(s)
- Bowen Liu
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Nina Novikova
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
- School of Chemical and Physical Sciences
| | - M. Cather Simpson
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
- School of Chemical and Physical Sciences
| | - Mattie S. M. Timmer
- The MacDiarmid Institute for Advanced Materials and Nanotechnology
- New Zealand
| | - Bridget L. Stocker
- The MacDiarmid Institute for Advanced Materials and Nanotechnology
- New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - David C. Ware
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Penelope J. Brothers
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
- School of Chemical and Physical Sciences
| |
Collapse
|
22
|
Fluorescently labelled glycans and their applications. Glycoconj J 2015; 32:559-74. [DOI: 10.1007/s10719-015-9611-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 01/20/2023]
|
23
|
Crane BC, Barwell NP, Gopal P, Gopichand M, Higgs T, James TD, Jones CM, Mackenzie A, Mulavisala KP, Paterson W. The Development of a Continuous Intravascular Glucose Monitoring Sensor. J Diabetes Sci Technol 2015; 9:751-61. [PMID: 26033921 PMCID: PMC4525654 DOI: 10.1177/1932296815587937] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glycemic control in hospital intensive care units (ICU) has been the subject of numerous research publications and debate over the past 2 decades. There have been multiple studies showing the benefit of ICU glucose control in reducing both morbidity and mortality. GlySure Ltd has developed a glucose monitor based on a diboronic acid receptor that can continuously measure plasma glucose concentrations directly in a patient's vascular system. The goal of this study was to validate the performance of the GlySure CIGM system in different patient populations. METHODS The GlySure Continuous Intravascular Glucose Monitoring (CIGM) System was evaluated in both the Cardiac ICU (33 patients) and MICU setting (14 patients). The sensor was placed through a custom CVC and measured the patients' blood glucose concentration every 15 seconds. Comparison blood samples were taken at 2 hourly then 4 hourly intervals and measured on a YSI 2300 STAT Plus or an i-STAT. RESULTS Consensus error grid analysis of the data shows that the majority of the data (88.2% Cardiac, and 95.0% MICU) fell within zone A, which is considered to be clinically accurate and all data points fell within zones A and B. The MARD of the Cardiac trial was 9.90% and the MICU trial had a MARD of 7.95%. Data analysis showed no significant differences between data generated from Cardiac and MICU patients or by time or glucose concentration. CONCLUSIONS The GlySure CIGM System has met the design challenges of measuring intravascular glucose concentrations in critically ill patients with acceptable safety and performance criteria and without disrupting current clinical practice. The accuracy of the data is not affected by the patients' condition.
Collapse
Affiliation(s)
| | | | - Palepu Gopal
- Care Nampally, Exhibition Grounds Road, Nampally Hyderabad, India
| | | | | | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK
| | | | | | | | | |
Collapse
|
24
|
Hosseinzadeh R, Mohadjerani M, Pooryousef M, Eslami A, Emami S. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 144:53-60. [PMID: 25748592 DOI: 10.1016/j.saa.2015.02.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/30/2014] [Accepted: 02/14/2015] [Indexed: 05/03/2023]
Abstract
Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (K(a)=3582.88 M(-1)) and selectivity for fructose over glucose at pH=7.4. The sensor 1 showed a linear response toward d-fructose in the concentrations ranging from 2.5×10(-5) to 4×10(-4) mol L(-1) with the detection limit of 1.3×10(-5) mol L(-1).
Collapse
Affiliation(s)
- Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Maryam Mohadjerani
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Mona Pooryousef
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Abbas Eslami
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
25
|
Wang HC, Lee AR. Recent developments in blood glucose sensors. J Food Drug Anal 2015; 23:191-200. [PMID: 28911373 PMCID: PMC9351764 DOI: 10.1016/j.jfda.2014.12.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/25/2014] [Accepted: 12/24/2014] [Indexed: 02/08/2023] Open
Abstract
Diabetes has recently become a leading cause of death worldwide. To date, although there is no means to cure or prevent diabetes, appropriate medication and blood sugar monitoring can enhance treatment efficiency, alleviate the symptoms, and diminish the complications of the condition. This review article deals with current growth areas in the market for blood glucose sensors and possible future alternatives, which are generally considered to be the point sample test and the continuous glucose monitor (CGM). Most glucose sensors are enzyme-based, whereas others are enzyme-free. The former class is sensitive and some products are extensively employed for daily self-sensing and in hospital environments as reliable diagnostic tools. The latter class, particularly the boronic acid fluorescent sensor, is facile and extremely promising. Practicality demands that all types of sensors offer accuracy, specificity, and real-time detection.
Collapse
|
26
|
Iannazzo L, Benedetti E, Catala M, Etheve-Quelquejeu M, Tisné C, Micouin L. Monitoring of reversible boronic acid–diol interactions by fluorine NMR spectroscopy in aqueous media. Org Biomol Chem 2015. [DOI: 10.1039/c5ob01362c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new convenient method for monitoring boronic acid–diol interactions in aqueous media based on 19F NMR spectroscopy with fluorinated boronic acid probes is described.
Collapse
Affiliation(s)
- L. Iannazzo
- UMR 8601 CNRS
- Université Paris Descartes
- Sorbonne Paris Cité
- UFR Biomédicale
- 75006 Paris
| | - E. Benedetti
- UMR 8601 CNRS
- Université Paris Descartes
- Sorbonne Paris Cité
- UFR Biomédicale
- 75006 Paris
| | - M. Catala
- UMR 8015 CNRS
- Université Paris Descartes
- Sorbonne Paris Cité
- Faculté des Sciences Pharmaceutiques et Biologiques
- 75006 Paris
| | - M. Etheve-Quelquejeu
- UMR 8601 CNRS
- Université Paris Descartes
- Sorbonne Paris Cité
- UFR Biomédicale
- 75006 Paris
| | - C. Tisné
- UMR 8015 CNRS
- Université Paris Descartes
- Sorbonne Paris Cité
- Faculté des Sciences Pharmaceutiques et Biologiques
- 75006 Paris
| | - L. Micouin
- UMR 8601 CNRS
- Université Paris Descartes
- Sorbonne Paris Cité
- UFR Biomédicale
- 75006 Paris
| |
Collapse
|
27
|
Palanisamy S, Zhang X, He T. Fast, sensitive and selective colorimetric gold bioassay for dopamine detection. J Mater Chem B 2015; 3:6019-6025. [DOI: 10.1039/c5tb00495k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly sensitive and selective colorimetric biosensor for dopamine has been developed by using double molecular recognition modified Au nanoparticles.
Collapse
Affiliation(s)
- Sivakumar Palanisamy
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - Xuehua Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Tao He
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| |
Collapse
|
28
|
Resendez A, Abdul Halim M, Landhage CM, Hellström PM, Singaram B, Webb DL. Rapid small intestinal permeability assay based on riboflavin and lactulose detected by bis-boronic acid appended benzyl viologens. Clin Chim Acta 2014; 439:115-21. [PMID: 25300228 PMCID: PMC5766262 DOI: 10.1016/j.cca.2014.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
Background Although organoboronic acids are efficient high-throughput sugar sensors, they have not been pursued for gut permeability studies. A modification of the lactulose/mannitol assay is described by which small intestinal permeability is assessed at the time of urine collection using a lactulose/riboflavin ratio. Methods Volunteers ingested 50 mg riboflavin and either 5 g mannitol or 10 g lactulose. Urine was collected for 6 hrs. Riboflavin was assayed by autofluorescence. Riboflavin was removed by C18 solid phase extraction. Lactulose and mannitol were then assayed using 1,1′-bis(2-boronobenzyl)-4,4′-bipyridinium (4,4′oBBV) coupled to the fluorophore HPTS. Results The temporal profile over 6 hrs for riboflavin paralleled mannitol. Riboflavin recovery in urine was 11.1 ± 1.9 % (mean ± SEM, n = 7), similar to mannitol. There was selective binding of 4,4′oBBV to lactulose, likely involving cooperativity between the fructose and galactose moieties. Lower limits of detection and quantification were 90 and 364 μM. The lactulose assay was insensitive to other permeability probes (e.g., sucrose, sucralose) while tolerating glucose or lactose. This assay can be adapted to automated systems. Stability of 4,4′oBBV exceeds 4 years. Conclusions Riboflavin measured by autofluorescence combined with lactulose measured with 4,4′oBBV represents a useful new chemistry for rapid measurement of intestinal permeability with excellent stability, cost and throughput benefits.
Collapse
Affiliation(s)
- Angel Resendez
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA 95064, United States
| | - Md Abdul Halim
- Department of Medical Sciences, Gastroenterology and Hepatology Unit, Uppsala University, 751 85, Uppsala, Sweden
| | - Caroline M Landhage
- Department of Medical Sciences, Gastroenterology and Hepatology Unit, Uppsala University, 751 85, Uppsala, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology and Hepatology Unit, Uppsala University, 751 85, Uppsala, Sweden
| | - Bakthan Singaram
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA 95064, United States
| | - Dominic-Luc Webb
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA 95064, United States; Department of Medical Sciences, Gastroenterology and Hepatology Unit, Uppsala University, 751 85, Uppsala, Sweden.
| |
Collapse
|
29
|
Bentley KW, Wolf C. Comprehensive chirality sensing: development of stereodynamic probes with a dual (chir)optical response. J Org Chem 2014; 79:6517-31. [PMID: 24936934 DOI: 10.1021/jo500959y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The attachment of a salicylaldehyde ring and a cofacial aryl or heteroaryl N-oxide chromophore onto a naphthalene scaffold affords stereodynamic probes designed to rapidly bind amines, amino alcohols, or amino acids and to translate this binding event via substrate-to-receptor chirality amplification into a dual (chir)optical response. 1-(3'-Formyl-4'-hydroxyphenyl)-8-(9'-anthryl)naphthalene (1) was prepared via two consecutive Suzuki cross-coupling reactions, and the three-dimensional structure and racemization kinetics were studied by crystallography and dynamic HPLC. This probe proved successful for chirality sensing of several compounds, but in situ IR monitoring of the condensation reaction between the salicylaldehyde moiety in 1 and phenylglycinol showed that the imine formation takes 2 h. Optimization of the substrate binding rate and the circular dichroism (CD) and fluorescence readouts led to the replacement of anthracene with smaller fluorophores capable of intramolecular hydrogen bonding. 1-(3'-Formyl-4'-methoxyphenyl)-8-(4'-isoquinolyl)naphthalene N-oxide (2) and its pyridyl analogue 3 combine fast substrate binding with distinctive chiral amplification. This asymmetric transformation of the first kind prompts CD and fluorescence responses that can be used for in situ determination of the absolute configuration, ee, and total concentration of many compounds. The general utility of the three chemosensors was successfully tested on 18 substrates.
Collapse
Affiliation(s)
- Keith W Bentley
- Department of Chemistry, Georgetown University , Washington, D.C. 20057, United States
| | | |
Collapse
|
30
|
Selective detection of epimeric pentose saccharides at physiological pH using a fluorescent receptor. Carbohydr Res 2014; 391:61-5. [PMID: 24785389 DOI: 10.1016/j.carres.2014.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 01/30/2014] [Accepted: 02/06/2014] [Indexed: 11/21/2022]
Abstract
Epimerisation between ribofuranose and arabinofuranose sugars is crucial in several biosynthetic pathways, but is typically challenging to monitor. Here, we have screened for fluorescent boronic acids that can be used as molecular probes for the specific detection of ribofuranose over arabinofuranose sugars in solution. We show excellent specificity of the fluorescent response of 3-biphenylboronic acid to ribofuranose at physiological pH. This provides a tool for in situ monitoring of carbohydrate modifying enzymes and provides a viable alternative to traditional radiolabelled assays.
Collapse
|
31
|
Lühn S, Grimm JC, Alban S. Simple and rapid quality control of sulfated glycans by a fluorescence sensor assay--exemplarily developed for the sulfated polysaccharides from red algae Delesseria sanguinea. Mar Drugs 2014; 12:2205-27. [PMID: 24727392 PMCID: PMC4012468 DOI: 10.3390/md12042205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 02/28/2014] [Accepted: 03/24/2014] [Indexed: 12/12/2022] Open
Abstract
Sulfated polysaccharides (SP) from algae are of great interest due to their manifold biological activities. Obstacles to commercial (especially medical) application include considerable variability and complex chemical composition making the analysis and the quality control challenging. The aim of this study was to evaluate a simple microplate assay for screening the quality of SP. It is based on the fluorescence intensity (FI) increase of the sensor molecule Polymer-H by SP and was originally developed for direct quantification of SP. Exemplarily, 65 SP batches isolated from the red alga Delesseria sanguinea (D.s.-SP) and several other algae polysaccharides were investigated. Their FI increase in the Polymer-H assay was compared with other analytical parameters. By testing just one concentration of a D.s.-SP sample, quality deviations from the reference D.s.-SP and thus both batch-to-batch variability and stability can be detected. Further, structurally distinct SP showed to differ in their concentration-dependent FI profiles. By using corresponding reference compounds, the Polymer-H assay is therefore applicable as identification assay with high negative predictability. In conclusion, the Polymer-H assay showed to represent not only a simple method for quantification, but also for characterization identification and differentiation of SP of marine origin.
Collapse
Affiliation(s)
- Susanne Lühn
- Pharmaceutical Institute, Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany.
| | - Juliane C Grimm
- Pharmaceutical Institute, Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany.
| | - Susanne Alban
- Pharmaceutical Institute, Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany.
| |
Collapse
|
32
|
Li J, Liu L, Wang P, Zheng J. Potentiometric Detection of Saccharides Based on Highly Ordered Poly(aniline boronic acid) Nanotubes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Egawa Y, Miki R, Seki T. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes. MATERIALS (BASEL, SWITZERLAND) 2014; 7:1201-1220. [PMID: 28788510 PMCID: PMC5453098 DOI: 10.3390/ma7021201] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/13/2014] [Accepted: 01/28/2014] [Indexed: 01/18/2023]
Abstract
In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conjugated azobenzenes have been synthesized. There are several types of boronic acid azobenzenes, and their characteristics tend to rely on the substitute position of the boronic acid moiety. For example, o-substitution of boronic acid to the azo group gives the advantage of a significant color change upon sugar addition. Nitrogen-15 Nuclear Magnetic Resonance (NMR) studies clearly show a signaling mechanism based on the formation and cleavage of the B-N dative bond between boronic acid and azo moieties in the dye. Some boronic acid-substituted azobenzenes were attached to a polymer or utilized for supramolecular chemistry to produce glucose-selective binding, in which two boronic acid moieties cooperatively bind one glucose molecule. In addition, boronic acid-substituted azobenzenes have been applied not only for glucose monitoring, but also for the sensing of glycated hemoglobin and dopamine.
Collapse
Affiliation(s)
- Yuya Egawa
- Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Ryotaro Miki
- Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Toshinobu Seki
- Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
34
|
Badhulika S, Tlili C, Mulchandani A. Poly(3-aminophenylboronic acid)-functionalized carbon nanotubes-based chemiresistive sensors for detection of sugars. Analyst 2014; 139:3077-82. [DOI: 10.1039/c4an00004h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A poly(aniline boronic acid) (PABA)-functionalized single-walled carbon nanotube (SWNT) non-enzymatic sensor was developed for the detection of saccharides.
Collapse
Affiliation(s)
- Sushmee Badhulika
- Department of Electrical Engineering
- University of California
- Riverside, USA
| | - Chaker Tlili
- Department of Chemical and Environmental Engineering
- University of California
- Riverside, USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering
- University of California
- Riverside, USA
| |
Collapse
|
35
|
Draganov A, Wang D, Wang B. The Future of Boron in Medicinal Chemistry: Therapeutic and Diagnostic Applications. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Hansen JS, Christensen JB. Recent advances in fluorescent arylboronic acids for glucose sensing. BIOSENSORS 2013; 3:400-18. [PMID: 25586415 PMCID: PMC4263566 DOI: 10.3390/bios3040400] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/13/2013] [Accepted: 12/02/2013] [Indexed: 01/08/2023]
Abstract
Continuous glucose monitoring (CGM) is crucial in order to avoid complications caused by change in blood glucose for patients suffering from diabetes mellitus. The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures. Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution. These properties enable arylboronic acid dyes to provide immediate information of glucose concentrations. Thus, the replacement of the commonly applied semi-invasive and non-invasive techniques relying on glucose binding proteins, such as concanavalin A, or enzymes, such as glucose oxidase, glucose dehydrogenase and hexokinases/glucokinases, might be possible. The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.
Collapse
Affiliation(s)
- Jon Stefan Hansen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | - Jørn Bolstad Christensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
37
|
Straightforward synthesis and crystal structures of the 3-piperazine-bisbenzoxaboroles and their boronic acid analogs. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.07.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Teichert JF, Mazunin D, Bode JW. Chemical Sensing of Polyols with Shapeshifting Boronic Acids As a Self-Contained Sensor Array. J Am Chem Soc 2013; 135:11314-21. [DOI: 10.1021/ja404981q] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Johannes F. Teichert
- Department of Chemistry and Applied
Biosciences, Laboratorium
für Organische Chemie, ETH Zürich, Wolfgang Pauli Strasse 10, 8093 Zürich, Switzerland
| | - Dmitry Mazunin
- Department of Chemistry and Applied
Biosciences, Laboratorium
für Organische Chemie, ETH Zürich, Wolfgang Pauli Strasse 10, 8093 Zürich, Switzerland
| | - Jeffrey W. Bode
- Department of Chemistry and Applied
Biosciences, Laboratorium
für Organische Chemie, ETH Zürich, Wolfgang Pauli Strasse 10, 8093 Zürich, Switzerland
| |
Collapse
|
39
|
Shkolnikov V, Santiago JG. A method for non-invasive full-field imaging and quantification of chemical species. LAB ON A CHIP 2013; 13:1632-1643. [PMID: 23463253 DOI: 10.1039/c3lc41293h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present a novel method for full-field scalar visualization and quantification of species concentration fields. We term this method species-altered fluorescence imaging (SAFI). The method employs electrically neutral fluorescent dyes whose quantum yields are selectively quenched or enhanced by species of interest. SAFI enables simultaneous imaging of material interfaces and provides non-invasive, scalar-field quantitation of two-dimensional species concentration fields. We describe criteria for choosing SAFI dyes and tabulate 35 promising SAFI dyes and their relevant properties. Next, we describe species concentration quantification with SAFI via Stern-Volmer quenching and discuss the sensitivity and resolution of our method. We demonstrate this method with two dyes, 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ) and 10-(3-sulfopropyl)acridinium betaine (SAB). We demonstrate our method in full-field visualization of several challenging electrokinetic flows: isotachophoresis (ITP) in both cationic and anionic modes, and in a convective electrokinetic instability (EKI) flow. Through these experiments we collectively quantify ion concentration shock velocities, simultaneously measure concentrations of five species, and quantify the development of an unsteady, chaotic, 2D flow.
Collapse
Affiliation(s)
- Viktor Shkolnikov
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
40
|
Wang L, Dai C, Burroughs SK, Wang SL, Wang B. Arylboronic Acid Chemistry under Electrospray Conditions. Chemistry 2013; 19:7587-94. [DOI: 10.1002/chem.201204290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/20/2013] [Indexed: 11/10/2022]
|
41
|
Savsunenko O, Matondo H, Franceschi-Messant S, Perez E, Popov AF, Rico-Lattes I, Lattes A, Karpichev Y. Functionalized vesicles based on amphiphilic boronic acids: a system for recognizing biologically important polyols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:3207-3213. [PMID: 23418990 DOI: 10.1021/la304751p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report on a new approach for creating water-soluble functionalized vesicles employing N-alkyl-3-boronopyridinium triflates (alkyl = Me, C12H25, C16H33) as sensors for monosaccharides. The nanoaggregate properties were studied by means of DLS, TEM, high-resolution (1)H NMR, and the solvatochromic dyes Reichardt's betaine and Methyl Orange. The vesicles were shown to have 30-200 nm diameters depending on the amphiphile chain length. Diol binding to the vesicles was studied by steady-state fluorescence and UV-vis using Alizarin Red S as a probe in the solution at pH 7.4 in the presence and in the absence of D-glucose and D-fructose. Strong sensing ability of boronic acid functional moieties in the order D-fructose > D-glucose was demonstrated, and apparent binding constants were estimated.
Collapse
Affiliation(s)
- Oleksandr Savsunenko
- LM Litvinenko Institute of Physical Organic Chemistry & Coal Chemistry, Donetsk, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Çiftçi H, Tamer U, Teker MŞ, Pekmez NÖ. An enzyme free potentiometric detection of glucose based on a conducting polymer poly (3-aminophenyl boronic acid-co-3-octylthiophene). Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.12.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Huang YJ, Ouyang WJ, Wu X, Li Z, Fossey JS, James TD, Jiang YB. Glucose Sensing via Aggregation and the Use of “Knock-Out” Binding To Improve Selectivity. J Am Chem Soc 2013; 135:1700-3. [DOI: 10.1021/ja311442x] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yan-Jun Huang
- Department of Chemistry, College
of Chemistry and Chemical Engineering, and MOE Key Laboratory of Analytical
Sciences, Xiamen University, Xiamen 361005,
China
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Wen-Juan Ouyang
- Department of Chemistry, College
of Chemistry and Chemical Engineering, and MOE Key Laboratory of Analytical
Sciences, Xiamen University, Xiamen 361005,
China
| | - Xin Wu
- Department of Chemistry, College
of Chemistry and Chemical Engineering, and MOE Key Laboratory of Analytical
Sciences, Xiamen University, Xiamen 361005,
China
| | - Zhao Li
- Department of Chemistry, College
of Chemistry and Chemical Engineering, and MOE Key Laboratory of Analytical
Sciences, Xiamen University, Xiamen 361005,
China
| | - John S. Fossey
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
- School of Chemistry, University of Birmingham, Birmingham, West Midlands
B15 2TT, U.K
| | - Tony D. James
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Yun-Bao Jiang
- Department of Chemistry, College
of Chemistry and Chemical Engineering, and MOE Key Laboratory of Analytical
Sciences, Xiamen University, Xiamen 361005,
China
| |
Collapse
|
44
|
Massin J, Charaf-Eddin A, Appaix F, Bretonnière Y, Jacquemin D, van der Sanden B, Monnereau C, Andraud C. A water soluble probe with near infrared two-photon absorption and polarity-induced fluorescence for cerebral vascular imaging. Chem Sci 2013. [DOI: 10.1039/c3sc22325f] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
45
|
Pandya A, Sutariya PG, Menon SK. A non enzymatic glucose biosensor based on an ultrasensitive calix[4]arene functionalized boronic acid gold nanoprobe for sensing in human blood serum. Analyst 2013; 138:2483-90. [DOI: 10.1039/c3an36833e] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Abstract
Carbohydrate biomarkers play very important roles in a wide range of biological and pathological processes. Compounds that can specifically recognize a carbohydrate biomarker are useful for targeted delivery of imaging agents and for development of new diagnostics. Furthermore, such compounds could also be candidates for the development of therapeutic agents. A tremendous amount of active work on synthetic lectin mimics has been reported in recent years. Amongst all the synthetic lectins, boronic-acid-based lectins (boronolectins) have shown great promise. Along this line, four classes of boronolectins including peptide-, nucleic-acid-, polymer-, and small-molecule-based ones are discussed with a focus on the design principles and recent advances. We hope that by presenting the potentials of this field, this review will stimulate more research in this area.
Collapse
|
47
|
Tasior M, Hugues V, Blanchard‐Desce M, Gryko DT. Benzo[1,2‐
d
:4,5‐
d
′]bisimidazoles as a Convenient Platform Towards Dyes that are Capable of Excited‐State Intramolecular Proton Transfer and of Two‐Photon Absorption. Chem Asian J 2012; 7:2656-61. [DOI: 10.1002/asia.201200539] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Indexed: 01/25/2023]
Affiliation(s)
- Mariusz Tasior
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01‐224 Warsaw (Poland), Fax: (+48) 226326681
| | - Vincent Hugues
- Université de Bordeaux, ISM (UMR5255 CNRS), F 33400, Bordeaux (France)
| | | | - Daniel T. Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01‐224 Warsaw (Poland), Fax: (+48) 226326681
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00‐664 Warsaw (Poland)
| |
Collapse
|
48
|
Ni N, Laughlin S, Wang Y, Feng Y, Zheng Y, Wang B. Probing the general time scale question of boronic acid binding with sugars in aqueous solution at physiological pH. Bioorg Med Chem 2012; 20:2957-61. [PMID: 22464680 DOI: 10.1016/j.bmc.2012.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/26/2012] [Accepted: 03/05/2012] [Indexed: 11/15/2022]
Abstract
The boronic acid group is widely used in chemosensor design due to its ability to reversibly bind diol-containing compounds. The thermodynamic properties of the boronic acid-diol binding process have been investigated extensively. However, there are few studies of the kinetic properties of such binding processes. In this report, stopped-flow method was used for the first time to study the kinetic properties of the binding between three model arylboronic acids, 4-, 5-, and 8-isoquinolinylboronic acids, and various sugars. With all the boronic acid-diol pairs examined, reactions were complete within seconds. The k(on) values with various sugars follow the order of D-fructose>D-tagatose>D-mannose>D-glucose. This trend tracks the thermodynamic binding affinities for these sugars and demonstrates that the 'on' rate is the key factor determining the binding constant.
Collapse
Affiliation(s)
- Nanting Ni
- Department of Chemistry, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| | | | | | | | | | | |
Collapse
|
49
|
Affinity-based proteomic profiling: Problems and achievements. Proteomics 2012; 12:621-37. [DOI: 10.1002/pmic.201100373] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/01/2011] [Accepted: 09/13/2011] [Indexed: 11/07/2022]
|
50
|
Lim CS, Chung C, Kim HM, An MJ, Tian YS, Chun HJ, Cho BR. A two-photon turn-on probe for glucose uptake. Chem Commun (Camb) 2012; 48:2122-4. [PMID: 22249940 DOI: 10.1039/c2cc16792a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a two-photon turn-on probe (AS1) that can be excited by 780 nm femto-second pulses and visualize glucose uptake and the changes in the intracellular glucose concentration in live cells and tissue by two-photon microscopy.
Collapse
Affiliation(s)
- Chang Su Lim
- Department of Chemistry, Korea University, 145-Anam-ro, Sungbuk-ku, Seoul, 136-713, Korea
| | | | | | | | | | | | | |
Collapse
|